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ABSTRACT

Computational Framework for Light-Field Microscopy Simulation and Optimization

Jipeng Sun

Light field microscopy (LFM) is the key technology for optically imaging the neu-

ron activity in live animal’s brain. However, there is still no computational framework

that could provide an unified simulation and optimization process. The presented work

proposed and demonstrated a computational simulation and optimization framework for

LFM systems. The proposed framework consists of three main modules: forward model,

backward model, and the optimizer. The paper comprehensively introduces the theory

background and implementation details behind each module. The expecting hope of

the developed computational framework is to let users not from computation side could

still quickly prototype and further optimize their LFM optical design and reconstruction

model. Furthermore, the paper also contributes in the taxonomy for current LFM sys-

tems, the microlens array optimization methods, and the optimization pipelines based on

the differentiability of the models.
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CHAPTER 1

Introduction

Light field microscopy (LFM) is a microscopic imaging method based on the light field

theory which could capture the 4-dimensional light field information of the specimen (2-

dimensional spatial and 2-dimensional angular information) to reconstruct the volumetric

information [1]. It has recently demonstrated huge success in imaging live larva zebrafish

brain neural activity with cellular resolution[21]. This success is mainly due to its scan-

less capability in acquiring the plenoptic information of the object and its fast temporal

sampling rate. However, since 2006 when the first light-field microscopy is invented by

Stanford Computer Graphics Lab[20], even though several heuristic and general-purposed

light-field microscopy designs have been explored [3, 5, 10, 22], we still haven’t answered

the question ”How can we get the optimal light field microscopy setting for a specific

application?” The challenging nature of the problem lies in two main aspects: what is

the forward optical transfer model that could encode most plenoptic information and

how to develop a backward model that could decode out as much information as possible

from that encoded light field representation. The present paper provides an answer to

the above questions by proposing a computational differentiable framework to simulate

and optimize the forward image formation process and backward volume reconstruction

process of the light field microscopy based on the imaging data. The framework contains

three major components: differentiable forward model part, backward reconstruction part,

and the optimization part. Each components can be replaced by its counterpart methods
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following the interface specification so that the framework is compatible with the more

advanced algorithms in the future works. Besides, the whole framework is implemented

with GPU accelerable libraries which could gain benefits from parallel computation and

neural network based forward and backward methods.

To summarize, the main contributions are:

• Proposed a methodology to design the optimal light-field microscopy setups based

on the imaging volume data.

• Implemented a computational framework which is compatible with GPU acceler-

ation and more advanced algorithms for image formation, volume reconstruction

and optimization in the future.

1.1. Related Work

Even though all light field microscopies are based on the light field theory which is

to synthesize the volumetric scene by capturing 2-dimensional scene images from a set

of prefixed viewing angles, there are mainly two different optical settings of light field

microscopy until now: conventional LFM and Fourier LFM. Both of them use microlens

array to record the 4-dimensional light field information. The difference is that the con-

ventional one records light field in spatial domain of the volume while the Fourier one

record in the Fourier domain. To our best of knowledge, there is no previous work that

quantitatively demonstrate which design option is more advantageous, but recent Fourier

LFM works have qualitatively compared and analyzed the superiority of it [10].
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1.1.1. LFM with Microlens Array on the Native Image Plane

The first kind of setting comes from the conventional light field camera[1, 27]. Levoy et al.

(2006) firstly applied the light field camera into the microscopy domain[20]. In the initial

version of the light field microscopy, a microlens array is located on the native image plane

for dissecting light coming from different projection angles. An image of the microlens

aperture lightened by the object emitting light will be formed on the camera sensor. Each

individual 2D perspective image can be extracted from the same relative-position pixel

in each individual microlens aperture subimage by ray tracing idea. This can encode

angular information into the raw 2D image on the sensor. However, the lateral resolution

of each perspective is sacrificed and it is limited by the pitch size of the microlens array.

In addition to the low lateral resolution shortage, the image formation model is based on

the ray optics, which doesn’t explain well for the diffraction phenomenon in microscopy

applications since the voxel size of the sample is close to the wavelength of the illumination

light.

To resolve the bias brought by the ray optics theory and attenuate the sacrifice on

the lateral resolution, Broxton et al. (2013) proposed a new wave optics forward model

and a deconvolution algorithm taking super resolution ideas into consideration[3]. By

simulating the point spread function (PSF) matrix for all the pairs of voxel position of

the object and the pixel position of the camera sensor, the light field image of the volume

can be calculated by multiplying the volume vector with the PSF matrix. The paper

has also proofed that the spatial band limit of this LFM setting is not limited by the

pitch size of the microlens array and it could be extended by shifting the object out of

the native object plane to a higher spatial sampling rate position according to the chief
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rays analysis. Thus, the combination of the higher sampling rate aliased 2D scenes can

provide higher frequency information for later volume reconstruction. Even though the

improved wave optics method provides a more accurate and higher-resolution 3-D volume

imaging simulation compared with the initial one, the shift-variant PSF simulation brings

huge computational cost for both forward imaging and backward reconstruction models.

Besides, the approximation error introduced by the simulated PSFs also makes it hard to

applied in the real-world tasks such as free-moving larva zebrafish brain imaging.

Albeit the huge computational cost of the conventional LFM makes it hard to recon-

struct volume, the benefits of the unrestricted imaging rate still push it become one of

the most popular method for optical brain imaging [49]. To overcome the huge com-

putational cost of shift-variant PSF function, a view-channel-depth (VCD) deep neural

network is proposed so that it could leverage the GPU acceleration to achieve real-time

volumetric reconstruction.[41] The training data of the reconstruction model comes from

the synthetic wave-optics 2D light field images of the experimental ground truth volume.

However, applying neural network methods into reconstruction without fitting well on a

comprehensive training data set will bring unexpected bias for novel volumes. Thus, a

physics agnostic reconstruction model is not reliable enough for such low-level measure-

ment tools.

1.1.2. LFM with Microlens Array on the Fourier Plane

Another optical setting for LFM is to add a Fourier lens after the tube lens to get a Fourier

transform of the object image and then put a microlens array to record the 4-dimensional

light field of the Fourier image. After propagating a focal length of the microlens, a
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spatial domain image of the object plane viewed from a specific angle will be formed on

the camera sensor behind each microlens.

The Fourier LFM idea is firstly built and described by Llavador et al. as Fourier

Integral Microscopy in 2016 for the spatial resolution and depth of field improvement

purpose[23]. The experimental optical hardware result is demonstrated in the paper

but the theoretical model is based on the ray optics which makes it unqualified for high

resolution microscopy. Later in 2017, Cong et al. built a light field microscopy with

similar optical setting called XLFM to firstly apply Fourier light field microscopy for

free-moving zebrafish brain neural activity imaging [5]. It achieved a 3.4 × 3.4 × 5µm3

optimal resolution in a part of 800µm diameter wide and 400µm height cylinder volume.

By further combining XLFM with confocal microscopy, Zhang et.al improved the spatial

resolution to 2 × 2 × 2.5 µm3 over a cylindrical imaging volume of diameter 800µm ×

height 200µm[48]. However, all of the above works are done experimentally without a

simulation framework to further optimize.

To fulfill the gap between the physical experiments and computational simulation of

the Fourier LFM, Guo et al. proposed a general design principle for Fourier LFM based

on the simulation in 2019 [10]. The open sourced simulation is done with wave optics and

is implemented in Matlab. The Fourier LFM parameters are summarized and organized

into three categories as input, performance, and design. By providing the desired perfor-

mance and input parameters, the model is claimed to be able to return one set of design

parameters that will satisfy the requirement even though it is not obviously demonstrated

and instructed in the source code. The Fourier LFM simulation work provides a general



15

guidance for Fourier LFM design but still lacks supports on the optimization process,

especially the potential benefits from leveraging the prior task data distribution.

1.2. Thesis Organization

The remainder of the thesis is structured as follows: §2 discusses the rationale and the

architecture of the light field microscopy simulation workflows, along with the commonly

used evaluation factors and the comparison for published LFM works for zebrafish brain

imaging. §3 introduces the optical components and optical propagators used for LFM

systems, and demonstrates the forward models for both conventional LFM and Fourier

LFM built by our framework§4 covers more on the backward models used for recon-

structing the volume in LFM systems. Finally, §?? discusses both the differentiable and

non-differentiable optimization pipeline for LFM systems.
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CHAPTER 2

Light Field Microscopy Simulation Workflow

This chapter introduces the pipeline of simulation for light field microscopy projects

including the forward image formation model, the backward volume reconstruction model,

and the optional optimization process. The initial goal of applying light field technology

into the microscopy task is to achieve the animated volumetric imaging in high temporal

resolution. The main cost of realizing high temporal resolution for light field microscopy

is to split the limited imaging sensor area for several individual views from different

perspectives, which leads to the deduction of the spatial resolution for the synthetic

volume. Besides, to achieve volume reconstruction with high accuracy, more angular

information needs to be encoded on the image sensor, which further shrinks down the

bandwidth of representing spatial information for each individual scene. This inherent

trade-off leads researchers to explore in what extent should a design be compromised to

meet the final volumetric reconstruction goal. Thus, computational simulation plays a

more and more important role in designing modern light field microscopy[10, 22, 49].

The purpose of light field microscopy computational simulation is to measure the

performance of a designed LFM by some metrics we defined without the need of expensive

hardware trials. To better understand the workflow of the LFM simulation, the chapter

will first focus on the rationale of the whole LFM simulation pipeline, and then come down

to each components of the pipeline, and finally introduce the useful metrics to evaluate

such process.
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2.1. The Rationale of LFM Simulation Pipeline

As mentioned above, the LFM simulation process is decomposed into three modules:

the forward model that encodes the volumetric information onto the image plane; the

backward model that decodes the encoded information to reconstruct back the volume;

and the possible optimizations applied on the parameters in both the encoding and de-

coding process. Thus, the whole process can be treated as a classical encoder-decoder

structure [13]. By thinking the LFM system under the encoder-decoder framework, we

could better understand the core of its methodology: rather than directly measuring the

high-dimensional data (the 3D volume to measure), we now convert the problem to find

its low-dimensional codes (the 2D camera data on the image plane) and corresponding

decoder (the point spread functions of the optical system).

To further understand the above argument, the linearity of the optical system needs

to be introduced. For applications that use microscopy to image small animals with

transparent bodies and brains, the occlusion of the sample particles can often be ignored.

Besides, the interior light scattering effect for such transparent sample is negligible so

that the optical system can be treated as a linear system, which means the final light

distribution of the entire volume on the image plane is equal to the sum of the light

contribution of each individual voxel. Thus, the final image of the volume Isens can be

calculated by convolving every voxel with its corresponding point spread function (PSF)

as equation 2.1.

(2.1) Isens = O ∗ ∗PSFlens
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Based on such assumptions, the imaging problem for the infinitely large number of

varieties of the volume can be simplified by only considering the point spread functions

of the system. Therefore, the main task for the forward model now is to simulate how

the optical system responses to the pulse input function. Once the PSFs are measured or

calculated, the encoder-decoder workflow becomes to a typical convolution-deconvolution

process, which has been well studied in the computational photography community.

Given the PSFs and the image data on the camera sensor, the process of deconvolution

is to apply the inverse function of convolution. Braxton et. al. in 2013 proofed that the

LFM reconstruction for transparent object is equal to solve a limited-angle tomography

problem [3]. To solve that well studied inverse problem, there are mainly two groups

of approaches could be adopted: the iterative methods [33, 24, 7, 15, 2] and the deep

learning methods [41, 6, 25]. No matter what method is finally taken, the inputs are

always the PSF functions and the image plane data and the output is always an estimated

reconstruction volume. Any function that fulfills this requirement could be used as a

backward function, which brings the decoupling possibility for computational framework

design.

By the forward and backward models described above, one can already achieve a fairly

good results from the open-loop process. However, to further improve the performance

of the LFM system, a closed-loop process should be developed. In other words, we need

to be able to somehow leverage the feedback from the intermediate or final results to

influence the information flow of the LFM system. The closed-loop idea brings huge

potential space for the LFM performance improvement since it could be a system that

tuned for the specific task data or a specific set of non-ideal real-world optical hardware,
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no longer to be restricted to be a general purpose ideal system, which also forms the basis

of the optimization module of the proposed computational framework.

2.2. The LFM Simulation Pipeline

For LFM simulation, unlike in the physical world experiments where the encoded image

plane result is directly acquired by building out the LFM hardware and putting the volume

to be measured on the object plane, the encoded light field information of a volume won’t

be simulated unless the full information of the volume has already been accessible by the

program. For the purpose of measuring the volume, the forward simulation process seems

to be redundant. This conclusion reveals two important facts which needs to be stressed.

First, the use of the light field microscopy is not coupling with the computational

simulation. In this case, the built-out optical hardware is directly used as an encoder.

However, the second fact is, to come up with a high-performance hardware design, LFM

simulation is the most efficient and economic approach by now. More importantly, as the

later of the section will show, it could close the loop of the optimization applied between

the ground truth volume and the estimated volume, thus, bring significant improvement

on the LFM performance.

In this section, we firstly describe the process of using LFM hardware to image and

reconstruct the volume under the condition that the optical hardware has already been

set. Then, we extend the LFM pipeline to simulation assisted design stage. Based on

whether there exists a feedback loop in the information flow, we discuss the pipeline for

open-loop simulation and closed-loop simulation separately.
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Figure 2.1. The Light Field Microscopy Hardware Usage Pipeline

2.2.1. The Light Field Microscopy Hardware Usage Pipeline

In the LFM hardware in-service stage, computation only happens in the reconstruction

part. See the Figure 2.11. The optical hardware is directly used as the forward model.

The required point spread functions for the backward model input are also acquired by

physically imaging and recording the well-prepared sparse florescent beads sample with

different focal depths. The backward model will take the outputs from the hardware

LFM and accomplish a PSF-agnostic deconvolution. Then, the reconstructed volume is

evaluated by some non-reference metrics such as spatial resolution, field of view, depth of

view, etc since there is no way to access the ground truth volume data. To summarize,

there are four steps in the LFM hardware usage process:

(1) Design and build up a set of optical hardware for the LFM system

(2) Recording the point spread functions stack for the optical system

1Image element courtesy of: Lizzy Griffiths, Olympus Cooperation, Stanford Computer Graphics Lab,
Turaga Lab, Prevedel Lab
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Figure 2.2. The Open-loop LFM Simulation Workflow

(3) Imaging the light field of the targeted volume sample

(4) Deconvolve the light field image with the measured PSFs and get the final recon-

struction.

2.2.2. The Light Field Microscopy Open-loop Simulation Pipeline

In the design stage, the optical hardware setting is undecided. Doing simulation to predict

the performance of the proposed design is necessary. Open-loop LFM simulation is defined

as the simulation process that doesn’t contain a feedback loop to optimize the model

performance. Most of the published LFM simulation works fall into this category [3, 10,

22].
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In the open-loop simulation, complex wavefront function that modulated by the op-

tical components and propagators replaces the hardware encoder. See the Figure 2.22.

The simulated target volume and pulse input pass through the designed forward model

and form the light field result on the camera plane. After the backward function, the re-

constructed volume can be evaluated by both non-reference metrics or reference metrics,

since the ground truth volume data is accessible for simulation, to decide whether the

proposed design is acceptable. If not, another set of predefined parameters will be tested

again and continue the above process. The parameters set that achieves the best simula-

tion result will be used to build up the final optical hardware. Once the hardware is set,

unless further hardware in-the-loop optimization is required, the simulation framework

will no longer be needed and the previously described in-service stage pipeline will start

to act. In summary, the open-loop LFM simulation pipleline is

(1) Propose an optical setting to be tested and develop its forward model

(2) Calculate the point spread functions stack for the initial LFM system

(3) Generate or acquire the training volume data and convolve it with the PSF stack

to get the light field image.

(4) Deconvolve the light field image with the PSF stack to get the estimated recon-

struction.

(5) Evaluate the purposed design by non-reference metrics. If fails, back to the first

step and test with another set.

(6) Build the optical hardware based on that simulated optimal setting

2Image element courtesy of: Lizzy Griffiths, Olympus Cooperation, Stanford Computer Graphics Lab,
Turaga Lab, Prevedel Lab
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Figure 2.3. The Closed-loop LFM Simulation Workflow

2.2.3. The Light Field Microscopy Closed-loop Simulation Pipeline

Inspired by the deep optics idea [36, 43] which utilizes the programmable optics com-

ponents to optimize the imaging quality, closed-loop LFM simulation framework leverage

minimizing the defined error between the target volume and estimated volume to provide

the gradient to automatically guide the forward and backward model improvements. So

that there is no need to grid search the predefined optical parameters to find a local op-

timum. Like its open-loop counterpart, since the ground truth volume data is accessible,
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the reference factors can also be its evaluation metric after an iteration of reconstruc-

tion. As the Figure 2.33 shows, it closes the loop of the optimization applied between

the ground truth volume and the estimated volume. Thus, the whole optical design can

adapt to a specific application usage and joint optimize the forward and backward model.

After the simulation automatically converges to a local optimal set of parameters, the

LFM hardware can be deployed based on that solution.

In summary, the process of the closed-loop LFM simulation contains following steps:

(1) Design an initial optical setting for LFM and develop its forward model

(2) Calculate the point spread functions stack for the initial LFM system

(3) Generate or acquire the training volume data and convolve it with the PSF stack

to get the light field image.

(4) Deconvolve the light field image with the PSF stack to get the estimated recon-

struction.

(5) Optimize the forward and the backward models based on the gradient feedback

to get the final optimal setting.

(6) Build the optical hardware based on that simulated optimal setting

(7) Make the algorithm further adapt to the hardware artifacts based on the camera-

in-the-loop idea. (Optional future hardware improvement work)

2.3. Commonly Used Evaluation Factors for LFM Systems

Since the first light field microscopy is developed in 2006, more than fifteen different

varieties of LFMs have been employed for live imaging [49]. In different degree, all the

3Image element courtesy of: Lizzy Griffiths, Olympus Cooperation, Stanford Computer Graphics Lab,
Turaga Lab, Prevedel Lab
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published LFMs have made remarkable progress in their specific domains. However, to the

best of our knowledge, there is no literature comparison among their performance which

could distinguish the better optical setting to guide the future LFM design. Besides,

without defining a set of effective evaluation metrics first, it is impossible to crosswise

compare the different plans and come to the notion of ’optimization’. Thus, we will focus

on developing a set of quantitative metrics for LFMs and compare the performance of

published LFM systems for zebrafish-imaging in this section.

The information flow charts in section 2.2 illustrate a fundamental difference between

hardware usage workflow and the software simulation pipeline: there is no ground truth

data for reference in the hardware in-service stage. Thus, the quantitative metrics can be

categorized into two groups: the non-reference metrics and reference metrics.

2.3.1. Non-reference Metrics

The non-reference metrics means the input source of the evaluation function is only from

the properties of the model to be evaluated, no other reference sources will be considered.

For example, the spatial resolution of the model’s output. The evaluation result will

always be the same as long as the model itself is unchanged. This group of the metrics

is the only choice for the LFM in-service stage since there is no access to the physical

volume data.

The size of the larva zebrafish brain is about 400 × 800 × 250µm3 and the typical

neuron body cell diameter in larva zebra fish brain is about 3-7 µm [19]. These biological

facts set the fundamental specification for the light field microscopy used for zebrafish
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brain imaging. With such physical imaging obligation, we will introduce the following

crucial non-reference factors and define its minimum requirement:

Lateral Resolution: The ability to discern between two points perpendicular to

the light beam in the same depth. In zebrafish imaging, the lateral resolution

of the reconstructed volume directly determines whether the LFM can achieve

cellular-level imaging. As the previous facts show, around 150 × 270 of 3 ×

3µm2 voxels are required in the reconstruction volume to achieve the cellular-

level resolution. Notice that, the volume resolution is different with the raw

camera image and the lateral shape of the volume is not a square.

Axial Resolution: The ability to discern between two points along or parallel to

the light beam. By the previous biological facts, at least 50 5µm thick slices

are needed in the reconstructed volume to achieve cellular resolution in axial

direction.

System Magnification Rate: The ability for LFM systems to resolve axial emit-

ters is based on pre-measuring the PSF functions in all possible depths in object

space. Usually, achieving the 5 µm step size shifting in the object space is not an

issue for most widefield microscopes PSF measurement tasks since the objective

lens can magnify the step size in image space by the square of the magnification

factor, which often leads to a three-order of magnitude larger step size around

several milimeters in image space. However, for the LFM systems, the huge

difference in focal length between the microlens array and Fourier lens poses a

not neglectable shrinking term to the system magnification rate, leading the rate
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no larger than 10 for most of the LFM systems. As a result, it imposes higher

precision demand to the minimum step size of the shifting stage.

Temporal Resolution: The temporal resolution of the reconstructed volume is

same as the camera frame rate for light field microscopy application if there is no

time multiplexing methods employed. However, high frame rate of the camera

won’t always bring benefits for zebrafish brain firing pattern imaging purpose.

The basal spiking rate for the larva zebrafish brain neurons without swimming is

about 8 spikes/s[12]. Thus, there is not much necessity for the sampling rate to

go over 10 HZ even though the highest frame rate for modern camera and SLM

can go far beyond it. The extra sampling rate capacity leaves huge potential

space for time multiplexing methods.

Field of View: Different with the definition from the photography community,

the field of view (FoV) for a LFM system is defined as the maximum diameter

of the visible area when looking through the microscope eyepiece or scientific

camera. For the immobilized zebrafish brain imaging task, the minimum FoV is

800 µm. Larger FoV can always be achieved by using objective lens with smaller

magnification factor. However, the spatial sampling rate mentioned in the lateral

resolution metric will put a lower bound to the magnification factor.

Depth of Field: The depth of field (DoF) of a LFM system is the axial maximum

measuring depth range to the specimen. The minimum DoF is 200 µm for imaging

a whole zebrafish brain. To calculate the DoF of a LFM system, one must

consider the Rayleigh range of the LFM system, which is inverse proportional to

the numerical aperture (NA). This puts an inherent trade off between DoF and



28

lateral resolution for LFM system. Except that, the pitch size of the microlens

array also puts an upper limit of the DoF since the light field pattern might have

the cross talk phenomenon.

2.3.2. Reference Metrics

As the name suggests, the reference metrics is a group of evaluation methods that used

when there is a ground-truth. It is a necessary part for constructing the loss functions

for most of the closed-loop design. However, due to the ground truth volume is not

accessible in the LFM in-service phase, we can’t easily use the metrics in comparing

different published LFM hardware systems.

2.3.2.1. MSE. Mean squared error (MSE) is the most traditional and simple method

for image comparison. It is calculated as the average of all the squared differences in pixel

values between the reproduction and original image, where smaller values means closer

reproductions and 0 means identical. Good when we want pixel color to be as similar as

possible for perceiving.

(2.2) MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

2.3.2.2. PSNR. Peak signal-to-noise ratio (PSNR) is a variation of MSE. It is a ratio

between the maximum power of an image(255 in an 8-bit pixel representation) to the power

of corrupting noise affecting the quality of reconstruction(MSE). Since PSNR increases

when MSE decreases, higher values represent better image reconstruction quality.
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(2.3) PSNR = 10 log10

(
2552

MSE

)

2.3.2.3. SSIM. Structure similarity index method (SSIM) compares windows of the

image rather than direct pixel to pixel differences. It factors loss of correlation(structure),

luminance distortion, and contrast distortion. Values range from -1 to 1, 1 is identical.

Generally better than MSE and PSNR for identifying structural similarity but worse for

noisy images. More similar to how humans perceive images.

(2.4) SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

2.3.2.4. LPIPS. Learned perceptual image patch similarity (LPIPS) measures percep-

tual similarity between two images, shown to match human perception. It is a deep neural

network trained on database made from humans picking from image sets which distorted

image most closely resembled original. Lower values mean more similar. The open-source

library can be found in: https://github.com/richzhang/PerceptualSimilarity.

2.4. Crosswise Comparison Among Published LFM Systems

Based on the metrics we introduced before, we conducted a literature review on 10

zebrafish brain light field microscopy published works. We summarized our results as

Table 2.1 2.2

As Table 2.1 shows. Given the fact that the larva zebrafish brain size is about 400×

800 × 250µm3 [19], we can find the Fourier light field microscope developed by Cong

etl [5] is the only system that has such imaging capacity to achieve the whole larva

https://github.com/richzhang/PerceptualSimilarity
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Table 2.1. Literature review of LFMs employed for living Zebrafish lavae
Brain imaging 1. The * symbol means based on the provided figures or
averaged operation rather than explicitly specified.

Methods Imaging volume Spatial Resolvability Reference
(dimensions order: x, y, z)

Conventional LFM 500µm × 500µm × 300 µm Not Mentioned Cohen 2014 [4]
Conventional LFM 700µm × 700µm × 200 µm 2.8µm × 2.8µm × 5.2 µm Prevedel 2014 [32]
Fourier LFM 650µm × 440µm × 200 µm 6µm × 6µm × 16 µm Perez 2015 [31]
Conventional LFM 200µm × 200µm × 200 µm 7µm × 7µm × 2 µm Pegard 2016 [30]
Conventional LFM 700µm × 700µm × 200 µm 3.5µm × 3.5µm × 9 µm Nobauer 2017 [28]
Fourier LFM ∅800 µm × 400µm 3.4µm × 3.4µm × 5 µm Cong 2017 [5]
Conventional LFM 700µm × 700µm × 200 µm 2.5µm × 2.5µm × 5 µm * Taylor 2018 [37]
Conventional LFM 350µm × 300µm × 32 µm 3.3µm × 3.3µm × 5.4 µm * Wang 2019 [39]
Conventional LFM 600µm × 600µm × 100 µm 3µm × 3µm × 6 µm Truong 2020 [38]
Fourier LFM ∅800µm × 200µm 2µm × 2µm × 2.5 µm Zhang 2020 [48]

Table 2.2. Literature review of LFMs employed for living Zebrafish lavae
Brain imaging 2

Frame rate Free moving/constrained Deconvolution Method Reference

3 Hz Constrained Richardson Lucy Cohen 2014 [4]
20 Hz Constrained Richardson Lucy Prevedel 2014 [32]
Not mentioned Constrained Richardson Lucy Perez 2015 [31]
100 Hz Constrained No Deconvolution Process Pegard 2016 [30]
20 Hz Head-fixed Richardson Lucy Nobauer 2017 [28]
30 Hz Free moving Richardson Lucy Cong 2017 [5]
77 Hz Constrained Richardson Lucy Taylor 2018 [37]
10 Hz Constrained No Deconvolution Process Wang 2019 [39]
1 Hz Constrained Richardson Lucy Truong 2020 [38]
6 Hz Free moving Richardson Lucy Zhang 2020 [48]

zebrafish brain imaging. However, the spatial resolvability still can not handle cellular-

level reconstruction for all size of the zebrafish neurons(3×3×5µm3)[19]. Also, the rapid

stage moving method adopted by [5] might disturb the zebrafish behavior and cause

difference to the neuron activity recorded in the nature mode. Thus, from the hardware
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side, even though much progress has been made, there is still no ideal LFM solution for

zebrafish brain imaging task.

By Table 2.2, obviously we can see conventional Richardson-Lucy algorithm is the

only deconvolution method that applied in the backward model. Some of the works try to

avoid using deconvolution due to its computational burden and inevitable inaccuracy, but

they still need to face the challenges from neuron identification and lack of global volume

information. There is a strong motivation to apply current more advanced deconvolution

algorithms in this zebrafish brain imaging task to improve the performance, which is

another clear goal our framework is heading for.
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CHAPTER 3

Forward Model

The forward model for the light-field microscopy system is the optical transport process

of the object wavefront. To help readers understand the mathematics details behind the

LFM optical process, we are going to introduce the wildly used optical components and

propagator functions in Fourier optics. With such optical functions, the chapter will then

demonstrate how they are applied in modeling the conventional and Fourier LFM systems

as two examples. After that, we step further into another level of abstraction discussing

the potential parameter space of the LFM forward model from the angle of optimization.

Finally, we will end up this chapter by trying to provide a bold prediction on the open

question: ’What could be the next generation of the forward model for LFM systems?’

with the hope that it could provoke more beneficial thoughts on this meaningful question.

3.1. Optical Components and Propagators Modeling

For applications like florescent microscopy, the illumination light of the object is coher-

ent and the scale of the imaging granularity is close to the wavelength of the illumination

light. Under such conditions, the ray-optics model is no longer accurate enough to model

the imaging process. Thus, wave optics comes to rescue. In wave optics, the emitting

light field of the object can be modeled as a 3D complex field which the real part repre-

sents its amplitude and the imaginary part represents its phase information. So that the

diffraction effect can be modeled by multiplication.
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There are two types of situation we need to consider separately when modeling the

optical path. The first one is when the wavefront is freely propagating through a medium,

the second one is when the wavefront passes through an optical instrument or component.

3.1.1. Mathematical Models for Optical Propagation

Let the complex field that is incident on the transverse (x, y, 0) plane be represented by

U(x, y, 0). To calculate the wavefront field distribution after propagating to a specific

distance z on its parallel plane (x, y, z), various numerical methods for diffraction theory

have been developed. Here, the framework implements two classical propagation func-

tions: angular spectrum method(ASM) and Fresnel diffraction function. The reason why

Fraunhofer diffraction is not implemented in the framework is that the far field assump-

tion will not hold for the microscopy scenario. The ASM is a general transfer function

for the diffraction theory, it has more accuracy but requires relatively more computation.

The Fresnel diffraction makes Fresnel approximation under paraxial assumption to make

the computation much faster.

To find an appropriate propagation method to use, the framework will calculate the

Fresnel number first to provide a suggestion. The Fresnel number can be calculated by

(3.1) F =
a2

λL

where a is the radius of the aperture, λ is the wavelength of the light, and L is the

propagation distance. The Fresnel number calculates the number of half-period zones in

the amplitude. The less number of fringes, the larger propagation distance it will indicate.
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For near-field optics application which the Fresnel number is far more than 1, the ASM

method needs to be adopted. For Fresnel around 1 which suggest the distance is bigger

than the aperture, the Fresnel diffraction should be adopted. For far-field applications

which Fresnel number is far less than 1, the Fraunhofer diffraction can be used to save

computation time. Even though it might not hold for the microscopy cases.

We will illustrate this selecting process by two LFM simulation examples. Suppose

the radius of the camera sensor is 6.7 mm, the propagation distance to the camera is 26

mm and the wavelength is 488nm. So the Fresnel number is about 3538. In that case, we

should choose ASM method. This is a common set up for the post-microlens light field

propagating to the image sensor in MLA system. In another example for simulating the

light enter the microlens array. The microlens radius is 0.7mm, the propagation distance

from the rear lens of the 4F system to the microlens array is 160mm. The Fresnel number

for such setup is 6.27. Then, using Fresnel diffraction to get more computational benefits

would be a reasonable choice.

3.1.1.1. Angular SpectrumMethod. In the Fourier optics, the two-dimensional Fourier

transform of the complex field can be considered as the sum of a collection of a more simple

complex-exponential functions as Equation 3.2.

(3.2) U(x, y, 0) =

∫∫ ∞

−∞
A(fX , fY ; 0)exp[j2π(fXx+ fY y)] dx dy

To give a physical meaning to the above complex field, we can first represent a plane

wave propagating with wave vector k⃗ = 2π
λ
(αx̂+βŷ+γẑ) in the coordinate system {x̂, ŷ, ẑ}

at position r = xx̂+ yŷ + zẑ. Where the direction cosines are interrelated through
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(3.3) γ =
√

1− α2 − β2

Thus, the Fourier decompositon in Equation 3.2 can be considered as the plane-wave

component with spatial frequencies (fX , fY ) propagating with diffraction cosines α =

λfX ,β = λfy and γ =
√

1− (λfX)2 − (λfy)2. with amplitude A(fX , fY ; 0) dx dy evaluated

at (fX = α/λ, fY = β/λ). Due to this reason, we define the angular spectrum of the

wavefield U(x, y, 0) as

(3.4) A(
α

λ
,
β

λ
; 0) =

∫∫ ∞

−∞
U(x, y, 0)exp[−j2π(α

λ
x+

β

λ
y)] dx dy

By considering the complex wavefront as a weighted sum of the planar waves propa-

gating to different direction, we can easily derive out the wavefront distribution after the

propagation z by adding up the decomposed planar wave propagation results since the

optical system is linear. Since it is a linear system, we can derive the linear kernel for the

propagation as Equation 3.5. We refer readers the details of kernel derivation to [8].

(3.5) H(fX , fY ; z) = exp[j2π
z

λ

√
1− (λfX)2 − (λfY )2]

To use such kernel, we can leverage the fact that the convolution operation in the

spatial domain is equal to the multiplication in the frequency domain. Thus, the final

wavefront field can be written as
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(3.6) U(x, y, z) = F−1{F{U(x0, y0)}[fX , fY ]H(fX , fY ; z)}[x, y]

3.1.1.2. Fresnel Diffraction. The Huygens-Fresnel principle states that the wavefront

can be treated as the sum of the independent spherical wavelets that generated from all

the points on that wavefront. This physical can be mathematically expressed by Equation

3.7 where theta is the angle between the outward normal of the wavefront plane and the

r01 is the vector from the source point P0 and the target point P1.

(3.7) U(P0) =
1

jλ

∫∫
∑ U(P1)

exp(jkr01)

r01
cosθ ds

Replace the cosθ with the z
r01

and redefine our target plane as (ζ, η), we can get

Equation 3.8.

(3.8) U(x, y) =
z

jλ

∫∫
∑ U(ζ, η)

exp(jkr01)

r201
dζ dη

Notice that, the relationship between r01 and the points coordinates on the initial

plane (x, y) and target plane (ζ, η) is

(3.9) r01 =
√

z2 + (x− ζ)2 + (y − η)2
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Equation 3.9 is the crucial part we further apply Fresnel approximation. Based on the

approximation of the binomial expansion of the square root function, we can get rid of

the square root by adding more binomial terms if b is less than 1.

(3.10)
√
1 + b = 1 +

1

2
b+

1

8
b2 + ...

Notice that, the r01 in Equation 3.8 appears two times. First is in the exponent and the

second is in the denominator. The approximate error in exponential term will introduce

large bias compared with the error in the denominator term. Thus, we will finally derive

the Fresnel diffraction as Equation3.11

(3.11) U(x, y, z) =
ejkz

jλz

∫∫
∑ U(ζ, η)exp{j k

2z
[(x− ζ)2 + (y − η)2]} dζ dη

The Equation 3.11 can be written as a convolution form due to is spatial in- variance

property. Thus, it can be rewritten in frequency domain and we will use the following

equation in our framework for efficiency.

(3.12) U(x, y, z) = 2πexp[
jk

2z
(x2 + y2)]F{U(ζ, η, 0)HF (ζ, η)}[k

x

z
, k

y

z
]

where the Fresnel kernel HF can be get from applying Fourier transform
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H(x, y) = F{− jk

2πz
exp(jkz)exp[

jk

2z
(x2 + y2)]}

H(x, y) = ejkzexp[−jπλz(f 2
X + f 2

Y )]

By such convolution kernel, we can see that the Fresnel diffraction kernel is applying

two parts of phase delay to the incident wavefront: a constant phase delay exp(jkz) and

a quadratic phase delay exp[ jk
2z
(x2 + y2) based on the direction vector. Which is coherent

with the performance of the linear system. The computation of the Fresnel diffraction is

faster than the ASM method since it requires only one Fourier transform operation while

the latter one requires two.

Compared HF with the Equation 3.5, we can find the HF is actually an approximation

to the ASM kernel under the condition that |λfX ≪ 1|, |λfY ≪ 1|. By further connecting

the minimum diffraction angle with the spatial frequency, we can derive that Fresnel

diffraction must hold under the condition that

(3.13)
θ4z

4λ
≪ 1

Thus, the Fresnel approximation requires the diffraction angle to be small enough

which is similar with the paraxial condition. The framework thus implemented the warn-

ing message once the condition will not hold. Especially for the light field microscopy

application due to the large NA of the lens, the Fresnel diffraction sometimes might not

work well enough.
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3.1.2. Mathematical Models for Optical Components

The common optical components in simulation for light field microscopy includes objective

lens, thin lens, Fourier lens, microlens array, spatial light modulator(SLM), and camera

sensor. The components manipulate the wavefront to further encode the volumetric in-

formation on the 2D image sampling plane.

3.1.2.1. Objective Lens. The objective lens usually is designed to have large numerical

aperture (NA) to achieve high resolving power based on the Ernst Abbe formula d = 0.61λ
NA

.

In the physical world, objective lens can magnify the wavefront in a short distance fitted

in the microscope. However, in simulation, since all the information of the volume has

already known by us. The intended over-sampling won’t bring us more information about

the volume but more computation burden. The common approach in simulating the

microscopy system is to convert the magnification rate later in the image plane. But

the modeling of the objective lens is still a good approach to simulate the apodizatioin,

depolarization and spherical aberration effects on the PSF brought by the objective lens.[9]

By Debye intergral for the diffraction field, we can get the following in-differentiable

Equation 3.14 for simulating the PSF after a large NA lens:

(3.14) U(v, u) =
2πj

λ
exp(−jkz)

∫ α

0

P (θ)J0(
vsinθ

sinα
)exp(

jusin2(θ/2)

2sin2(α/2)
)sinθ dθ

We refer readers the details of Equation 3.14 to references [9, 10].

3.1.2.2. Thin Lens. Many optical components in LFM systems can be modeled as thin

lens based on the approximation that the ray will enter and exist at the same coordinate
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on both surfaces. For example, the micro-lenslet, the Fourier lens, and the 4F system. The

thin lens acts as a phase delay to the incident wavefront by an amount proportional to its

corresponding thickness. The phase delay can be modeled by a quadratic approximation

to the spherical wave related with the its focal length and coordinates.

(3.15) U
′

l (x, y) = P (x, y)exp[−j k

2f
(x2 + y2)]

Due to the rotation nature of the phasor representation, both the amplitude and phase

of the thin lens function will change periodically, which leads to a ’lens array’ pattern.

Thus, the pupil function is necessary for cutting off the uncounted area. For common

thin lens, we define pupil function as P (x, y) = circ(R).

3.1.2.3. Fourier Lens. When the paraxial approximation hold, the thin lens can physi-

cally apply Fourier transform to the input wavefront if the object is located a focal length

f distance in front of the lens. The optical Fourier transform can be written as

(3.16) FOptical(U(u, v)) = F{U(u, v)}[ u
λf

,
v

λf
]

The reasons why we separate the Fourier lens out as an independent component rather

than treat it as a combination of thin lens and a propagation method are

(1) Reduce redundant computation on the canceled phase term

(2) Avoid the inconsistency of the different approximation applied on the propagator

and the thin lens
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(3) Extend the function to handle the object located in different distance in front of

the Fourier lens rather than fixed on the front focal plane. Which is useful when

simulating the PSFs in different z depth for LFM systems.

By combining paraxial approximation from Fresnel kernel and the phase delay func-

tion, we can derive the object wavefront U(u, v) that located in a distance d in front of the

lens will generate a wavefront distribution Uf (u, v) on the rear focal plane as Equation

3.17predicts.

(3.17) Uf (u, v) =
exp[j k

2f
(1− d

f
)(u2 + v2)]

jλf
FOptical(U(u, v))

We can see that when the distance d = f , the quadratic phase term brought by the

thin lens will disappear and only left the optical Fourier transform operation.

3.1.2.4. Microlens Array. The purpose of applying microlens array in LFM systems

is to sample the light field information of the incident wavefront. The phase mask of the

traditional microlens array is the non-overlapping ensemble of the thin lens mask. For

the sake of manufacturing, all the microlens symmetrically distributed on the plane with

same focal length and aperture size. To model such microlens phase mask, we often use

a 2D comb function convolving with a thin lens mask as the following equation. Here, ∗

represents the 2D convolution.

(3.18) ϕ(x, y) = comb(x/dML, y/dML) ∗ P (x′, y′)exp[−j k

2f
(x′2 + y′2)]
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Even though the uni-focal, symmetric microlens distribution have successfully applied

in various real-world LFM systems and achieved encouraging results. There is no general

law in traditional microlens design to internally uniform all the variants of microlens array

specification.(focal depth, microlens aperture size, MLA distribution). Further more,

There are some experimental result to challenge its optimum compared with other optical

design(eg. multi-focal, random positioned MLA).[22, 25] From the perspective of deep

optics, the optical design could be further optimized based on the data from its application.

Thus, there should be some undiscovered general design principles for MLA given the

distribution of their imaging task data.

To further introduce more varieties in the MLA design, we proposed a grid-based

MLA phase mask generation algorithm. It is composed of two sub algorithm: the grid-

coordinate generation algorithm2 and the phase mask concatenation algorithm 1. We will

further explain the first algorithm in the Chapter 5. We first pre-compute and save all the

possible combinations of thin lens functions between predefined focal depths and possible

radial distances with max aperture size in a dictionary D. Then the grid-coordinate

generation algorithm will generate a list of center coordinates (xi, yi), aperture sizepi, and

focal depth fi for every micro lenslet i. We then query the pre-computed phase mask and

apply a crop for required aperture size. Then the final MLA phase mask can get from the

concatenation of the queried sub mask information based on the coordinate offset.

The implementation details are stated in Algorithm 1.

By algorithm 1, we can get the microlens phase mask with a set of predefined, easy-to-

manufactured microlens let but still have the ability to have a task-data driven optimized
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Algorithm 1 MLA Concatenation Algorithm

Input: N Microlens Properties Tuples T = {(x,y),p,f}Ni=1

Output: Microlens Array Phase Mask PM withe size (K,K)
1: import numpy as np
2: T ← Grid-Coordinate Generation Algorithm ▷ Run the Algorithm 2
3: PM ← np.zeros(K,K)
4: for f in f list do
5: D[′f ′] = circ((K/2)∗pixel size)exp[−j k

2f
(K2 +K2)] ▷ Precalculate and store the

thin lens function using Equation3.15
6: end for
7: for ti in T do
8: (xi, yi), fi, pi ← ti ▷ Get micro lenslet coordinates, focal length and aperture

size(in pixel)
9: patchi ← crop(D[′f ′

i ]) ▷ Get cropped microlens phase mask
10: PM [xi − (pi/2) : xi + (pi/2), yi − (pi/2) : yi + (pi/2)]← patchi ▷ Fill in the phase

mask by different phase mask patches
11: end for

design. The algorithm is not differentiable so it has to be used with the non-differentiable

optimization method in Chapter 5.

3.1.2.5. Spatial Light Modulator. The biggest difference between the spatial light

modulator (SLM) and a static diffuser phase mask is that the SLM can modulate the phase

information dynamically. In the initial version of the framework, we haven’t simulated the

real-world physical defects when using SLM (eg. High Direct Current (DC) term, cross-

talk .etc). We basically treat the SLM component as an ideal dynamic phase mask. Also,

users can use this component as a to-be optimized diffuser phase mask in differentiable

optimization pipeline. Suppose the phase mask is ϕ(x, y)SLM , the wavefront U(x, y) after

passing through is simply applied by a phase delay:

(3.19) U(x, y) = U ′(x, y)× ϕ(x, y)SLM
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Another well-designed differentiable diffuser phase mask optimization method can be

find in reference [45]. The optimization is defined for maximize the dissimilarity of the

axial PSFs and the lateral resolution for all the depth. The building blocks of the phase

mask is the overlapping convex sphere surface. This approach can also be implemented

using the framework except the optimization only happens in the forward model part.

3.1.2.6. Camera Sensor. The photodetectors only respond to the power of the incident

light. The phase information of the wavefront will be lost during sampling. Thus, the

detected image for the wavefront U(x, y) can be modeled as:

(3.20) I(x, y) = |U(x, y)|2

In the real world, the camera might have many types of noise due to its physical

properties, such as shot noise and digital noise. We make the noise part optional so that

users can flexibly switch the noise term for different modeling purpose.

3.2. Forward Models for Conventional and Fourier LFM Systems

With the optics simulation toolbox we introduced above, we can easily simulate the

forward models for most of the current light field microscopy systems. We here will demo

our framework ability to simulate the PSFs for two most common LFM designs. Notice

that, if users take magnification convert method to handle objective lens, all the forward

models are built both on CPU Numpy library and GPU Pytorch library for both future

differentiable and non-differentiable optimization usages. If users choose to use Debye
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theory to model the large NA lens effect, the framework currently only support Numpy

implementation due to the Debye integral operation.

Another important point to understand before we dig into the details of the forward

models simulation is that the difference of the PSF measurement space between the real-

world experiments and the computational simulation. In real-world physical experiment,

we can’t easily manufacture the stage that could shift the object with micrometer-level

precision. People then leverage the fact that the image space is the magnification rate

square scaling of the object space. Thus the shift distance precision requirement in image

space is also loosed by scaled up to the power of two of the magnification rate of the

systems. We can then shift the image sensor to different location to capture the PSF

images and convert the results to the object space. However, in simulation, we don’t

often model the objective lens magnification effect due to the reason stated in section

3.1.2.1 and the micrometer-level precision is not a problem for simulation. We tend to

simulate our PSF in object space directly.

3.2.1. Forward Model for Conventional Light Field Microscopy

The origin of the light field microscopy comes from the light field camera. [1, 27]. Levoy

et al. in 2006 extended it to the microscopy area[20]. In the original setting, they put

the microlens array on the native image plane. The purpose of using microlens array is to

leverage their microlens curvature to physically decompose the object wavefront and then

record their intensity on the 2D camera plane. So the image plane will record the aperture

image of the microlens array which is the wavefront in different perspective. To form a
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Figure 3.1. The Optical Setting for Conventional Light Field Microscope

specific perspective image, one can sample the specific corresponding location pixels from

all microlens aperture image.

As the Figure 3.1 The optical transport process of such conventional LFMs can be

described below. For easier understanding, we now first consider the object is located on

the native object plane case:

(1) Incident wavefront generate from the native object plane

(2) The wavefront then enters a 4F system formed by a pair of objective lens and

tube lens. It then focused on the native image plane.

(3) On the native image plane, the wavefront is modulated by the microlens array.

(4) The wavefront then propagates a distance of the focal length of the micro lenslet

and focused on the image plane



47

To model such optical process using our framework, we defines its forward model as

Equation 3.21

(3.21)

I(x, y) = Fcamera(FASM((FF lens(FF lens(U(x, y), fobj lens), ftube lens))× (ΦMLA), fMLA))

We then implement Equation 3.21 by our framework and adopt the parameters from

[3]. The result image shows good agreement with the paper’s physical experiment.

We further consider the cases where the object is not located on the native object

plane, which is the requisite setup for measuring point spread function stack for the LFM

systems. In such cases, the object needs to shift both laterally and axially to form the

system respond image for the pulse input if the LFM system is not lateral shift-invariant.

Unfortunately, the conventional LFM systems fall into that category which means we

need to simulate the PSF for all possible object voxel locations. Notice that in real-world

experiment, the shift is happening not on the object space but image space due to the

reasons we stated at the beginning. To simulate this effect in our framework, we can

simply add up the offset value −DoF/2 ∗Mag2 <= zoffset <= DoF/2 ∗Mag2 to the

propagation distance argument of the first Fourier lens function. Again, we can see the

result is in good agreement with the simulation result provided in [3].

(3.22)

I(x, y) = Fcamera(FASM((FF lens(FF lens(U(x, y), fobj lens, zoffset), ftube lens))×(ΦMLA), fMLA))
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3.2.2. Forward Model for Fourier Light Field Microscopy

As the previous chapter introduced, the Fourier light field microscopy put the microlens

array on the Fourier plane. The motivation behinds this is the Fourier plane encodes the

spatial information of the object wavefront parallelly. Thus, its angular information is

inherently encoded into the spatial domain of the Fourier plane. If we put the microlens

array on the Fourier plane and record the focused image behind it, all the redundant

information from the same source point will collapse together to a single point and thus

perform a perfect dealiasing. It leads to a high lateral resolution design. Recall the

native-object-plane scenario in the conventional LFM system, each micro lenslet on the

microlens array actually spreads out the pre-focused redundant light that comes from

the same source point which cause an unneeded waste for the limited spatial encoding

space. From that point of view, the Fourier LFM actually surpasses the conventional

LFM design.

The optical transport process of Fourier LFMs can be summarized by following steps:

(1) Incident wavefront generate from the native object plane

(2) The wavefront then enters a 4F system formed by a pair of objective lens and

tube lens. It then focused on the native image plane.

(3) The wavefront propagates a distance of the focal length to the Fourier lens and

then propagate another focal length to apply an optical Fourier transform.

(4) The wavefront on the Fourier plane is then modulated by the microlens array.

(5) The wavefront then propagate to a distance of its focal length to form a focused

image.

(6) The camera records the intensity of the wavefront.
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Figure 3.2. The Simplified Optical Setting for Fourier LFM Systems.

For simulation, the 4F system step is unnecessary due to no phase mask is applied in

the middle. Thus, we can ignore the step two for efficiency. However, we still need to

convert the magnification rate when do axial PSF measurement since the revised optical

path is after the 4F system. Figure 3.2 shows the revised optical path. The final optical

forward model can be implemented by the following Equation 3.23

(3.23) I(x, y) = Fcamera(FASM(FF lens(U(x, y), fF lens)× ΦMLA, fMLA))
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Due to the parallel encoding property brought by the Fourier lens setting, the PSF for

Fourier LFM is laterally shift-invariant. To encode the depth information, the PSFs are

definitely axially shift-variant. This could save huge computational effort for measuring

PSFs in all lateral position, which will typically bring at least two to four orders of

magnitude acceleration. The process of implementing Fourier LFM forward model in our

framework is similar as its counterpart. We only need to pass another offset −DoF/2 ∗

Mag2 <= z <= DoF/2 ∗Mag2 argument to Fourier lens function indicating its axial

shift after magnification.

Agian, we compare our simulation with the results from reference [10]. It still shows

good agreement.

3.3. Parameter Space of the Forward Model for Optimization

After introducing the optical components and propagators and how to perform optical

task simulation by using the combination of them. We step higher to the next level

of abstraction to think about the parameter space of the LFM forward models. By

understanding what we could change in the forward model of LFM systems, we could

found the basis of applying further optimization methods on improving the optical process,

which leads to better encoding the volumetric information of the specimen.

The encoder part of the LFM is done by the optical hardware. The wavefront of the

emitting light is manipulated by the optical components such as objective lens, tube lens,

Fourier lens, microlens array, and spatial light modulator (SLM) and finally formed an

image with camera noise on the image plane. Every transformation needs to obey the



51

physical laws and the freedom researchers can control on the light phase often lies in

several aspects:

• The use of the Fourier lens to do optical Fourier transform to the wavefront.

• The microlens distribution, aperture size, and focal length on the microlens array

to gather light field information of the wavefront.

• The programmable phase mask on spatial light modulator to add desired phase

delay on the wavefront.

• The sequence of the optical components to apply corresponding wavefront func-

tions in different orders.

• The propagation distance of the wavefront to achieve different sampling effect on

the following optical component.

3.3.1. Axial Resolution Analysis

To achieve the depth information retrieval from the light field image, one needs to consider

the maximum axial resolution the system could achieve. Information goes beyond that

threshold basically means there is no way to reconstruct back. That minimum resolvable

distance is defined by the Rayleigh criterion which states it as the distance between the

center of the emitter and its first diffraction pattern. For the LFM systems, this can

be written as DRayleigh = 0.61λ
NAMLA

. Given that theoretical minimum distance, we could

further derive out the relationship between the minimum axial shift ∆D with the rest of

the system parameters.

For the most micro lenslets that are adopted by the LFM systems, the numerical

aperture is usually approximate to 0. We take the micro lenslet used in XLFM paper[5]
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Figure 3.3. The Axial Resolution Analysis of Fourier LFM Systems.

as an example (1.3mm diameter, 26mm focal length), which is a relative larger NA one

compared with the other counterparts. The NA of the micro lenslet is about 0.025, where

the small angle approximation is perfectly applied since sin(0.025) ≊ 0.025. Due to

the paraxial approximation, we can write the NA as NAMLA = DMLA

2∗fMLA
, where DMLA

refers to the diameter of the micro lenslet. As the Figure 3.3 shows, for LFM systems,

the axial shift in the object space causes the lateral shift in the image space. Since we

have already known the expression of the minimum resolvable lateral shift distance in

the image space based on the Rayleigh criterion, the goal here is to inversely find that

corresponding minimum axial shift distance in the object space ∆D that causes this shift

DRayleigh, which represents the highest axial resolution we could achieve for such LFM

system theoretically.

The axial shift in the object space is magnified by the square of the magnification

factor of the objective lens component. Therefore, ∆D = ∆D′

M2
obj

where ∆D′ is the axial

shift in the native image space. Since we are considering the minimum axial shift case,

the angle between the incident ray from the native image space and the light axis should
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be approximately equal. (θ′ ≊ θ) The similar triangles here build the connection between

the ∆D′ and D′
Rayleigh. Besides, the ratio between the D′

Rayleigh and DRayleigh is also equal

to the ratio between the Fourier lens focal length and the micro lenslet focal length based

on the triangulation. Finally, we can write the final axial resolution formula as

∆D =
D′

Rayleigh

tanθM2
obj

=
DRayleighfFourier

tanθM2
objfMLA

=
0.61λfFourier

NAMLAtanθM2
objfMLA

=
0.61λf 2

Fourier

NAMLADradialM2
objfMLA

whereDradial is the radial distance between the center of the micro lenslet and the chief

axis. By the paraxial approximation proofed above, we replace the NAMLA as DMLA

2∗fMLA
and

finally reduce the equation as

(3.24) ∆D =
1.22λf 2

Fourier

DMLADradialM2
obj

where the DMLA is the diameter or the aperture size of the micro lenslet.

Notice that, the final equation provides a quantitative relationship between the highest

axial resolution that could be achieved and the LFM system parameters. We could find

that the axial spatial resolution (the inverse of the ∆D) is proportional to the aperture
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size of the micro lenslet, the radial distance of the micro lenslet, and the square of the

magnification rate of the objective lens. Increasing such parameters could help increasing

the axial resolution as long as they are still applicable to the paraxial assumption. Mean-

while, the square of the Fourier lens focal length and the wavelength of the incident light

have a counter effect on the axial resolution improvement.

A quite counter-intuitive part of the final expression is that it clearly shows the focal

length of the micro lenslet has no effect on the theoretical axial resolution upper bound.

However, many recent works on the LFM optimization leverage the parameter space of the

focal length of the MLA and have successfully achieved better reconstruction result[22,

25, 45]. The reasons behind it might lie in several aspects:

• The Rayleigh criterion describes the upper bound of the axial resolution encoded

on the image plane. However, for LFM systems, the final axial resolution for

the reconstructed volume depends on the output dimension of the deconvolution

algorithm, specifically, the axial step size of point spread function stack. These

two numbers have no bond since the axial dimension of the PSF stack only

depends on the step size of the axial shift to the image plane during the PSF

measurement. Theoretically, we could have far finer PSF axial step size than this

Rayleigh upper bound and still get that finer axial resolution results from the

deconvolution algorithm. But we need to understand that the information goes

beyond that limits is the garbage information since it is purely depends on the

maximum probability estimation result of the algorithm rather than the physical

information itself. We need to be really cautious about the ’false boom’ brought

by our deconvolution algorithm.
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• The axial resolution of the reconstructed volume might go below this upper limit.

The no difference for upper bound doesn’t necessary means no effect on that two-

dimensional image representation of the volume. The focal length of the MLA

do affect the light field image result and there does exist a parameter space for

searching out the most suitable light field representation for the deconvolution

algorithm.

• The Rayleigh criterion based on the assumption that there is no difference for the

diffraction patterns of the two close emitters. In many sparse encoding applica-

tions, the footprints for different depth of the PSF are different and it could help

the algorithm to decode out finer depth information. However, we also need to

be cautious about the actual information flow in our deconvolution algorithm, a

sanity check on whether the algorithm indeed relies on the footprint distribution

information is necessary.
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CHAPTER 4

Backward Model

The purpose of the LFM backward models is to decode out the volumetric information

of the target sample x from the forward-model encoded 2D image on the camera sensor

y. The task for backward models is to solve an inverse problem to reconstruct back the

input object.

(4.1) x̂ = A−1y

Even though the optical simulation process for the forward model involved with optics

domain knowledge. Like what we have introduced in Chapter 2, once all the point spread

function(PSF) functions of the LFM systems are measured, we can directly predict all

the possibilities of the system responses without any optical simulation process but pure

from the PSFs information. This is due to the linearity of the optical system. Thus, we

can store all the measured PSFs and simply apply convolution between these PSFs with

any transparent target volume, then we will be able to predict the 2D encoded image of

that volume on the camera sensor plane.

(4.2) Isens = O ∗ ∗PSFlens

To further reduce the computation cost brought by the spatial domain convolution, we

can further leverage the fact that the convolution in spatial domain is the multiplication
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in frequency domain and rewrite the Equation 4.2 to

(4.3) F(Isens) = F(O)×F(PSFlens)

In an ideal case without any noise, one can easily reconstruct back the target O by dividing

the 2D image with the PSF in frequency domain and apply an inverse Fourier transform

to get the object information.

(4.4) O = F−1(
F(Isens)
F(PSFlens)

)

However, our physical world is not a noise-free environment and our PSFs for LFM is

a 3D version. We must use some iterative or training-based end-to-end methods to decon-

volve the camera image. We here categorize and introduce two groups of deconvolution

methods based on their differentiability. The motivation behind it is that the difference

here will lead us to two directions for our future optimization problem. The differentiable

methods here could make the closed-loop LFM optimization process possible.

4.1. Non-differentiable Deconvolution Methods

4.1.1. Wiener Filter Deconvolution

Since the failure reason of the naive deconvolution approach is due to the noise, one can

naturely come up with the idea of separating the noise from the signal. Wiener developed

a deconvolution algorithm based on minimizing the mean square error between the original

signal and the estimated signal. To further reduce the expectation term during derivation,

Wiener made a reasonable assumption on the independence between the original signal
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and the noise. [44] Thus, leads to the following result:

(4.5) O = F−1(
1

1 + 1
|F(PSFlens)|2SNR

F(Isens)
F(PSFlens)

)

We can interpret the |F(PSFlens)|2SNR term as the spectral density ratio of original

signal to noise. Then, the Wiener filter is an adjustable filter based on the signal-to-noise

ratio. If the SNR is high at a certain frequency, then the deconvolution will almost behave

as a pure frequency division; if the SNR is low, then the filter will assign less weight to

the frequency division.

Notice that the Wiener filter is originally designed for 2D data. Even though there

are some works for applying Wiener filter in 3D data, the results are still not robust

enough to support widely applications. Also, the SNR parameter requires us to know

the information about the signal and noise spectrum previously which is impractical. In

reality, we just estimate a rough SNR value based on the prior knowledge and trials. The

reason we still introduce this method here is not only limited in its huge influence on

the future methods, but also its potential in being applied in the recent physics-informed

machine learning methods to introduce more interpretability to the neural network based

algorithms. [46, 16]

4.1.2. Richardson-Lucy Deconvolution

4.1.2.1. Original Richardson-Lucy for 2D Reconstruction. Richardson-Lucy al-

gorithm is a widely used deconvolution algorithm based on the Poisson statistical nature

of the shot noise[33, 24]. It models the image generation process considering the shot

noise is Equation 4.6, where P is the Poisson distribution, A is the matrix operation of
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the forward model, and b is a constant vector represents background noise.

(4.6) y ∼ P(Ax+ b)

Then we can write the Poisson probability of such measurement y given a specific type of

ground truth photon inputs x as:

(4.7) p(y|x) = exp(−(Ax+ b)T1)× exp(log(Ax+ b)Ty) ∗
N∏

n=1

1/yn!

Our goal is to find such x that could have most probability to generate such measurement.

Thus, we need to find the x that maximizing the p(y|x). We can take a log operation to

make it easier to derivate. We can ignore the yn part since it is a constant. Thus the

gradient can be represent as:

(4.8) ▽L(x) = ATdiag(Ax+ b)−1y − AT1

After we rewrite it to an iterative form

(4.9) xk+1 = diag(AT1)−1diag[ATdiag(Axk + b)−1y]xk

Replacing the A with our convolution algorithm, we can write out the Richardson-

Lucy algorithm for 2D deconvolution as Equation 4.10, where PSF ∗ means a flipped

PSF.
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(4.10) ˆxk+1 = x̂k · (
y

x̂k ∗ ∗PSF
∗ ∗PSF ∗)

4.1.2.2. Richardson-Lucy Deconvolution for 3D Reconstruction. To further ex-

tend the Equation 4.10 to 3D, we need to make several assumptions: First, the recon-

structed volume is a layer-based model, which means it can be treated as the concatenation

of the 2D slices in the axial direction. Second, we assume there is no scattering effect

happened inside the volume. Third, we ignore the difference in magnification rate for all

individual micro lenslets.

We first initialize the estimated volume x̂ covering z depths which matches our mea-

sured PSF stack z depths. Suppose our volume has N slices. Then, we convolve the

volume slices with their corresponding z-depth PSF. We then get N 2D estimated camera

measurements for different volume slices. Since we ignore the scattering effect, we can get

our estimated volume image ŷ by summing up N estimated camera measurements.

(4.11) ˆyi+1 =
N∑
k=1

[x̂i(zk) ∗ ∗PSF (zk)]

After we get our estimated volume image y, we could further applied it to the 2D

reconstruction cases. We use the whole volume image with its measured image to provide

the update direction for every single slices. We can finally get our reconstruction after

the estimated volume is converged.
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(4.12) x̂i+1 = x̂i · ( y

ˆyi+1
∗ ∗PSF ∗)

4.2. Differentiable Deconvolution Methods

Differentiable deconvolution methods are group of methods that leverages the differ-

entiability and strong non-linear fitting ability of the deep neural network to reconstruct

the 3D target volumes from the optical encoded 2D images. The high-dimensional statis-

tic data distribution patterns learned from the huge training dataset makes it possible to

even achieve high-accuracy reconstruction results without knowing the PSFs information,

in other words, to perform blind-deconvolution much better than the classical methods.

The differentiability is another huge potential for methods in this group since it could en-

able the ’closed-loop’ LFM system design mentioned in Chapter2 on the backward model

side, thus, lead to the task-driven optimized design.

Besides these two advantages mentioned above, another benefit compared with clas-

sical counterparts is the reconstruction speed. Due to the fast speed forward inference

operation of the deep neural network, once the neural network has been trained, the re-

construction speed in the service stage will be three orders of magnitude faster than the

iterative classical methods [46]. It makes the real time reconstruction pipeline possible

for LFM systems.

However, the pure deep learning methods also suffers from following aspects:

• The reconstruction has good image quality but less physical accuracy, which is

crucial for such low-level accuracy-demanding measurement tool.
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• Large training dataset required. Sometimes may cause a deadlock for some novel

image tasks since there is no data to train the model but getting the training

data requires model.

• Generalization is difficult for different imaging samples.

• The training time is long and costs lots of computational resources and memory

storage.

• Lack of interpretability of the reconstruction process.

Many new research works are going on to mitigate such shortages. The motivation

of doing non-blind deconvolution using deep neural network further fosters the recent

progress on the physics-informed machine learning volume reconstruction topics [46],

heading to fix the most important accuracy issue.

4.2.1. U-Net Group

Since deep neural network is released, more and more works report their supremacy in

image restoration and deconvolution tasks compared with the conventional methods by

its better reconstruction accuracy and speed.[40] Although different works apply differ-

ent improvements to the previous state-of-art deconvolution model and achieve better

performance[42, 11, 41], one of the most popular backbone structure for light field vol-

ume reconstruction task is U-Net[34].

The U-Net is a convolution neural network that mainly consists of two information

paths like a U-shape: a contracting path and an expansive path. As the name suggests, the

contracting path takes the original image as input and uses convolution and max-pooling

operation to shrink down the tensor size layer by layer. The expansive path, on the
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contrary, takes the output of the contracting path and uses convolution and up-sampling

operation to expand the tensor back to the original image size and generate output that

roughly matches the size of the input image. To better recover the information loss from

the contracting step, the tensors in contracting step will be concatenated to the same-level

tensors in the expansion step.

The design reason behind the U-Net comes from the nature that the semantics de-

pendencies in image data are distributed in different spatial scope level. Convolution

operations could synthesize kernel-sized local spatial information so shrinking down the

tensor size by max-pooling could help convolution synthesize larger scope of information.

However, the final output size in such image restoration application requires to be roughly

same as the original image, thus, the network needs up-sampling or deconvolution oper-

ations to recover back the original size. The concatenation is to recover the information

loss we stated above.

The common structure for these U-Net based reconstruction methods is to accept the

light field raw image as input and manipulate tensors by U-Net operations to finally match

the expansion of the volume data and resize it back to form different depth stack. To match

the data size mismatch between the light field measurement and reconstructed volume,

they usually do up-sampling first. [41] This end-to-end blind-deconvolution approach

purely relies on the large training set and data interpolation to find the mapping between

the light field measurement and volume data. No physical information from PSF stack is

combined into the process, which leads the model harder to generalize and less robust.
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4.2.2. Physics-Informed Machine Learning

The idea of physics informed machine learning is quite straightforward: combining physics

processed information into the differentiable loop. However, how to technically com-

bine this into the model requires the knowledge from the optimization and the neu-

ral network engineering expertise. We will introduce a relatively simple example called

MultiWienerNet[46] for microscopy 3D-reconstruction task in this section to demonstrate

its potential.

As we introduced before, the U-Net can take a set of 2D images input and decode the

implicit volume structure information out based on the shared statics of the training data

and the task data. Modifying the U-Net structure might bring performance improvement

but won’t bring further mechanism-level changes since the raw input data determines its

blind-convolution nature. To combine the physics information into the information flow,

the only option is to pre-process the input data by some physics models. In our LFM

cases, is the point spread function deconvolution process.

The MultiWienerNet tries to apply multiple Wiener filters on the raw input measure-

ment image. Recall that the Wiener filter is used for 2D image reconstruction, it won’t

directly return a 3D reconstructed volume. The meaning of applying Wiener filters to

deconvolve here is not expecting to get the volume slice information but to hope this

deconvolution could use the PSFs to decode out some sharp features for its corresponding

region due to its spatial variance property. So that it could be easier for the later U-Net

decoder to decode out the correct volumetric information from such pre-processed inputs.
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Another novel benefit for this setting is it could make the SNR term in Wiener filter dif-

ferentiable, therefore it can change based on the reconstruction performance rather than

relying on heuristic setting.

There are definitely many other ways to involve the physics-model into the differen-

tiable models such as algorithm unrolling[35, 29, 47], single step physics based inversion[18],

and differientiable forward models[46]. We refer readers to those references for further

details.
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CHAPTER 5

Optimization

In this chapter, we finally reach the point to consider the optimization problem given

the previous building block knowledge.

We first categorize the pipeline into three groups based on the differentiability. The

motivation behind this taxonomy is due to the difference in their optimization meth-

ods, there is no general evidence to show the privilege of using one over another. The

non-differentiable property only represents the error brought by the reconstruction loss

function can’t be automatically used for tuning the forward model by the gradient. How-

ever, it doesn’t necessarily mean we can’t optimize our forward model. Also, even though

the classical method are iterative methods, the iteration direction is still based on the

gradient between the estimation and measurement. Even the reconstruction image qual-

ity might not be as good as neural network methods, there is still no clear dominance

here considering its guarantee of the physical accuracy.

Then we will separately discuss each type of pipeline and its possible optimization

methods could be adopted.
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Figure 5.1. The Flow Chart for LFM Optimization Strategies

5.1. Optimization for Non-Differentiable Pipelines

5.1.1. The Scenarios for Non-Differentiable Pipelines

For non-differentiable LFM pipelines, the definition here is that neither the forward

model nor the backward model is differentiable. In most cases, using our LFM simu-

lation framework or other modern coherent optics simulation framework eg. HoloTorch

(https://github.com/facebookresearch/holotorch), since the whole optics opera-

tions are developed based on PyTorch, it can guarantee the differentiability and the GPU

acceleration of the forward models. However, for most researchers coming from biomedi-

cal side, these frameworks haven’t got promoted enough to apply and thus leads to many

current in-use forward model implementations non-differentiable. The reason why the

whole pipeline is non-differentiable includes two scenarios:

• The forward model of the system is implemented based on the non-differentiable

library and it adopts the classical reconstruction methods for backward model.[3,

https://github.com/facebookresearch/holotorch
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5] The common purpose for such pipeline are usually for computationally proto-

typing the system or demonstrating the developed non-differentiable forward/backward

model, or for heuristically finding the better design.

• Some of the optical components in the forward model includes non-differentiable

operations (eg. iteration, non-continuous functions, non-smooth functions) or

computational heavy operations that would rather not put in the differentiable

loop(eg. integral operation) and the backward model is chosen from the classical

deconvolution group. [10] This scenario share the same purpose with the previous

case.

5.1.2. The Optimization Strategies for Non-Differentiable Pipelines

Since the pipeline is non-differentiable, the loss function from backward model can’t ex-

plicitly pass its influence to the forward model. The biggest problem people in this

category might concern is how to get a better result for their LFM systems since people

adopting this pipeline most come from biomedical engineering or biology background.

Their purpose is to build a robust LFM to image their interested specimen. To solve such

problem, our framework provides three solutions:

(1) Apply grid search to the parameters to be tuned. Using the framework provided

function optimizer.grid_search(). Specifically, we proposed a MLA Grid-

Coordinate Generation Algorithm to solve the MLA design problem. We refer

readers to algorithm 2 and 1 for further details.
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Algorithm 2 MLA Grid-Coordinate Generation Algorithm

Input: The size of MLA plane (K,K), the diameter of the minimum micro lenslet d min,
the focal length list to apply grid search. focal list = [f0, f1, ...fn], the volume dataset
V and the backward model function Reconstruct()

Output: The optimized micro-lenslet properties list T = {(x,y),p,f}Ni=1

1: M ← K/d min ▷ Divide the MLA plane as grid based on the d min.
2: Tcurrent← (grid, d, f) ] ▷ Assign the initial MLA grid with all minimum lenslets
3: PM ← concat((grid, d, f)) ▷ Get initial phase mask with all minimum lenslet
4: current best← Reconstruct(PM) ▷ Get the performance of initial phase mask
5: for d in range(1,M) do ▷ For all possible aperture size
6: for i in range(M − d+ 1) do ▷ For all possible position for such size in X
7: for j in range(M − d+ 1) do ▷ For all possible position for such size in Y
8: if ! is symmetric and is conflict((i,j),d,last state) then
9: T new = merge((i, j), d, T last)

10: else
11: T new = merge((i, j), d, T )
12: end if
13: current best > reconstruct(concat(T new))?
14: : T last = Tcurrent, current best = reconstruct(concat(T new)) ▷

Update the current best value
15: end for
16: end for
17: end for
18: Return current best

(2) Pick a off-the-shelf differentiable backward reconstruction method provided in

our framework for better image quality but also trying to maintain the physics

information . (eg. physics-informed machine learning methods)

(3) If the optical design could accept SLM or customized diffuser phase mask, con-

sider convert the forward model program to a differentiable framework (eg. our

framework, HoloTorch, or reprogram with Pytorch). Then focus on optimizing

the PSF only.
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5.2. Optimization for Partially Differentiable Pipeline

5.2.1. The Scenarios for Partially-Differentiable Pipelines

As the name suggests, the partially differentiable pipeline means either the forward model

or the backward model of the LFM system is differentiable. This is the pipeline that most

computational microscopy groups would pick to report their research progress to the

academia so that they could focus on a specific sub-problem to solve. Usually, there are

two scenarios:

• The forward model is differentiable but the backward model is chosen from the

classical method group. Usually, since the backward model can not be integrated

into the optimization loop, the optimization goal is to find the best PSF for the

forward model, in other words, the PSF engineering task [14, 45]. The backward

model here is just for fairly demonstrating and comparing the results.

• The forward model is non-differentiable but the backward model is differentiable.

In this case, the purpose of the forward model is for providing the simulated

data for the later backward models rather than for tuning the parameters in the

forward model. The problem then turns into an optics unrelated computational

problem. The goal here is to develop a better reconstruction algorithm for the

given forward model. [41, 46]

5.2.2. The Optimization Strategies for Partially-Differentiable Pipelines

The optimization for partially-differentiable pipelines need to consider two different cases

based on the differentiable part of their models.
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For forward-differentiable but backward-non-differentiable pipelines:

(1) Since the forward model is differentiable, one can consider directly model the

PSF function to make it optimized for some specific defined property. These

common approaches including maximizing the dissimilarity for the different z

slices (by minimizing the sum of the cross-correlation term), maximizing the lat-

eral resolution (by minimizing the MSE between the mask and the fraction limit

lens in frequency domain), and maximizing the axial resolution (by minimizing

the minimizing the variance of the Cramér-Rao bound (CRB) of the close point

pair in axial direction based on the Fisher information).[45, 14] Notice that, the

optimization to such metrics might not necessary means the optimal design for

your own data. Good PSF engineering can guarantee the optimum in unbiased

estimation, hence add prior knowledge from task data could theoretically achieve

better performance.

(2) Another strategy would be switching the backward model to a differentiable

one. This could benefit the forward model by directly optimizing towards the

better performance on the task data rather than being optimal to all kind of

data distribution. After the switch, the optimization strategy turns to the fully

differentiable pipeline cases, which we will discuss later.

For backward-differentiable but forward-non-differentiable pipelines:

(1) An always workable strategy of optimizing pipeline in such category is trying to

turn the blind-deconvolution to a non-blind deconvolution by simply adding a
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differentiable physics-informed layer before input into the U-net for reconstruc-

tion. The methods of adding physics-informed layer into the neural network has

been introduced in Chapter 4.

(2) If one has already deployed physics-informed machine learning method into the

pipeline, the next bottleneck for further optimization would naturally be getting

a better encoded representation for the decoder model. Such problem can be

solved by adding a differentiable forward model, which also leads to strategies we

are gonna discuss in fully differentiable pipeline cases.

5.3. Optimization for Fully Differentiable Pipeline

5.3.1. The Scenario for Fully-Differentiable Pipelines

The fully differentiable pipeline is the truly end-to-end problem solver for LFM tasks.

Both the forward and backward model here are designed to be differentiable and only

few computational microscopy groups have successfully developed such system by far[26,

6, 25]. The differentiability allows the LFM systems to update not only its backward

reconstruction neural network, but also the programmable optical components in the

forward model (eg. spatial light modulator and customized diffuser mask). The scenario

usually is

• Computationally find the optimal design for the imaging task.

5.3.2. The Optimization Strategies for Fully-Differentiable Pipelines

The fully differentiability for the whole pipeline definitely requires expertise in the neu-

ral network engineering, optimization and optics simulation knowledge. However, this
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engineering is worthy since it leads towards the global optimization for the whole LFM

pipeline which is impossible for other pipelines.

However, the cost for putting such whole LFM process into the same optimization

chain is the huge computational resources. First, one need to apply gradient descent on

the full parameter set in the backward neural network and at least the phase-mask level

magnitude parameters for the programmable optical components in the forward model.

Second, even the single forward inference time for such model is not trivial, let alone such

amount size of parameters requires at least thousands of batches to converge. Both the

space and time challenges make this approach really difficult to apply in the real-world

experiments.

The strategies for optimizing such pipelines includes:

(1) Define a better loss function or output for the model to make it easier to converge.

For example, not predict the discrete position pair but a continuous probability

map. We refer the readers to the supplementary files of the reference [26]

(2) Rather than co-optimizing the whole process together, one can consider develop

separate loss functions for both parts or freeze some part of the model after

several iterations.

(3) Data and computation parallelization is necessary for such task. For example,

one can decompose the 3D volume into 2D slices and separately training networks

for different depth on different GPUs.

(4) In 2020, the memory-efficient methods for large scale image data training was

introduced by Kellman et al. We recommend interested readers to the reference

[17].
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CHAPTER 6

Conclusion & Future Works

This paper first reviewed and compared the light field microscopy works and then

proposed the taxonomy for the light field microscopy systems: the open-loop and the

closed-loop based on the information flow. Then, the presented work further discuss the

building blocks for programming the forward optical model and simulate both conven-

tional LFM and Fourier LFM to further demonstrate the correctness of the framework.

After that, both the classical and neural-network based backward models are introduced

to close the simulation pipeline. Based on such model units, we then finally discuss the

optimization strategies separately for non-differentiable, partially differentiable, and fully

differentiable optimization pipelines.

In the future, we are going to

(1) Further improve the framework by adding more forward optics components, more

backward models and developing better framework interface.

(2) Keep working on the MLA pattern optimization using both grid search and gra-

dient descent methods.

(3) Explore more about the physics-informed machine learning methods and the

optimization for fully differentiable pipeline.

(4) Build out our hardware setup for zebrafish brain imaging based on the simulation

results from the framework.
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