
Computer Science Department

Technical Report
Number: NU-CS-2022-06

June, 2022

Symbolic Data Augmentation for Assisted Neural Reasoning

Muhan Li

Abstract

This work proposes a novel data augmentation technique based on symbolic methods SDAR that
generates annotations in the text space. The SDAR annotator is an ensemble of multiple
sub-annotators, each equipped with a searcher and a symbolic knowledge retriever. We
demonstrate that SDAR can boost the performance of smaller models to a comparable degree of
or even surpass larger models with a magnitude more parameters and establish the STOA single
model performance on OpenBookQA.

Keywords

Data Augmentation, Knowledge Retrieval, Symbolic Reasoning, Transformer

NORTHWESTERN UNIVERSITY

Symbolic Data Augmentation for Assisted Neural Reasoning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

MASTER OF SCIENCE

Field of Computer Science

By

Muhan Li

EVANSTON, ILLINOIS

June 2022

2

© Copyright by Muhan Li 2022

All Rights Reserved

3

ABSTRACT

Recent progress in various language processing tasks which require multi-step reasoning pro-

cess in commonsense or scientific domains, are usually achieved by large-scale language mod-

els. While these models have achieved decent performance, their parameter number is becom-

ing increasingly difficult for commodity hardware to handle. In this work, we propose a novel

data augmentation technique based on symbolic methods SDAR that generates annotations in the

text space. The SDAR annotator is an ensemble of multiple sub-annotators, each equipped with

a searcher (usually neural) and a symbolic knowledge retriever. The annotations by each sub-

annotator generated are combined and sent along with the original input to the target language

model. We demonstrate that SDAR can boost the performance of smaller models to a compara-

ble degree of or even surpass larger models with a magnitude more parameters, and establish the

state-of-the-art single model performance on OPENBOOKQA.

4

ACKNOWLEDGEMENTS

I would like to express my gratitude for my supervisor Prof. Douglas Downey and Dr. David

Demeter who made this work possible. The in-depth guidance and inspirational advice from David

have enabled me to make many improvements which are crucial to the final result achieved in this

paper. It was a privilege for me to work with these two patient, enthusiastic, and knowledgeable

advisors and got constantly enlightened during the whole research.

My sincere appreciation also goes to my loving and supportive family, especially my parents

Fan Li and Jing Liu who provided me with all the support I need, spiritually and financially.

Without them, I would never be able to conduct this research in the first place or fully devote my

effort into the work. Thank you for comforting me whenever I felt defeated and encouraging me

to regain the motivation for advancement. My heartfelt thanks for your love.

5

TABLE OF CONTENTS

Acknowledgments . 3

List of Figures . 7

List of Tables . 8

Chapter 1: Introduction . 9

Chapter 2: Related work . 12

2.1 Recent general advancements . 12

2.2 Knowledge enhanced text understanding . 15

2.2.1 Sources of knowledge . 15

2.2.2 Challenges in knowledge-enhanced text understanding 16

2.3 Step by step reasoning . 19

Chapter 3: The SDAR framework . 20

3.1 Task definition . 20

3.2 Architecture of the annotator . 21

6

3.3 Architecture of the question answering model . 25

3.4 A novel way to unify and retrieve knowledge . 26

3.5 Implementation of symbolic reasoning . 30

Chapter 4: Experiments . 32

4.1 Data preparation . 32

4.2 Quality of Generated annotations . 33

4.3 Contribution of each part of annotation . 36

4.4 Comparison to other models . 38

Chapter 5: Conclusion and Future Work . 39

5.1 Summary of key findings and significance . 39

5.2 Limitations and opportunities for future research 39

References . 48

Appendix A: Appendix . 50

7

LIST OF FIGURES

2.1 Three types of dense retrieval methods . 16

2.2 Four typical methodologies for incorporating KG semantics 18

3.1 Structure of the annotator assembly . 22

3.2 Question answering models . 25

3.3 Unified knowledge base and retrieval process . 27

3.4 An example of the forward chaining algorithm . 30

8

LIST OF TABLES

4.1 Properties of each dataset. 33

4.2 Results retrieved by SDAR. 34

4.3 Results retrieved by only use meaningful nouns from the question. 35

4.4 Accuracy of SDAR on OPENBOOKQA. 36

4.5 Contribution of each part of annotation to OPENBOOKQA and COMMONSENSEQA. 37

4.6 Contribution of each annotator to ARC. 37

4.7 Performance of our model on all three datasets. 37

A.1 Steps used to clean the corpus retrieved by [11]. 50

9

CHAPTER 1

INTRODUCTION

Language models based on the transformer architecture[1] and using unsupervised learning ob-

jectives for pre-training has achieved promising results on various NLP tasks such as question

answering, text classification, sentiment analysis. Many famous publicly available models includ-

ing BERT [2], GPT [3], RoBERTa [4], and XLNet [5] are pre-trained using large-scale generic

corpora such as Wikipedia with millions of entries. However, in order to apply them to domain

specific tasks, such as question answering on biomedical datasets [6], the performance of a generic

model could be less than ideal even after fine-tuning for two reasons. First, models pre-trained on

generic corpora are usually lack of knowledge on domain specific phrases in inputs. Second, even

if knowledge of inputs is encoded in parameter space, models may fail to capture intermediate

knowledge pertaining to the reasoning process.

For the first challenge, many methods are proposed, such as extending the vocabulary of the

model [7], fine-tune an ensemble of generic and domain-specific pre-trained models [6], incorpo-

rate domain related knowledge graph encodings [8] [9] [10], using information retrieval technique

to enhance input with additional text knowledge [11], or utilizing another language model as the

knowledge source [12].

The second challenge is harder to address as (1) Intermediate reasoning steps usually come

from a potentially large hypothesis space [13]. (2) As the number of reasoning steps increases, the

limited depth of current language models becomes insufficient, and decomposition of the reasoning

task is required [14] [15] [16]. Since shallow retrieval algorithms usually fail on this type of task,

current methods usually involve using a deep model to generate intermediate steps sequentially

10

using incomplete observations.

Apart from difficulties in training the model to learn the reasoning process, another problem is

finding appropriate knowledge sources as the supporting context. While there exists a plethora of

sources, many of them are in unstructured textual form, and only a tiny part consists of knowledge

bases or knowledge graphs. A knowledge base or a knowledge graph is usually preferred due to

their structural representation ideal for multi-hop retrieval which emulates reasoning steps. There-

fore, unifying these two sources can lower the requirement for high-quality structured knowledge

by utilizing textual corpora. One way to achieve unification is transformation. Several methods

aiming at converting knowledge from one form to another in both directions are proposed [17] [18]

[19], but they are either troubled by over-generation of artifacts or loss of information.

In this paper, we propose a novel annotator architecture Symbolic Data Augmentation for as-

sisted neural Reasoning (SDAR) designed to cope with three problems listed above. The annotator

system is an ensemble of several individual sub-annotators designed for different domains. Each

annotator comprises of a searcher which outputs a clue for knowledge retrieval guidance, and a

symbolic knowledge retriever taking the clue as input and outputs factual knowledge. This archi-

tecture ensures that the searcher can deal with the noisy data from fine-tuning datasets, while the

symbolic nature of the retriever can guarantee the correctness of generated knowledge. In one of

the sub-annotators, we introduce a unification method that can utilize knowledge in the textual

form as well as the triple form. We then demonstrate that SDAR can assist models with lesser

parameters to achieve a performance comparable to models with a magnitude more parameters on

multiple question answering datasets, and set the state-of-the-art single model performance on one

dataset.

The main contributions of this work are summarized as follows:

• We propose SDAR, a data augmentation framework based on mixed neural-symbolic meth-

11

ods for reasoning, in Chapter 3

• A knowledge unification and retrieval method without the need of performing conversion on

sources, and avoid over-generation or under-generation, will be introduced in Chapter 3.

• In Chapter 4, experiments are performed to demonstrate that SDAR can assist models achieve

3-5% of performance gain across three question answering datasets: OPENBOOKQA [20]

COMMONSENSEQA [21] ARC [22], and achieve STOA performance on OPENBOOKQA.

A comprehensive analysis of factors influencing the performance of SDAR is also included.

• Conclusion and possible improvements in Chapter 5.

12

CHAPTER 2

RELATED WORK

2.1 Recent general advancements

The transformer architecture [1] started a revolution in the natural language processing field. The

once popular recurrence mechanism was completely replaced by the self attention mechanism, the

backbone of various transformer models. In essence, the self-attention mechanism lets the model

to compute a relevance score which is then multiplied with each token, generating useful internal

representations that cover over the whole input sequence. This process removes the necessity to

introduce recurrent or convolution layers which are usually required to achieve aggregation of

inputs. Although self-attention was not only proposed in the natural language processing literature

[23] [22], employing it in an end-to-end manner is unique in the transformer.

Another major advancement is the appearance of language models pre-trained on massive cor-

pora such as C4 [24] with unsupervised training objectives. Although there exists some subtle

differences between different proposed methods, all unsupervised training procedure includes the

prediction of words that are either manually removed from the context, also known as the masked

language modeling (MLM) objective [2] [4] [25] [24], or dependent on previously appeared words,

also known as the language modeling (LM) objective [26]. However, both objectives are not per-

fect and are accompanied by unique challenges. The MLM objective trains the model in an auto-

encoding fashion with bidirectional attention, which requires the independence assumption on

input tokens. Additionally, the artificial [MASK] token creates a discrepancy between pre-training

and fine-tuning, and since only a small portion of tokens are masked, inefficient utilization of text

13

corpora is unavoidable. In contrast, the LM objective seeks to estimate the probability distribu-

tion of inputs auto-repressively, conditioning each predicted token on the previous (or succeeding)

tokens in a uni-directional manner. This approach allows joint probability of multiple words to

be modeled correctly, but the loss of bidirectional information may significantly weakens model

performance on downstream tasks.

Several improvements are made to counteract the deficiencies of both methods. Permutation

language modeling (PLM), proposed in XLNet [5], uses LM as the base and models the distribution

of the predicted token using all possible permutations to achieve a similar effect of bidirectional

attention supported by MLM only. ELECTRA [27] uses a discriminator on top of the model

trained by MLM to eliminate the discrepancy issue brought by the [MASK] token. We summarize

the optimization targets of each training objective in Eq. 2.1. The meaning of each symbol is listed

below.

• θ: Model parameters.

• T : The length of input tokens.

• xt: Token at position t.

• x̃: Whole sequence with multiple tokens replaced with [MASK].

• x<t: Sequence of tokens before the token xt.

• ZT : All permutations of index sequence [1, 2, . . . , T]

• xz<t: Sequence of tokens selected with partial index sequence z<t.

More recent task-agnostic researches either has a concentration on enhancing pre-training pro-

cedures or model architectures. For pre-training procedures, Liu et al. proposed to remove the next

sentence prediction (NSP) objective of BERT [2], increase pre-training batch-size and uses a 10x

larger corpus compared to what BERT uses in RoBERTa [4]. Lan et al. replaced the NSP objective

14

with a new sentence-order prediction (SOP) objective and reduced parameter number by decom-

posing the word embedding matrix into wo smaller matrices in [25]. Sanh et al. used knowledge

distillation to train a much smaller student BERT model with the dense distribution signal from the

larger teacher model and achieve a similar performance as the original BERT [28].

MLM : max
θ

T∑
t=1

log pθ(xt|x̃)

LM : max
θ

T∑
t=1

log pθ(xt|x<t)

PLM : max
θ

Ez∼ZT

[
T∑
t=1

log pθ(xt|xz<t)

] (2.1)

On the other hand, generic architecture researches focus on two methods of improvement. The

first is optimizing current model architectures with more complex designs, such as the DeBERTa

[29], which incorporates additional relative position encoding for each token and disentangled

attention for both the content encoding and relative position encoding. In the TUPE architecture

proposed by Ke et al. [30], a similar approach is employed in the self attention layer. Another line

of research takes advantage of the computational power of newer hardware and larger pre-training

datasets, backing their performance improvement on the sheer increase in parameter number. As

dense models are hindered by the memory limit, sparsely-activated model with a gigantic amount

of parameters become the new focus. The most popular way to implement sparser models is

through mixture-of-experts (MoE) [31], which usually involves using a switch like architecture to

route inputs to the correct sub-model. Newer architectures usually contains hundreds of billions

[32] [33] or even trillions of parameters [34]. This raises concerns about the environmental and

financial cost of training such large models, and most importantly, that language models with such

15

a large parameter count is only memorizing shallow probabilistic information of how linguistic

forms combine, rather than the internal meaning of words and higher order relations between them

[35].

2.2 Knowledge enhanced text understanding

2.2.1 Sources of knowledge

In general, knowledge is the presentation of understanding related to specific subjects within a

given context. Whether the form of the system is designed for natural language generation (NLG)

or natural language understanding (NLU) tasks, both forms may need access to two forms of

knowledge: internal and external. Internal knowledge includes features from input text(s), such as

keywords, topics, relational graph structure, and various linguistic features. Naturally, pre-trained

models already comes with this type of knowledge encoded in their parameter space. A wide

area of research aims at probing or extracting such knowledge from pre-trained models. Petroni

et al. designed the LAMA probe [36] based on manually curated templates, demonstrating that

pre-trained BERT has an outstanding memory of facts related to geological names, special entities,

general capabilities and properties of common subjects such as animals, etc. Jiang et al. designed

a mixed prompt system named LPAQA [37], consisting of manually designed, paraphrasing-based

and mining based prompts to test the accuracy of different ensembles of prompting methods. Yang

et al. used the GPT-2 model to generate synthetic examples and implemented a filtration method

based on influence functions [38] to enrich existing fine-tuning datasets.

Methods designed to utilize external knowledge has a much wider range of sources compared

to internal knowledge, include but not limited to commonsense triples [39] [40], ontology used for

reasoning [41] [42] [43], keywords [44], graph-embeddings [45], retrieved background text [11]

[46]. From the perspective of complexity and hierarchy richness, external knowledge could be

16

roughly categorized into structral and non-structral sources.

2.2.2 Challenges in knowledge-enhanced text understanding

To start with, the first challenge met by knowledge enhanced systems is obtaining useful knowl-

edge from a potentially large and diverse collection. The second challenge is finding a way to

integrate the knowledge into existing models and leverage it by a thorough understanding.

(1) Retrieval and integration of unstructured text

Reranker

Encoder-1

Pooling

query
embedding

Encoder-2

Pooling

text
embedding

cos(x, y) or
dot(x, y)

query Text

Encoder

Pooling

query Text

Linear

Score

Retriever

1

2

K

...

Top- K

Encoder-1

Cross- token- interaction

Encoder-2

query Text

Score

(1) Representation- based (2) Interaction- based (3) Mixed (Top: Reranker- Retriever, Bottom: ColBERT)

Figure 2.1: Three types of dense retrieval methods

Integration of text is trivial for transformer based models such as BERT [2], and there exists a

great variety of methods to obtain useful information from an unstructured text corpus. For clas-

sical methods, variants of TF-IDF [47] [48] [49] [50], BM25 [50] [51] are most commonly used

methods, one special method used by Ghazvininejad et al. [52] is retrieving target text entry by

first ranking them by text similarity and then perform matches with an index of named entities. In

recent years, deep retrieval models has became the new standard, dense retrievers can be generally

divided into three types: representation-based, interaction-based, and mixed style retrievers [53].

17

Representation-based retrievers such as the dense passage retrieval [54], uses two independent

encoders to produce encoding for queries and supporting texts respectively, then perform match-

ing based on cosine-similarity or unnormalized dot-product. Interactive-based retrievers take one

query and one supporting text at the same time and output a relevance score [55], this design al-

lows cross-attention between the query and document to be computed and enables rich interaction

between two parts. However, for large-scale document bases with millions of entries, since one

forward process needs to be performed for every pair of query and document combination, com-

putation costs become prohibitively expensive. Mixed style retrievers combine the benefits of both

retrievers, one simple way is to let the interactive-based retriever select a relatively small set of can-

didates, then perform fine-grained filtration using interaction-based retrievers [56]. Khattab et al.

[57] proposed the ColBERT architecture, adding a token-interaction layer on top of the bi-encoder

structure used in interactive-based retrievers to calculate the similarity score.

(2) Retrieval and integration of structured knowledge graphs

There exists several methods of integration [58], One category of methods use the knowledge graph

as a whole and do not perform a selective retrieval process, or just retrieve nearest triples withing

a fixed depth [9]. In [10], they use a 2-layer MLP with the concatenation of the output from BERT

and graph meta data, to combine textual information with graph information. In the study of Jun

et al. [8], the same combination method is also used. KI-BERT proposed in [45] use a special

token embedding transformed from word embeddings along with knowledge graph embeddings

from ConceptNet for atomic entity representation with text, as shown in 2.2 (M1). Guan et al. [59]

directly fine-tuned their model on senetences converted from knowledge triples in ConceptNet and

ATOMIC, as shown in 2.2 (M2). Wang et al. [60] proposed a GNN architecture based on edge

counting to integrate information from all entities as show in 2.2 (M4). K-BERT poposed in [9]

18

future

chat talk

dream

Path 1 Path 2
future

chat talk

dream

: GNN aggregation

Yeah, it ’s not a dream to have a talk with robot!

Input text Input subgraph

Sequence encoder GNN encoder

Sequence Decoder

Output text

Chat based on knowledge is the future

source
concepts KG

locate
subgraph

Yeah, it ’s not a dream to have a talk with robot!

Input text Input paths

Sequence encoder Path encoder

Sequence Decoder

Output text

Chat based on knowledge is the future

source
concepts KG

locate
subgraph

(M3) Performing path reasoning on KG (M4) Aggregating sub-KG via GNN

Chat based on knowledge is the future

Input text

+ + + + + + +

KG embedding

Language generation modelPretrained through TransE

id entity vector

1 chat [-0.1, 0.2, 0.5]

2 talk [0.3, 0.4, -0.2]

3 future [0.6, 0.1, 0.1]

4 based [-0.4, 0.4, 0.2]

entity
emb.

word
emb.

KG-enhanced language model

Paris AtLocation

Eiffel tower

<s> Eiffel tower is at Paris

Eiffel tower is at Paris </s>

Pretrained language model

training with all KG triples

(M1) Incorporate KGE into language generation (M2) Transfer knowledge into pretrained LM

Figure 2.2: Four typical methodologies for incorporating KG semantics. Graph from [58]

encode a sentence tree comprised of a trunk representing the input textual sequence and fixed-depth

branches for triples in knowledge graphs. They flatten this structure using a visible matrix which

uniquely encodes the topology, however, both KI-BERT and K-BERT requires manual injection of

knowledge triples and therefore entity detection and normalization must be performed in advance.

The pattern most related to methods used in this work is 2.2 (M3), since reasoning usually

requires to focus on multiple inter-related decisions, a subset of the whole knowledge graph [61].

Lao et al. [62] proposed the PRA algorithm which first performs random walks on the whole graph

and then selects multiple paths by a set of metrics. Wang et al. [63] proposed to perform random

works locally and globally to prevent bias encoded in local neighborhood graph structures. Another

line of research are reinforcement learning methods [61] [64] [65] which trains a policy network

19

that takes a starting node n0 and performs multi-hop searching until they reach the target node nt,

n0 is usually retrieved by correlation with input texts on the whole graph. The extracted path is

then converted to the text form which can be processed by encoders. However, these researches

only provide reward signal to agents when the target node is reached, which may potentially result

in the sparse reward problem in RL literature [66], especially when the average degree of nodes

and length between source and target nodes are large. Another potential weakness is that, although

these works includes factors for promoting sampling diversity and efficiency (shorter path length),

the coherency between each sampled node is not considered. Xu et al. [67] proposed to use TransE

[68] and add a global coherence penalalty to the reward signal.

2.3 Step by step reasoning

Even if we have the ground truth knowledge that is most related to the question and desired answer,

there is still no guarantee that the language model is correctly understanding the reasoning process.

May be its just a more localized ”statistical parrot” [35] that selects the answer most related to the

given text. In order to elicit the reasoning process in an explicit manner, letting the model perform

intermediate steps becomes a common approach in several researches. Bhagavatula et al. [13],

proposed to use an intermediate hypothesis, and condition the final conclusion of the model on

the hypothesis using the Bayes Rule. Wei et al. [14] proposed to train the model with human

annotated intermediate reasoning process, and output answer with the reasoning process during

inference. Khot et al. [15] trains the model to generate intermediate questions and condition

the final answer on intermediate questions and answers from other QA systems. Nye et al. [69]

proposed to decompose a series of input computation queries, and let model generate intermediate

states to perform reasoning.

20

CHAPTER 3

THE SDAR FRAMEWORK

3.1 Task definition

We use a similar probabilistic definition as Bhagavatula et al. [13] used in their studies. Let A be

the annotator ensemble andQ be the question answering model taking all annotations. Let q be the

query and a be the desired answer, we formulate the generic goal for natural language inference

(NLI) tasks as Eq. 3.1, where θA and θQ are the parameters of A and Q respectively.

θ∗A, θ
∗
Q = argmax

θA,θQ

PθQ(a|h, q)PθA(h|q) (3.1)

We choose to use the non-differentiable text form as the medium of hypothesis h to decouple

the annotator ensemble from the question answering model, this allows the question answering

model to utilize a sub part of all annotators A ⊂ A and ignore information irrelevant to the down-

stream task. Therefore the surrogate optimization target becomes Eq. 3.2

θ∗A = argmax
θA

PθA(h|q)

θ∗Q = argmax
θQ

PθQ(a|h, q)Pθ∗A(h|q)
(3.2)

For multiple-choice question answering tasks specifically, suppose there areM sub-annotators,

each one denoted as Ai ∈ A, i ∈ {1, 2, . . . ,M}, and N choices, the detailed form of Eq. 3.2 can

21

be represented as Eq. 3.3.

θ∗Ai
=argmax

θAi

PθAi
(h|q)

θ∗Q =argmax
θQ

PθQ(a|(h1a1 , . . . h
N
a1
, . . . hNaM), (h1, . . . , hM), q)

M∏
i=1

N∏
j=1

P (hjai |hi, q)Pθ∗Ai
(hi|q)

(3.3)

The second optimization target may seem complicated at the first glance, it actually means first

generate a hypothesis using each individual annotator Ai, then perform answer specific symbolic

knowledge retrieval for each answer, then let Q reason over all collected information. The term

P (hjai |hi, q) actually represents the symbolic retrieval process and therefore is a constant and can

be ignored during optimization.

This task formulation corresponds to the Fully Connected model described in [13]. In experi-

ments we observe that this design constantly outperforms the simpler Linear Chain model where

Q is not conditioned on hypotheses generated by searchers.

We also note that while this design does not support reasoning with more than two steps, one

can use this architecture as a sub module and chain it into multiple stages as described in [15].

3.2 Architecture of the annotator

The annotator ensemble A is the core of this work. In general, there exists several annotators

working in parallel, each annotator has a searcher module which provides the initial hypothesis h.

A knowledge retriever based on symbolic methods then takes in h and a potential a and outputs

answer specific hypothesis ha. This process is illustrated in Fig. 3.1.

Two types of annotators are implemented. The first type traverse an enhanced knowledge graph

22

Symbolic matcher

Entities

Graph

Query: A fold observed in layers of sedimentary
rock most likely resulted from the?
(A) cooling of flowing magma.
(B) converging of crustal plates.
(C) deposition of river sediments.
(D) solution of carbonate minerals.

Annotator ensemble

Keyword searcher

Fact base Text
b

ae

d d n

Trie (entity detector)

Keywords

Match(q, k)

Numerical searcher

Extractor: find a physical /
chemical / numerical / ...

quantity

Question guessor:
Compute speed? Compute

atom mass? ...

Symbolic reasoner

Variables

Deductive
reasoner Knowledge base

Numerical
relationship miner

Annotator 1

Annotator 2

Annotation:
(1) fold related to folding, folding related to an
earthquake may cause folding of the layers.
(2) rocks form of rock, rocks related to sedimentary
rocks are formed by deposition
(3) rock related to rock folding is caused by plate
shifting

Figure 3.1: Structure of the annotator assembly. (1) Dashed arrows of annotator 2 indicate that
there is no information passed through this route, since no numerical value is detected in the query.
(2) In practice, keywords are not directly passed to G since we discover that passing the facts
where keywords are extracted has a better performance. (3) The question answering model uses
the concatenation of query and annotation as input, therefore the conditional dependence between
a and q in PθQ(a|ha, h, q) is not shown in this graph.

23

to retrieve necessary text and triple information. The second type performs deductive reasoning on

input variables and perform required computation.

For the first annotator, in experiments, we discover that a common problem of directly employ-

ing generative models is redundant artifacts in the generated facts or keywords. For decoder models

like GPT-2 [26], we generate a continuation of the question, and for encoder-decoder models like

T5 [24], we combine question and choices as the query. When trained to generate a complete

sentence resembling the fact, models, sampled outputs are coherent but usually missing critical

keywords. In contrast, training the model to generate keywords directly usually leads to unrelated

ones appearing as artifacts, the low occurrence frequency of keywords has a significant negative

impact on the down-stream retriever performance. This issue could not be alleviated by the token

dropout method proposed in [70] or the order permutation method introduced in [71]. We discover

that by supplying a manually curated fact base and use the reranker-retriever architecture in Fig.

2.1 (3) to select top-5 facts this base, then perform keyword extraction on selected facts lead to the

best accuracy. The keyword extraction method is a simple function which perform tag-of-speech

tagging and select nouns that do not belong to the stopword set, the nouns are then normalized

to their singular form by stemming. This function can be trivially implemented using the popular

framework NLTK [72].

The symbolic matcher in the first annotator is a heuristic based complex program which will

be described in details in section 3.4 of this chapter. We first construct a mixed graph structure

of text and a base knowledge graph (eg: ConceptNet [39]), and a Trie structure which stores all

basic entities in the base knowledge graph. The Trie serves as a shallow entity matcher, recognizing

possible entry points in the query, and a match functionMatch(q, k) is used to perform the retrieval

process. Although more complicated named-entity-recognizers exist [73] [74] [75], this simple

method performs good enough when path length is limited to 2 or 3 hops.

24

The second annotator focus on providing information related to numerical reasoning, which

is currently one known weakness in pre-trained language models [14]. For simplicity we do not

apply the neural-based extraction mentioned in [43] to the searcher, and instead use template-based

matching to extract variables. Specifically, when numerical entities are detected in the question or

choices, such as the chemical equation in question ”Which statement is best supported by the

chemical equation shown? 6CO2 + 12H2O + light → C6H12O6 + 6O2 + 6H2O”, extractor will

be triggered to extract the equation as a single variable, and question guessor will then output

question type chemical-equation-explain since there is no specific requirement in the question.

This question type assists the reasoner to narrow down the search space, and only select all rules

with the type tag chemical-equation-explain, which converts the equation into multiple variables

that can be converted to text explanations such as ”There are 6CO2 molecules on the reaction

side”. The same process applies to other questions like ”An airplane takes off from Boston for the

980 km trip to Detroit. The plane lands two hours later. Which of the following best describes the

average speed and direction of the airplane’s flight?”.

The symbolic reasoner is based on the forward-chaining algorithm which is commonly used

in automated theorem proving [76] and planners [77] [78]. In each reasoning step, rules with all

prerequisites satisfied will applied on existing variables, and output new variable. The process we

use differs from traditional boolean forward chaining which generates new grounded literals, since

numerical computation needs to be performed which is not supported by classical implementations.

Another component of the symbolic reasoner is the numerical relationship miner. Due to the

fact that there exists too many diverse rules and manually encoding them all infeasible, the miner

just perform random walks of common arithmetic steps on all numerical values appearing in the

text, two at a time (since common arithmetic operands are binary), until the value mentioned in the

choice is reached. An example would be ”John takes care of 10 dogs. Each dog takes 0.5 hours a

25

Choice N

DeBERTa

[CLS]

[CLS] Annotation Question + Choice

Linear

Question
annotation

Choice
annotation

Facts

Choice 2

DeBERTa

[CLS]

[CLS] Annotation Question + Choice

Linear

Question
annotation

Choice
annotation

Facts

Choice 1

DeBERTa

[CLS]

[CLS] Annotation Question + Choice

Linear

UnifiedQA (T5)

Question Choices Annotations

Answer

Question
annotation

Choice
annotation

Choice-1
annotation

Facts Question
annotation

Facts Choice-2
annotation

Choice-​n
annotation

Argmax Answer

(1) (2)

Figure 3.2: Question answering models. (Note: Following the approach of [79], we removed
the pooling layer from DeBERTa and only use a shared linear layer to compute a score for each
question-choice pair.)

day to walk and how many hours a day does he spend taking care of dogs?”, the miner first detects

10 and 0.5, then detects that 10∗0.5 = 5 can reach one of the choices and generates annotation ”10

multiplies 0.5 is 5”. This method is merely a complement for the symbolic reasoner and can be

easily fooled by adversarial choices generate by humans, such as 10.5 hours would lead the miner

to generate ”10 plus 0.5 is 10.5”.

3.3 Architecture of the question answering model

Two language models are used to demonstrate the efficiency of our method compared to pure

parameter size up-scaling. For OPENBOOKQA and COMMONSENSEQA, we use the DeBERTa

model [29], for ARC, the UnifiedQA model [11] based on T5-11B is used. Following previous

26

practices, we collect all annotations as a paragraph of supporting context, and concatenate it with

the question and choice pair as shown in Fig. 3.2. In actual practice we discover that concatenating

annotations as one segment (segments are region of inputs divided by the separator token [SEP]) is

important and has a profound impact on the fine-tuning performance. Other input schemes such as

inserting annotations inside the source sentence, or concatenating them after the source sentence

result in inferior performance. We group the facts retrieved by the searcher and question anno-

tations together since they represent the hypothesis h sampled from Pθ∗A(h|q), the choice-specific

annotations corresponds to ha sampled from the non-parameterized distribution P (ha|h, q).

3.4 A novel way to unify and retrieve knowledge

Each text entry in a corpus could be considered as a tiny knowledge graph with its internal rela-

tions implicitly represented in the sequence. Although currently several works [80] [17] [18] [19]

aiming to extract useful relations has interesting results, the outcome either: (1) contains a limited

representation of relations. [81] or (2) has false relations or missing important relations. Since

language models already possess the ability to understand this internal relationship, we decide to

present text as it is rather than performing some kind of transformation.

In order to efficiently retrieve the text knowledge, we use the constructed Trie data structure

coming along with the knowledge graph to perform a shallow extraction of all occurring concepts

inside the sentence. The sentence is considered as a black-box super concept node (referred to as

composite) with an unknown internal graph structure, whereas nodes made up of the graph are

identified. During traversal, we simply ignore the internal graph and select any of its component

node as an entry / exit point.

Following [82], we define the similarity metric used in graph traversal as follows. Let xi be

a target concept in all target concepts x with unit embedding xi, and x̂j be a source concept in

27

Keywords: [human, pollution, environment]

Text

pollution is when humans pollute the environment with pollutants

Graph (edges) and Concepts (nodes)

Query source: which topic area would be the best to research to find ways of reducing
environmental problems caused by humans?

Concept: humans Concept: environmental Concept: problems

Concept: environment

Sim([human, pollution,
environment],​[environmental])
= 0.812

Sim([human, pollution,
environment], [humans])
 = 1.033

Path 1
Similarity
= max(4.099,1.033)
= 4.099,
Length = 2

Path 2
Similarity
= max(0.812,1.245,4.099)
= 4.099,
Length = 3

Path 3
Similarity
= max(0.073)
= 0.073
Length = 1

Path 1 is selected

Similarity([human, pollution, environment],
[pollution, humans, pollute, environment, pollutants])
= 4.099

Similarity([human, pollution, environment], [environment]) = 1.245

Sim([human, pollution,
environment], [problems])
= 0.073

Figure 3.3: Unified knowledge base and retrieval process. (1) Blue words are matched concepts of
a composite concept node. (2) Red and green words are concepts in the query source, green words
are selected source nodes, red words are not selected because of lower similarity or longer length.

28

the candidate x̂ with unit embedding x̂j. Two things should be noted here: (1) Usually, each

keyword has a corresponding concept in ConceptNet, and x is equivalent to the keyword set. (2)

A candidate could be a single concept, or a composite node consisting of multiple concepts. With

this definition, we formally define the similarity score as Eq. 3.4.

Recall =

∑
xi∈x tfidf(xi)maxx̂j∈x̂x

T
i x̂j∑

xi∈x tfidf(xi)

Precision =

∑
x̂j∈x̂ tfidf(x̂j)maxxi∈xx

T
i x̂j∑

x̂j∈x̂ tfidf(x̂j)

Similarity = Fβ(Precision,Recall, β = 2)

(3.4)

Typically, the tfidf score is computed from the corpus of questions and choices from all splits

of the fine-tuning QA dataset to make the matcher adapt to important words better.

The retrieval algorithm performs multiple fixed-depth Monte Carlo tree searches (MCTS) to

find the best undirected path. The direction is ignored since sometimes the right path are splitted

in half, where source and target node both connects to an intermediate node in an uni-directional

way. We also ignore the incomplete word sense annotation in ConceptNet during a search. In each

MCTS search, the algorithm picks a concept node in the source sentence as a starting point, and

select top-K nodes connected to the current node. The similarity of a generated path is computed

by selecting the maximum similarity of all component nodes. The paths are sorted by similarity

score first, then sorted by length if their scores are equal.

To better enforce context coherence, we add concepts within a symmetric window around the

source concept to the target concepts. Using Fig. 3.3 as an example, when window size is 1, and

”environmental” is selected as source concept, the target concept set becomes: [human, polution,

environment] + [reducing, problems].

29

Since dangling concpet nodes exist in the ConceptNet, whenever nodes have a degree below the

specified threshold, we perform another Trie matching and split them into sub nodes. For splitted

nodes, similarity scores to the original node are computed, only those with a similarity score above

the given minimum will be selected as new nodes.

Algorithm 1 KnowledgeMatcher
1: procedure KNOWLEDGEMATCHER(S,MS, T,MT , R,D,K,C)

2: S ← Split(TrieMatch(S,MS)) . Search for concepts in the source sentence.

3: T ← Split(TrieMatch(T,MT)) . Search for concepts in the target sentence.

4: P ← ∅ . Create the set of all selected paths.

5: for i← 1 to R do

6: N ∈ S . Select a source node as the current node.

7: P ← [N] . Create a new path sequence.

8: T ← T ∪ {Window(S, N, C)} . Add context concepts around the starting node.

9: for j ← 1 to D do

10: N ∈ TopKn∈Adj(N)Similarity(n, T) . Select next neighbor from top-K.

11: P ← append(P,N)

12: end for

13: P ← P ∪ {P}
14: end for

15: return RankAndSelect(P , N) . Rank paths by best node similarity, then by length.

16: end procedure

We formally define the retrieval procedure in Alg. 1. Meaning of each symbol are listed below.

The mask MS and MT are used to stop the searcher from using common stopwords as a starting

point.

• S, MS: The source sentence and its mask.

• T , MT : The target sentence and its mask.

30

• R: Times to repeat the MCTS search.

• D: Number of steps, or depth, of each MCTS search.

• K: Number of top nodes selected in each step of the MCTS search.

• C: Context window size.

• N : The number of selected paths.

3.5 Implementation of symbolic reasoning

The symbolic reasoning process is based on the forward chaining algorithm shown in Fig. 3.4, in

each step, the algorithm selects a valid function to execute, and generate intermediate variables,

which can be utilized in the following reasoning steps. Step 3 generates the desired answer ”Alu-

minum”, using input variables and one intermediate variable. Step2 generates valid knowledge,

but it is redundant. In practice, such redundant steps are eliminated by providing additional hints

extracted from the question to the reasoner.

Value: 12
Unit: Proton number

Object: atom1

Value: 12
Unit: Neutron number

Object: atom1

Value: 12
Unit: Electron number

Object: atom1

Function: Atom mass
Arg1: Proton number

Arg2: Neutron number
Both arg: Same object

Value: 24
Unit: Atom mass

Object: atom1

Function: Atom charge
Arg1: Proton number

Arg2: Electron number
Both arg: Same object

Value: 0
Unit: Atom charge

Object: atom1

Function: Atom type from
mass difference

Arg1: Mass number
Arg2: Difference number

Value: 3
Unit: Mass difference

Object: (atom1, atom2)

Value: Aluminum
Unit: Atom type
Object: atom2

Step 1

Step 2

Step 3

Figure 3.4: An example of the forward chaining algorithm.

31

The most similar work that resembles our approach is [15], which also use a template-based

matching to identify question types from presence of certain terms such as ”what’s the average

speed of”, ”how fast”, ”the voltage of”, etc. These hints helps to narrow down the search scope

and improves annotation accuracy by removing unnecessary information. We broadly lists several

functions and related question triggers supported by the reasoner below.

1. Speed: This type of question is identified by the presence of term ”average speed” in the

question, and whether two physical quantities, the distance d and time t could be extracted

from the query. When the condition is satisfied, function type hint of ”physics-kinematics”

is selected.

2. Time: This type of question is determined by term ”how long” or the term ”how much time”,

as well as two physical quantities, the distance d and speed v in the question. If satisfied,

function type hint of ”physics-kinematics” is added.

3. Acceleration: If two physical quantities v1, v2 of type ”speed” and a time quantity t is

detected in the sentence, function type hint of ”physics-kinematics” is selected.

4. Voltage: If two physical quantities, current I and resistance R are detected, function type

hint of ”physics-electric” is chosen.

5. Power: If two physical quantities, current I and voltage U are detected, or current I and

resistance R are detected with the presence of term ”power” in question, function type hint

of ”physics-electric” is chosen.

32

CHAPTER 4

EXPERIMENTS

4.1 Data preparation

Three datasets, OPENBOOKQA, COMMONSENSEQA and ARC are used to evaluate the perfor-

mance of our model. For ARC, easy and challenge parts are both used during training, but testing

is only conducted on the Challenge portion. We also use the fact annotation from QASC when

training our model on the challenge split of ARC. Properties of the used datasets are summarized

in Table 4.1.

For OPENBOOKQA, the keyword searcher only operates on the core facts (1326). We concate-

nate the provided core facts (1326) with crowd-sourced facts (5167) into one as the corpus indexed

by the symbolic matcher. Since several questions in the dataset contain choices requiring logical

thinking, such as ”none of these”, ”all of the above”, we remove these choices from the choice

set when performing inference, and chain a logical OR/AND operation on the predicted scores

afterwards.

For COMMONSENSEQA, since the dataset doesn’t come with a pre-made corpus, we follow

the approach used in [79] and create an artificial corpus with each entry being the combination

of questions and correct choices in the train dataset. During training, we mask the corresponding

entry before performing the symbolic matching to prevent the model from exploiting superficial

string equivalence. The searcher is trained on the annotated question concept.

For ARC, the scale and noise of the default corpus becomes a challenge to process. Therefore

we reuse the retrieved corpus used by [11] and perform a custom cleaning process to ensure the

33

Table 4.1: Properties of each dataset.
Dataset #Train #Dev #Test Corpus size Annotation? #Choice
OPENBOOKQA 4957 500 500 1326 + 5167 True 4
COMMONSENSEQA 9741 1221 1140 N/A Partial 5

ARC (Challenge)
1119
+ 5197 (Easy) 299 1172 >15,000,000 False 4/5

QASC 8134 926 920 >17,000,000 True 8

completeness of each entry. A list of detailed operations is provided in Table A.1. We also adds

the core fact list. Apart from the cleaned corpus, we also use the crowd-sourced fact list from

OPENBOOKQA, and all the annotated facts from the train and validate split of QASC, to create

the corpus used by the symbolic matcher. For the keyword searcher, the fact base consists of the

same facts from OPENBOOKQA and QASC. This fact has a broad coverage on the grade-school

level scientific topics involved in ARC. The keyword searcher is then trained on OPENBOOKQA

and QASC to perform the retrieval. Since QASC has two annotated facts, we only use the first

fact as the ground truth to prevent noisy retrieval.

4.2 Quality of Generated annotations

One major difference between our approach and other graph traversal approaches is the guidance

of a neural model. Although it’s also possible to directly extract words that do not belong to

stopwords, and has a part-of-speech categorization of a noun, adjective or verb, the outcome is

far less ideal. Table 4.2 and Table 4.3 illustrates several annotation examples generated by two

methods. The correct choice is colored in blue and facts useful for answering the question are

colored in red. We see that SDAR is capable of discovering the intermediate knowledge necessary

for constructing the complete logical path while matching by comparing to simply select nouns

from the question fails to discover the implicit reasoning step.

34

Table 4.2: Results retrieved by SDAR.
SDAR retrieval
George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
A: dry palms B: wet palms C: palms covered with oil D: palms covered with lotion
Annotation:
(facts)
rubbing your palms together causes friction, a hand dryer produces heat, if heat is
conducted to an object then that object will become hot, friction occurs when surf
-aces rub together
(question)
heat related to there is also heat from friction - - rub your hands together and feel
the heat : - -
(dry palms)
dry related to a hand dryer produces heat, dry related to the arrow was designed
for high speeds, which means heat from friction
(wet palms)
wet related to and he felt it on his body, in his hand, and on the soles of his feet:
cold, clammy tile, and the chill of shower - water evaporating from his wet skin
(palms covered with oil)
oil related to as the parts move, friction creates heat which in turn reduces the
viscosity of the oil
(palms covered with lotion)
lotion related to you may want to keep hand lotion handy to help keep your
skin from drying out
Which land form is the result of the constructive force of a glacier?
A: valleys carved by a moving glacier B: piles of rocks deposited by a melting glacier
C: deposition of river sediments D: bedrock hills roughened by the passing of a glacier
Annotation:
(facts)
sometimes piles of rock are formed by melting glaciers depositing rocks
(valleys carved by a moving glacier)
valleys related to blocks of earth dropped down to form valleys, and the jefferson river
eroded a channel through rock to form the jefferson river canyon
(piles of rocks deposited by a melting glacier)
piles related to sedimentary rock forms when sediment - - such as rock particles or
organic matter: become compressed and cemented together as it piles up
(bedrock hills roughened by the passing of a glacier)
bedrock related to the regolith forms a layer of weathered rock debris which
overlies unweathered bedrock and marks the beginning of the soil forming process

35

Table 4.3: Results retrieved by only use meaningful nouns from the question.
Simple retrieval
George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?
A: dry palms B: wet palms C: palms covered with oil D: palms covered with lotion
Annotation:
(question)
surface related to surface ocean currents, on the other hand, are caused by the wind,
heat related to drought heat and drought go hand in hand
(dry palms)
dry related to a hand dryer produces heat, dry related to don’t use the dryers to dry
your hands
(wet palms)
wet related to and he felt it on his body, in his hand, and on the soles of his feet:
cold, clammy tile, and the chill of shower - water evaporating from his wet skin
(palms covered with oil)
oil related to too much heat and the oil burns carbon black
(palms covered with lotion)
lotion related to you may want to keep hand lotion handy to help keep your skin from
drying out
Which land form is the result of the constructive force of a glacier?
A: valleys carved by a moving glacier B: piles of rocks deposited by a melting glacier
C: deposition of river sediments D: bedrock hills roughened by the passing of a glacier
Annotation:
(question)
land related to as a result, a glacier is formed that covers a great deal of land surface,
which is why it is called a continental glacier
(valleys carved by a moving glacier)
moving related to generally the direction of ocean currents is determined by the effects
of surface winds moving surface waters, and the effects of land masses
(piles of rocks deposited by a melting glacier)
rocks related to topics covered will include origin of earth, plate tectonics, formation of
minerals and rocks, mountain building, formation of oceans, continents, etc
(grooves created in a granite surface by a glacier)
surface related to as a result, a glacier is formed that covers a great deal of land surface,
which is why it is called a continental glacier
(bedrock hills roughened by the passing of a glacier)
bedrock related to as the glaciers scoured this landscape, the mass of bedrock forming the
hill proved more resistant than the surrounding soil, forcing the bottom of the glacier up
and over the hill

36

Table 4.4: Accuracy of SDAR on OPENBOOKQA.
Split Top-1 accuracy Top-3 accuracy Top-5 accuracy
Validate 61.1 81.9 89.4
Test 60.2 82.1 88.3

We take 50 questions from the validation split of the ARC and COMMONSENSEQA datasets we

use to benchmark our model and perform manual inspection of annotated data, we do not select

samples containing numerical computation from ARC. For OPENBOOKQA, since the ground

truth fact is provided in all splits, we run accuracy testing on the annotations and test whether

the ground truth fact is contained in the result. Table 4.4 shows the accuracy of the annotations

generated by SDAR. For ARC, since it has a high topic overlap with OPENBOOKQA and QASC,

36 out of 50 annotations contains at least one reasonable fact that’s related to the question. For

COMMONSENSEQA, since commonsense knowledge is implicit, only 25 out of 50 annotations

contain useful information helpful for reasoning.

4.3 Contribution of each part of annotation

Since our annotator assembly produce two types of annotation: numerical and factual, and the

factual annotation contains three parts: facts, question-related annotation, and answer-related an-

notation, we dissect the contribution of performance into individual parts in Table 4.5 and Table

4.6 to further analyze the importance of each sub-annotator. For OPENBOOKQA and COMMON-

SENSEQA, the reported performance gain is the fine-grained contribution of each type of anno-

tation from the factual annotator. The numerical annotator is used on ARC only, and since we

have limited resource to train T5-11B, only coarse-grained performance gain from each annotator

is reported. We also include the performance of using texts retrieved by the method used in [11]

for reference.

37

Table 4.5: Contribution of each part of annotation to OPENBOOKQA and COMMONSENSEQA.
Part OpenBookQA Val OpenBookQA Test CommonsenQA Val
DeBERTa-V3-Large 84.2 83.8 84.6
+Facts 4.0 4.2 N/A
+Only Choice 3.2 3.4 2.9
+Question & Choice 2.0 0.2 3.4
Total 90.2 91.6 88.0

Table 4.6: Contribution of each annotator to ARC.
Part ARC Val ARC Test
UnifiedQA-v2-11B 77.6 77.4
+Factual annotator 4.7 4.7
+Numerical annotator 2.3 2.1
Total 84.6 84.2
+UnifiedQA IR N/A 3.75
Total N/A 81.1

Table 4.7: Performance of our model on all three datasets.
Dataset Split Model Parameters Accuracy
OpenBookQA Test GenMC (ensemble) 11B * 7 92.0
OpenBookQA Test GenMC 11B 89.8
OpenBookQA Test SDAR 435M 91.6
ARC Test ST-MoE-32B 269B 86.5
ARC Test SDAR 11B 84.2
CommonsenseQA Val KEAR (ensemble) 435M * 39 93.4
CommonsenseQA Val KEAR 435M 91.2
CommonsenseQA Val SDAR 435M 88.0

38

4.4 Comparison to other models

We are most interested in the efficiency of our method compared to simply boosting models to

a larger size and achieve performance gain. In Table 4.7, we list the performance and parameter

number of state-of-the-art models. We have successfully achieved the new STOA single model per-

formance on OPENBOOKQA, and a decent performance gain on ARC. On COMMONSENSEQA

we are not on-par with the current STOA model probably because our annotator does not include

the distributional information of graph edges used in [79]. In general our method can substantially

boost the performance of base models while still working on a smaller parameter size, this indicates

that models can leverage their limited internal knowledge to leverage the information generated by

external symbolic methods and enhance their reasoning capabilities.

39

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary of key findings and significance

We introduced the SDAR framework, which provides an efficient means of knowledge annotation

that incorporates most relevant information through various symbolic methods into the reasoning

process conducted by large neural-based language models. Most importantly, the generated anno-

tation is human-readable and provides an easy way to interpret framework behavior and check for

errors. The framework also have a decent degree of freedom which makes it applicable to datasets

with no ground truth reasoning annotations, such as ARC and COMMONSENSEQA.

Our experiments demonstrate the power of SDAR, showing that it could reach a performance

comparable to much larger models. This property is crucial since current researches need to find a

way to avoid limiting most advanced models only to those with enormous computation resources.

5.2 Limitations and opportunities for future research

There are several perceivable weaknesses in this work. Firstly, the factual annotator depends on

indexing a core set of facts to generate keywords, which is not available when there is no source of

explicit representations (Eg: For question ”Is is more likely to have a better cafeteria in a polytech-

nic or a high school?”, we know that polytechnics are richer and therefore has a larger possibility of

owning a better cafeteria, this is implicit commonsense). In this case, using reinforcement learning

may be a better way to find such hidden indications. Secondly, the coherence between nodes in the

generated path is not guaranteed, this problem can be solved by introducing the global coherence

40

penalty used in [67]. The last problem is that the unparameterized numerical annotator front-end is

not able to dynamically process unseen patterns, or complex patterns. The neural based extraction

solution used in [43] could be a much more robust replacement.

41

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.
Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017. arXiv: 1706.
03762.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirec-
tional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. arXiv:
1810.04805.

[3] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language under-
standing by generative pre-training,” 2018.

[4] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[5] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le, “Xlnet: Gener-
alized autoregressive pretraining for language understanding,” CoRR, vol. abs/1906.08237,
2019. arXiv: 1906.08237.

[6] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon,
“Domain-specific language model pretraining for biomedical natural language processing,”
CoRR, vol. abs/2007.15779, 2020. arXiv: 2007.15779.

[7] W. Tai, H. T. Kung, X. Dong, M. Comiter, and C.-F. Kuo, “ExBERT: Extending pre-trained
models with domain-specific vocabulary under constrained training resources,” in Findings
of the Association for Computational Linguistics: EMNLP 2020, Online: Association for
Computational Linguistics, Nov. 2020, pp. 1433–1439.

[8] J. Yan, M. Raman, T. Zhang, R. A. Rossi, H. Zhao, S. Kim, N. Lipka, and X. Ren, “Learning
contextualized knowledge structures for commonsense reasoning,” CoRR, vol. abs/2010.12873,
2020. arXiv: 2010.12873.

[9] W. Liu, P. Zhou, Z. Zhao, Z. Wang, Q. Ju, H. Deng, and P. Wang, “K-bert: Enabling language
representation with knowledge graph,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, 2020, pp. 2901–2908.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/2007.15779
https://arxiv.org/abs/2010.12873

42

[10] M. Ostendorff, P. Bourgonje, M. Berger, J. Moreno-Schneider, G. Rehm, and B. Gipp, “En-
riching bert with knowledge graph embeddings for document classification,” arXiv preprint
arXiv:1909.08402, 2019.

[11] D. Khashabi, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and H. Hajishirzi, “Unifiedqa:
Crossing format boundaries with a single QA system,” CoRR, vol. abs/2005.00700, 2020.
arXiv: 2005.00700.

[12] Z. Huang, A. Wu, J. Zhou, Y. Gu, Y. Zhao, and G. Cheng, Clues before answers: Generation-
enhanced multiple-choice qa.

[13] C. Bhagavatula, R. L. Bras, C. Malaviya, K. Sakaguchi, A. Holtzman, H. Rashkin, D.
Downey, S. W.-t. Yih, and Y. Choi, “Abductive commonsense reasoning,” CoRR, vol. abs/1908.05739,
2019. arXiv: 1908.05739.

[14] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le, and D. Zhou, “Chain of
thought prompting elicits reasoning in large language models,” CoRR, vol. abs/2201.11903,
2022. arXiv: 2201.11903.

[15] T. Khot, D. Khashabi, K. Richardson, P. Clark, and A. Sabharwal, “Text modular networks:
Learning to decompose tasks in the language of existing models,” CoRR, vol. abs/2009.00751,
2020. arXiv: 2009.00751.

[16] E. Perez, P. S. H. Lewis, W.-t. Yih, K. Cho, and D. Kiela, “Unsupervised question decom-
position for question answering,” CoRR, vol. abs/2002.09758, 2020. arXiv: 2002.09758.

[17] N. Kertkeidkachorn and R. Ichise, “T2kg: An end-to-end system for creating knowledge
graph from unstructured text,” in Workshops at the Thirty-First AAAI Conference on Artifi-
cial Intelligence, 2017.

[18] R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi, “Text generation
from knowledge graphs with graph transformers,” CoRR, vol. abs/1904.02342, 2019. arXiv:
1904.02342.

[19] P. Ke, H. Ji, Y. Ran, X. Cui, L. Wang, L. Song, X. Zhu, and M. Huang, “Jointgt: Graph-text
joint representation learning for text generation from knowledge graphs,” arXiv preprint
arXiv:2106.10502, 2021.

https://arxiv.org/abs/2005.00700
https://arxiv.org/abs/1908.05739
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2009.00751
https://arxiv.org/abs/2002.09758
https://arxiv.org/abs/1904.02342

43

[20] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a suit of armor conduct electricity?
A new dataset for open book question answering,” CoRR, vol. abs/1809.02789, 2018. arXiv:
1809.02789.

[21] A. Talmor, J. Herzig, N. Lourie, and J. Berant, “Commonsenseqa: A question answering
challenge targeting commonsense knowledge,” CoRR, vol. abs/1811.00937, 2018. arXiv:
1811.00937.

[22] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord,
“Think you have solved question answering? try arc, the ai2 reasoning challenge,” ArXiv,
vol. abs/1803.05457, 2018.

[23] V. Mnih, N. Heess, A. Graves, et al., “Recurrent models of visual attention,” Advances in
neural information processing systems, vol. 27, 2014.

[24] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” CoRR,
vol. abs/1910.10683, 2019. arXiv: 1910.10683.

[25] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A lite
BERT for self-supervised learning of language representations,” CoRR, vol. abs/1909.11942,
2019. arXiv: 1909.11942.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[27] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “ELECTRA: pre-training text en-
coders as discriminators rather than generators,” CoRR, vol. abs/2003.10555, 2020. arXiv:
2003.10555.

[28] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of BERT:
smaller, faster, cheaper and lighter,” CoRR, vol. abs/1910.01108, 2019. arXiv: 1910 .
01108.

[29] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced BERT with disentangled
attention,” CoRR, vol. abs/2006.03654, 2020. arXiv: 2006.03654.

[30] G. Ke, D. He, and T.-Y. Liu, “Rethinking positional encoding in language pre-training,”
CoRR, vol. abs/2006.15595, 2020. arXiv: 2006.15595.

https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.15595

44

[31] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean,
“Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,” CoRR,
vol. abs/1701.06538, 2017. arXiv: 1701.06538.

[32] Y. Sun, S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu, et al.,
“Ernie 3.0: Large-scale knowledge enhanced pre-training for language understanding and
generation,” arXiv preprint arXiv:2107.02137, 2021.

[33] B. Zoph, I. Bello, S. Kumar, N. Du, Y. Huang, J. Dean, N. Shazeer, and W. Fedus, St-moe:
Designing stable and transferable sparse expert models, 2022.

[34] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity,” CoRR, vol. abs/2101.03961, 2021. arXiv: 2101.
03961.

[35] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the dangers of stochas-
tic parrots: Can language models be too big?” In Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency, ser. FAccT ’21, Virtual Event, Canada: As-
sociation for Computing Machinery, 2021, pp. 610–623, ISBN: 9781450383097.

[36] F. Petroni, T. Rocktäschel, P. S. H. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and S. Riedel,
“Language models as knowledge bases?” CoRR, vol. abs/1909.01066, 2019. arXiv: 1909.
01066.

[37] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know what language models
know?” CoRR, vol. abs/1911.12543, 2019. arXiv: 1911.12543.

[38] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,”
ArXiv, vol. abs/1703.04730, 2017.

[39] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general
knowledge,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
ser. AAAI’17, San Francisco, California, USA: AAAI Press, 2017, pp. 4444–4451.

[40] M. Sap, R. L. Bras, E. Allaway, C. Bhagavatula, N. Lourie, H. Rashkin, B. Roof, N. A.
Smith, and Y. Choi, “ATOMIC: an atlas of machine commonsense for if-then reasoning,”
in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, AAAI Press, 2019, pp. 3027–3035.

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1911.12543

45

[41] C. Matuszek, J. Cabral, M. Witbrock, and J. Deoliveira, “An introduction to the syntax and
content of cyc,” in Proceedings of the 2006 AAAI Spring Symposium on Formalizing and
Compiling Background Knowledge and Its Applications to Knowledge Representation and
Question Answering, 2006, pp. 44–49.

[42] K. D. Forbus and T. Hinrich, “Analogy and relational representations in the companion
cognitive architecture,” AI Magazine, vol. 38, no. 4, pp. 34–42, 2017.

[43] P. Lu, R. Gong, S. Jiang, L. Qiu, S. Huang, X. Liang, and S.-C. Zhu, “Inter-gps: Inter-
pretable geometry problem solving with formal language and symbolic reasoning,” CoRR,
vol. abs/2105.04165, 2021. arXiv: 2105.04165.

[44] H. Li, J. Zhu, J. Zhang, C. Zong, and X. He, “Keywords-guided abstractive sentence sum-
marization,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,
pp. 8196–8203.

[45] K. Faldu, A. P. Sheth, P. Kikani, and H. Akabari, “KI-BERT: infusing knowledge context
for better language and domain understanding,” CoRR, vol. abs/2104.08145, 2021. arXiv:
2104.08145.

[46] P. Clark, O. Etzioni, D. Khashabi, T. Khot, B. D. Mishra, K. Richardson, A. Sabharwal, C.
Schoenick, O. Tafjord, N. Tandon, S. Bhakthavatsalam, D. Groeneveld, M. Guerquin, and
M. Schmitz, “From ’f’ to ’a’ on the N.Y. regents science exams: An overview of the aristo
project,” CoRR, vol. abs/1909.01958, 2019. arXiv: 1909.01958.

[47] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-domain
questions,” CoRR, vol. abs/1704.00051, 2017. arXiv: 1704.00051.

[48] J. Lee, S. Yun, H. Kim, M. Ko, and J. Kang, “Ranking paragraphs for improving answer re-
call in open-domain question answering,” CoRR, vol. abs/1810.00494, 2018. arXiv: 1810.
00494.

[49] B. Kratzwald, A. Eigenmann, and S. Feuerriegel, “Rankqa: Neural question answering with
answer re-ranking,” CoRR, vol. abs/1906.03008, 2019. arXiv: 1906.03008.

[50] B. Kratzwald and S. Feuerriegel, “Adaptive document retrieval for deep question answer-
ing,” CoRR, vol. abs/1808.06528, 2018. arXiv: 1808.06528.

https://arxiv.org/abs/2105.04165
https://arxiv.org/abs/2104.08145
https://arxiv.org/abs/1909.01958
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1810.00494
https://arxiv.org/abs/1810.00494
https://arxiv.org/abs/1906.03008
https://arxiv.org/abs/1808.06528

46

[51] Z. Wang, P. Ng, X. Ma, R. Nallapati, and B. Xiang, “Multi-passage BERT: A globally nor-
malized BERT model for open-domain question answering,” CoRR, vol. abs/1908.08167,
2019. arXiv: 1908.08167.

[52] M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t. Yih, and M. Galley,
“A knowledge-grounded neural conversation model,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 32, 2018.

[53] F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, and T.-S. Chua, “Retrieving and reading: A
comprehensive survey on open-domain question answering,” CoRR, vol. abs/2101.00774,
2021. arXiv: 2101.00774.

[54] V. Karpukhin, B. Oguz, S. Min, L. Wu, S. Edunov, D. Chen, and W.-t. Yih, “Dense passage
retrieval for open-domain question answering,” CoRR, vol. abs/2004.04906, 2020. arXiv:
2004.04906.

[55] K. Nishida, I. Saito, A. Otsuka, H. Asano, and J. Tomita, “Retrieve-and-read: Multi-task
learning of information retrieval and reading comprehension,” CoRR, vol. abs/1808.10628,
2018. arXiv: 1808.10628.

[56] R. Agarwal, A. Koniaev, and R. Schaefer, “Exploring argument retrieval for controversial
questions using retrieve and re-rank pipelines,” Working Notes of CLEF, 2021.

[57] O. Khattab, C. Potts, and M. Zaharia, “Relevance-guided supervision for openqa with col-
bert,” CoRR, vol. abs/2007.00814, 2020. arXiv: 2007.00814.

[58] W. Yu, C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, and M. Jiang, “A survey of knowledge-enhanced
text generation,” CoRR, vol. abs/2010.04389, 2020. arXiv: 2010.04389.

[59] J. Guan, F. Huang, Z. Zhao, X. Zhu, and M. Huang, “A knowledge-enhanced pretraining
model for commonsense story generation,” Transactions of the Association for Computa-
tional Linguistics, vol. 8, pp. 93–108, 2020.

[60] K. Wang, Y. Zhang, D. Yang, L. Song, and T. Qin, “GNN is a counter? revisiting GNN for
question answering,” CoRR, vol. abs/2110.03192, 2021. arXiv: 2110.03192.

[61] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method for
knowledge graph reasoning,” CoRR, vol. abs/1707.06690, 2017. arXiv: 1707.06690.

https://arxiv.org/abs/1908.08167
https://arxiv.org/abs/2101.00774
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/1808.10628
https://arxiv.org/abs/2007.00814
https://arxiv.org/abs/2010.04389
https://arxiv.org/abs/2110.03192
https://arxiv.org/abs/1707.06690

47

[62] N. Lao, T. Mitchell, and W. Cohen, “Random walk inference and learning in a large scale
knowledge base,” in Proceedings of the 2011 conference on empirical methods in natural
language processing, 2011, pp. 529–539.

[63] P. Wang, N. Peng, P. A. Szekely, and X. Ren, “Connecting the dots: A knowledgeable path
generator for commonsense question answering,” CoRR, vol. abs/2005.00691, 2020. arXiv:
2005.00691.

[64] Z. Liu, Z.-Y. Niu, H. Wu, and H. Wang, “Knowledge aware conversation generation with
reasoning on augmented graph,” CoRR, vol. abs/1903.10245, 2019. arXiv: 1903.10245.

[65] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A. J. Smola,
and A. McCallum, “Go for a walk and arrive at the answer: Reasoning over paths in knowl-
edge bases using reinforcement learning,” CoRR, vol. abs/1711.05851, 2017. arXiv: 1711.
05851.

[66] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller, “Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602,
2013. arXiv: 1312.5602.

[67] J. Xu, H. Wang, Z.-Y. Niu, H. Wu, W. Che, and T. Liu, “Conversational graph grounded pol-
icy learning for open-domain conversation generation,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Online: Association for Compu-
tational Linguistics, Jul. 2020, pp. 1835–1845.

[68] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating em-
beddings for modeling multi-relational data,” Advances in neural information processing
systems, vol. 26, 2013.

[69] M. I. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan, A.
Lewkowycz, M. Bosma, D. Luan, C. Sutton, and A. Odena, “Show your work: Scratchpads
for intermediate computation with language models,” CoRR, vol. abs/2112.00114, 2021.
arXiv: 2112.00114.

[70] S. Park, J. R. Chowdhury, T. Kundu, and C. Caragea, “Kpdrop: An approach to improving
absent keyphrase generation,” CoRR, vol. abs/2112.01476, 2021. arXiv: 2112.01476.

[71] R. Meng, X. Yuan, T. Wang, S. Zhao, A. Trischler, and D. He, “An empirical study on neural
keyphrase generation,” CoRR, vol. abs/2009.10229, 2020. arXiv: 2009.10229.

https://arxiv.org/abs/2005.00691
https://arxiv.org/abs/1903.10245
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.01476
https://arxiv.org/abs/2009.10229

48

[72] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text
with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[73] X. Ling and D. S. Weld, “Fine-grained entity recognition,” in Twenty-Sixth AAAI Conference
on Artificial Intelligence, 2012.

[74] F. Dernoncourt, J. Y. Lee, and P. Szolovits, “Neuroner: An easy-to-use program for named-
entity recognition based on neural networks,” arXiv preprint arXiv:1705.05487, 2017.

[75] C. Liang, Y. Yu, H. Jiang, S. Er, R. Wang, T. Zhao, and C. Zhang, “BOND: BERT-assisted
open-domain named entity recognition with distant supervision,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
ACM, Aug. 2020.

[76] W. Bibel, Automated theorem proving. Springer Science & Business Media, 2013.

[77] J. Kvarnström and P. Doherty, “Talplanner: A temporal logic based forward chaining plan-
ner,” Annals of mathematics and Artificial Intelligence, vol. 30, no. 1, pp. 119–169, 2000.

[78] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-chaining partial-order planning,” in Pro-
ceedings of the International Conference on Automated Planning and Scheduling, vol. 20,
2010, pp. 42–49.

[79] Y. Xu, C. Zhu, S. Wang, S. Sun, H. Cheng, X. Liu, J. Gao, P. He, M. Zeng, and X. Huang,
“Human parity on commonsenseqa: Augmenting self-attention with external attention,”
CoRR, vol. abs/2112.03254, 2021. arXiv: 2112.03254.

[80] D. Chen and C. D. Manning, “A fast and accurate dependency parser using neural networks,”
in Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), 2014, pp. 740–750.

[81] J. Nivre, M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajič, C. D. Manning, R. McDonald,
S. Petrov, S. Pyysalo, N. Silveira, R. Tsarfaty, and D. Zeman, “Universal Dependencies v1:
A multilingual treebank collection,” in Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), Portorož, Slovenia: European Language
Resources Association (ELRA), May 2016, pp. 1659–1666.

[82] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text
generation with BERT,” CoRR, vol. abs/1904.09675, 2019. arXiv: 1904.09675.

https://arxiv.org/abs/2112.03254
https://arxiv.org/abs/1904.09675

49

SYMBOLIC DATA AUGMENTATION FOR ASSISTED NEURAL REASONING

Approved by:

Douglas Downey
Computer Science
Northwestern

David Demeter
Computer Science
Northwestern

Chris Riesbeck
Computer Science
Northwestern

Date Approved: May 12, 2022

50

APPENDIX A

APPENDIX

Table A.1: Steps used to clean the corpus retrieved by [11].
Steps Adds / Removes entries?
Sentence tokenize using nltk Add
Cleaning using cleantext No
Remove html characters No
Remove parenthesis/brackets/bracelets at start No
Remove non-alphabetical symbols at start No
Remove non-alphanumerical symbols at end No
Remove escapes and repeated special symbols No
Remove sentences ends with question marks Remove
Remove sentences with multiple choices
(Eg: Question-ChoiceA-ChoiceB-...) Remove

Remove sentences with a high ratio of
non-english word tokens Remove

Remove short sentences Remove
Remove incomplete sentences using the
”textattack/roberta-base-CoLA” model. Remove

Remove duplicates Remove
Remove parenthesis that looks like an annotation
(Parenthesis used in chemical questions are not) No

Remove incomplete parenthesis/
brackets/bracelets using a stack parser No

	d0e8a424-1c8a-4b33-ac4e-cf1e62cba2be.pdf
	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related work
	Recent general advancements
	Knowledge enhanced text understanding
	Sources of knowledge
	Challenges in knowledge-enhanced text understanding

	Step by step reasoning

	The SDAR framework
	Task definition
	Architecture of the annotator
	Architecture of the question answering model
	A novel way to unify and retrieve knowledge
	Implementation of symbolic reasoning

	Experiments
	Data preparation
	Quality of Generated annotations
	Contribution of each part of annotation
	Comparison to other models

	Conclusion and Future Work
	Summary of key findings and significance
	Limitations and opportunities for future research

	References
	Appendix

