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ABSTRACT

Quantitative Analysis of Holography Interpolation With NeRF

Jiwon Choi

The presented work provides a way of preserving holography images through rendering

the holography images with NeRF and NeRF--, a neural radiance field representation

method. This paper explores the feasibility of interpolating photographs of holograms by

using the neural radiance field to synthesize novel views. To analyze the performance of

the view synthesis method, quantitative comparisons between captured hologram images

and interpolated views are done with the following metrics: MSE, PSNR, SSIM, and

LPIPS. The calculation was done by comparing the ground truth and the interpolated

images at a particular view point. The quantitative analysis demonstrates that the NeRF

model is able to interpolate photographs of holograms.
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CHAPTER 1

Introduction

Preservation of holography images is a longstanding problem within the field of com-

puter vision and computer graphics. The appearance of holograms change based on one’s

viewing location. It is also challenging to preserve holograms recorded on photographic

film as their image-carrying emulsions gradually deteriorate over years and decades. An-

other challenge occurs in capturing all the information in hologram. In the capturing

process, all the fringes, or di↵raction patterns, has to be captured with high resolution.

This capturing procedure is not an optimal way of preserving a hologram since it is not

a practical to capture images densely enough to get good results for any viewing position

by a simple linear interpolation of nearby captured images. This paper demonstrates a

way to preserve holograms through the view synthesis field of neural radiance field. By

utilizing a fully-connected neural network, the spatial location and the viewing directions

are optimized and result in a volume density and radiance. Afterwards, a classical volume

rendering technique will render this volume density and radiance. This novel view synthe-

sis method is a scene representation as neural radiance fields for view synthesis, shortly

called NeRF [23], and there is another method called NeRF-- which does not require the

camera parameters of each image [37]. This work tries to answer the main question: “Is

it possible to recreate images at di↵erent viewpoints from hologram by using NeRF to

interpolate between captured hologram images?” To further address this question and

support the claim, the quantitative analysis is provided with the following image quality
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metrics: MSE, PSNR, SSIM, and LPIPS. The quantitative analysis supports the claim

that NeRF is able to reconstruct and interpolate photographs of holograms.

To summarize, the main contributions are:

• Proposed holography preservation method with a neural radiance field synthesis,

and overcome the challenges in conventional methods.

• NeRF and NeRF--, a radiance field novel view synthesis methods, are quantita-

tively analyzed with holography images.

1.1. Related Work

Rendering the restored (visualized) holography image is demonstrated to be a chal-

lenging task. The rendering approach have proposed starting from the early age. Lucente

et al. (1995) proposed a method to render interactive holographic images [20]. The pro-

posed method creates the holographic pattern by merging a series of view images rendered

with a recentering shear-camera geometry. The method firstly renders the view with the

conventional camera interpolation method (i.e. linear interpolation method), then com-

putes the fringes to di↵ract light in specific directions. Finally, merge these stereogram

components into the fringe pattern. Here, a stereogram component is a 2D representation

of hologram in discrete way, and this representation allows to simplify the fringe calcula-

tion. In the rendered view, it exemplifies how the light should be di↵racted or scattered

by the fringes.

Nishi et al. (2011) proposed a novel rendering method to create computer-generated

holograms (CGH) from 3D polygonal meshes used in computer graphics [24]. CGH

digitally reconstruct interference and di↵raction patterns (‘fringes’) of holograms. The
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proposed novel Phong reflection model determines the spectral structure of the light

reflected from simulated specular surfaces. Here, the spectral surfaces of the reflected

light are modified to fit into a spectral shape.

Another polygon-based approach is proposed by Matsushima et al. (2012) [22]. This

method is called “wave-field rendering method”, and this computes the optical wave-

field of virtual 3D scenes specified as collections of polygonal meshes. Analogous to the

computer graphics’ polygon-based method, smooth shading and texture mappings are

applied to the rendered surfaces of holography images. The computer-generated high-

definition holograms are composed of billions of pixels with depth reconstruction, making

them impractical for most historical preservation tasks.

Chen et al. (2014) proposed a rapid hologram generation through a layer-based graph-

ical rendering with angular tilting method [6]. A point cloud description of 3D objects

are sliced into constant-depth layers or “billboards,” and incorporates clear depth cues,

occlusion, and shading in the rendered result. Here, angular tiling enables merging of

multiple adjacent views to form a continuous image. The proposed algorithm strongly

outperforms previous methods by its reduced computational time.

An enhanced layer-based rendering approach is proposed by Zhang et al. (2017) [40].

The conventional layer-based approach gives limited accuracy in simulating occlusion

e↵ects; this may cause complex surfaces such as leaves on trees to appear disconnected

from their branches in the reconstructed result despite the continuous, connected form

of the original object. The approach of Zhang et al. tackles the occlusion e↵ect by

applying slab-based orthographic projection. The proposed method is capable of rendering

small hidden primitives for occlusion processing, and by generating shading information
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in each layer. The resulting CGH captures complex 3D scenes with more accurate depth

information, with fewer small occlusion errors.

These related rendering approaches are attempts to re-create holograms’ abilities syn-

thetically, by discretized CGH method. To the best of my knowledge, ours is the first

published hologram interpolation approach. It is not a reconstruction of holography on

computer, but instead utilizes the neural radiance field view synthesis to recreate the

appearance of a hologram from any viewpoint, yet captured from a sparse, evenly-spaced

set of photographs. Rendering with neural radiance field does not require any information

of interference patterns (or “fringes”), unlike proposed CGH approaches. The rendered

result of the CGH images from each author is provided in Appendix A.

1.2. Thesis Organization

The remainder of the thesis is structured as follows: §2 discusses more on holography

and its limitations in preservation, along with various applications. §3 introduces the

view synthesis methods with neural radiance field, and §4 covers more on experiment and

the quantitative analysis of holography interpolation. Finally, §5 discusses strengths and

challenges of the proposed method, and further improvements that can be taken.
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CHAPTER 2

Holography

This chapter introduces holographic projection and the display characteristics of holo-

grams. Unlike all previous imaging methods, holograms provide a visual display in a novel

3-dimensional format, one that recreates the actual wavefronts of coherent light reflected

from a 3D scene, and made possible only by the 1960s-era advent of lasers and extremely

high resolution photographic film [17]. Holography projection is widely used in various

fields, including business, education, science, art, and healthcare [8]. This chapter dis-

cusses holographic recording and playback methods, along with the proposed holography

enhancement methods proposed by several other researchers. This chapter concludes with

discussion of the limitations of preserving existing holograms recorded on photographic

film emulsions.

2.1. Introduction to Holography

Holography was invented by Dennis Gabor in 1948, who later received the Nobel

Prize in Physics in 1971 for this work [5]. Holograms are a 2D record of the interference

patterns or “fringes” formed by combining coherent light directly from a light source

(usually a laser) and that same coherent light reflected from a 3D scene [8]. Holograms

rely on recording the interference produced by the wavefront reflected from an object,

while conventional photography relies on the projection of light rays incident onto a

photosensitive surface without any significant interference e↵ects [36]. Holography has
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two steps: recording and playback. The desired output must be illuminated onto the

object along with the intended playback light configuration, and these configurations

will result in an interference pattern. This di↵raction pattern will then be recorded by

photo-chemical processes: either as intensity variations on a surface (e.g. high resolution

photographic emulsions) or as changes in refractive index within a volume hologram [11].

2.1.1. Needs of Holographic Projection

The interest in 3D viewing is one of the factor that film-based holography persisted at

the cutting-edge through the 1990s, and has had a revival with the advent of white-light

holographic display techniques for head-mounted displays for virtual reality/augmented

reality display systems [21]. Holography became less interested in these days, due to the

cost of holographic data disks and holotechnology drives (i.e. holographic data disks),

where holographic data gets encoded and stored. Another issue is that these devices

require an expert to manipulate [8]. Yet, holograms are used in a wide array of fields.

2.1.2. Application of Holography

There are multiple applications in holography: security uses, advertisement, artwork,

medical and military usage, and etc. Each of these applications is discussed below.

2.1.2.1. Security. A pioneer in holography, Stephen Benton, has a patent in rainbow

hologram which is delivered with a white light transmission. This embossed rainbow

holograms can be found on credit cards, banknotes, stamps, and other security uses [4].

2.1.2.2. Advertisement. Coca-Cola gave a sales conference presentation in Prague, in

2009. During the presentation, senior directors of the company were beamed into the stage
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as 3D holograms. The content of their presentation, including the product information,

was also visualized with holograms [8].

2.1.2.3. Art. Holography collections are displayed in museums as artworks. For in-

stance, Stephen Benton and Polaroid Sta↵s’ Engine no. 9 (1975) -the train hologram- is

in MIT Museum Collection [36]. Benton’s other collections including “Portrait of Stephen

Benton and Yuri Denisyuk” are also exhibited in MIT Museum Collection, and archived

in the web museum (https://webmuseum.mit.edu). There is another collection at The

Movieum of London Museum. The holography collection displays their large scale show

and event, and medium and small size exhibitions [16].

2.1.2.4. Medical. 3D Medical Animation Studio -3d medical illustrations (2008), pro-

posed a holography display of medical animations, along with the option of interactivity

[33].

2.1.2.5. Military. Zebra Imaging (2008) proposed a 3D holographic map for military

usage, and reported a higher e↵ectiveness in 3D holography map than using a traditional

2D map [13]. Under military settings, this holography map can be used to familiarize

terrain, planning raids, debriefing after incidents, and etc.

2.2. Holographic Stereograms

To render a holography scene, a closely-spaced series of discrete perspective views is

captured, through indexing a camera on a rectangular grid or sliding camera in front of

the scene. These films will then be fed into a laser-illuminated optical printer, which

merges images and yield a synthetic hologram. This procedure is called as a “holographic

https://webmuseum.mit.edu
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stereogram.” The holographic stereogram di↵racts a fraction of the light to several di↵er-

ent viewing locations upon illumination. Then it modulates beam with the corresponding

perspective view, which allows to be visible to an eye at the location corresponding to

that point of view. Depending on the parallex, these viewing perspectives can be located

di↵erently, such as centered on a rectangular grid, or along a line. The di↵erent views

in left and right eye (stereoscopic pair) yield an impression of depth. When the observer

moves up-down or left-right, he will sweep across the closely-spaced perspective views and

be able to observe a continuous and realistic view of a holographic object [3].

There are two ways of generating and viewing holograms: laser-viewed, and white-light

holographic stereograms. As the name indicates, laser-viewed method uses the emission

of the laser beam, while the white-light method uses white-light sources such as halogen

lamps [3]. Each of these methods will be briefly discussed.

2.2.1. Laser-Viewed Holographic Stereogram

In the early stage of holographic stereogram, methods utilize the monochromatic light

from the source. Types of monochromatic lights include lasers and mercury arc lamps.

The downside of this laser-viewed method is the limitation of the holographic uses in

darkened environments [3]. “Denisyuk” reflection holography is one of the laser-viewed

holographic stereogram methods. This method uses the laser beam that is emitted from

the source, passes through a beam expander and this will reach to the holographic plate

and the object [36].
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2.2.2. White-Light Holographic Stereogram

Utilizing a single point-like white light, such as small bright overhead halogen lamps will

allow the holographic images to be viewed in common environments, and not limited to

the dark environments. Unlike monochromatic lights, white-lights provide strong, broad-

spectrum illumination, so that the holograms can be viewed in much brighter surroundings

[3].

2.3. Related Work: Improvements In Holography

A promising recent direction in holography imaging, several works have proposed to

make amendments in conventional holography methods. These enhancements include

circumventing the scattering e↵ect, e�cient simulation of holographic process, and reser-

vation of recorded holography.

Willomitzer et al. (2021) proposed a method which exploits spectral correlations in

scattered wavefronts, in order to reduce detrimental ‘speckle’ e↵ects of scattering [38].

The scattering presence in the imaging path between an object and observer, and this

critically limits the visual acuity. The proposed Synthetic Wavelength Holography method

recovers a holographic representation of hidden targets, over a nearly hemispheric angular

field of view.

Ballester et al. (2021) proposed an e�cient simulation of holography [1]. The proposed

method applies propagation to the free-space Helmholtz Green’s functions and the Born

approximation assumption to enhance the e�ciency in its computational time.
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Peixeiro et al. (2016) performed a quantitative analysis of compression methods for

holographic data [25]. The quantitative measures indicate that the most appropriate re-

construction method varies with applications, and this depends on the holography content

generation method and reconstruction distances of holography. Yet, their ‘HEVC Intra’

method outperforms others as an encoding method due to its improved representation

formats: Phase Shifted Distances and Real-Imaginary formats. This yields only a minute

di↵erence in overall compression performance.

Huebschman et al. (2003) proposed a preservation of dynamic holographic image

projection with digital micromirror devices (DMD) [15]. They first calculated fringes

from the object into a 3D scene, and then record the 2D digital hologram into the device.

2.4. Limitations In Preservation of Holograms

Walton et al. (2021) claimed that holograms are di�cult to be preserved [36]. Since

holograms recorded on photographic film emulsions are an active material, they require

user interaction to observe and appreciate fully: viewers must move as they watch the

hologram to see occluded portions. But, as the holograms deteriorate over time there

are technological challenges to preserve them. For instance, the deterioration of the film

emulsions and film base are slowly destroying the Stephen Benton’s pioneering and historic

holography collections. Thus, it is important to capture the visual appearance of these

holograms to save in permanent digital form. This will allow accurately recreating the

appearance of these historic holograms long after the original film emulsions are gone. To

the best of my knowledge, the experiment discussed in §3 is the first hologram preservation

approach that utilizes the neural radiance field method.
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CHAPTER 3

Overview of 3D Rendering Methods

This chapter introduces various view synthesis methods in order to interpolate and

reconstruct the shapes depicted in given images. First of all, COLMAP, an open-source

software package that reconstructs 3D models from photos using structure-from-motion

techniques, will not only render views of its own triangle-mesh reconstructions, but also

computes the camera positions that captured the input photos. Two other approaches to

3D capture and viewing, the NeRF and NeRF-- software packages, use deep neural nets to

build estimates of the entire radiance fields of the scene. While the NeRF package requires

camera lens parameters (intrinsic calibration) and camera poses (extrinsic calibration)

obtained via COLMAP, the NeRF-- does not –it forms its own camera parameter estimates

from the supplied photographs. Both methods have a same baseline approach of NeRF,

which is a representation of novel scenes with neural radiance fields. In this chapter, each

of these rendering methods will be introduced, and these methods will later be used in the

following chapter to perform the quantitative analysis of the captured hologram image

dataset.

3.1. COLMAP: Structure-from-Motion

Structure-from-Motion, often called SfM, is a reconstruction process of a 3D structure

from its projections into data sets of photographed images, which are taken from many

di↵erent camera positions. Multiple SfM strategies have been developed over decades of
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Figure 3.1. COLMAP Incremental SfM Pipeline

work, including incremental, hierarchical, and global approaches. Of these, the incremen-

tal SfM is now perhaps the most well-regarded strategy for accurate 3D reconstruction

from unordered image datasets [28]. This SfM method optimizes the perspective camera

which is parameterized by an eleven-parameter projection matrix. Yet, such optimization

algorithms may fall into the local minima, especially if it is a large-scale dataset. Thus,

it is critical to provide a good initial pair of images. Here, the incremental approach esti-

mates and optimizes the parameters one-by-one, by adding one camera at a time, rather

than estimating all the parameters with all the images all at once [31]. The hierarchical

approach organizes the image dataset into a hierarchical cluster tree, and performs the

reconstruction from the leaves to the root in the hierarchical way [10].

Global SfM requires local estimates of geometry, and from there solving for a global

set of camera poses [7]. Note that hierarchical and global approaches are not used in the

COLMAP SfM package, which uses the incremental approach instead.

The COLMAP SfM pipeline starts with feature extraction which identifies 3D point

locations in the photographed scene, and feature matching that finds the 2D image loca-

tion of a 3D feature in two or more photographed images, and then geometric verification

that performs multi-camera tests to ensure the matched features describe a single 3D
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location. After this, the incremental reconstruction involves an iterative procedure after

the initialization, and the iterative process is as follows: image registration which chooses

the (next) best view, triangulation that reconstructs from multiple images, bundle adjust-

ment which solves extrinsic parameters of camera, and outlier filtering [28]. Details are

discussed in the following paragraphs. Figure 3.1 visualizes the explained process with an

example of the Polaroid dataset. The captured Polarioid hologram input image dataset is

fed into the model, and the model applies searching and the incremental reconstruction,

then finally outputs the 3D rendered that depicts camera position and aiming directions

as tiny red pyramids –the peak of the pyramid is the camera’s center of projection, the

base is the camera’s image plane, and the sides form its viewing frustum.

Here, COLMAP proposed a new SfM pipeline that improves the following challenges

that the conventional SfM has: robustness, accuracy, completeness, and optimized run-

time. The feature extraction step chooses features that are invariant under radiometric

and geometric changes. These invariant features will later be uniquely recognized by SfM

in multiple images [39]. The feature matching step searches for the most similar feature

in one image for every feature in another image. Since the matching step is based on the

appearance of the images, corresponding features in images might not actually map to

the same 3D locations. Thus, geometric verification is introduced to verify whether the

estimated transformation corresponds to the features between images using the geometry

projection. This verification allows to improve the robustness of the initialization and

triangulation [28].

After the searching step, initialization should be done in order to incrementally re-

construct an object. During the initialization, choosing a good initial pair is critical;
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initializing from a dense location with many overlapping cameras results more robust and

accurate reconstruction result [2]. Image registration step chooses the next best view,

and thus minimizes the reconstruction error. This step solves the Perspective-n-Point

(PnP) problem using corresponding triangulated points in the registered images [9]. PnP

solves for an orientation and position of a fully-calibrated perspective camera, with n � 3

number of 3D points of the object framework and their corresponding 2D projections

[42]. Note that solving this PnP problem depends on the number of observations and

the distribution of those [19]. To minimize the uncertainty, choosing the image with the

most triangulated points is critical [30].

Next step is triangulation. Triangulation is the intersection of two known rays in space

from 2 or more known camera positions, and to an extent, refers to the reconstruction

from several images in photogrammetry [12, 29]. Triangulation in SfM enables regis-

tration of new images by providing additional corresponding points, as well as increase

the stability through maximizing the overlap [34]. COLMAP proposed an e�cient and

robust way of triangulation, by applying Kang et al.’s (2014) estimation of points via

feature tracking [18]. Feature tracking may generate lots of outliers due to the poorly

matched 3D position estimates, but COLMAP overcomes these by a recursive triangu-

lation method that determines consistent trajectories for multiple points from faulty or

inconsistently merged feature sets [28]. Lastly, further refinements are done by bundle

adjustment (BA). BA solves for the joint non-linear refinement of camera extrinsic pa-

rameters Pc and 3D point-location parameters Xk. With the function ⇡, which projects

3D scene point locations to each camera’s 2D image space, compares them to the origi-

nally detected feature locations, and adjusts parameters incrementally to minimize their
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di↵erences, known as the reprojection error. The loss function ⇢j potentially allows to

reduce the weight of outliers. The equation 3.1 refers to the explained BA equation.

(3.1) E =
X

j

⇢j(||⇡(Pc, Xk)� xj||22)

BA uses Levenberg-Marquardt optimization for bundle adjustment –a method that can

solve non-linear problems in the least-squares sense. [34]. With these steps and im-

plementations, COLMAP was able to make improvements in completeness, robustness,

accuracy, and e�ciency from the naive SfM.

The utilization of COLMAP open-source software is necessary to execute some of the

view synthesis steps. The input of the view synthesis with neural radiance field and neural

factorization (NeRF, NeRF--) requires the camera positions COLMAP can compute, along

with the image dataset. These neural view synthesis methods will be further discussed in

later sections.

3.2. NeRF: View Synthesis With Neural Radiance Fields

The open-source software for representing scene as neural radiance field, shortly called

NeRF, synthesizes novel views of scenes through optimizing the continuous volumetric

scene function. The required inputs are a set of images with known camera poses, intrinsic

parameters and scene bounds as obtained by COLMAP. Afterwards, the fully connected

deep neural network without convolutions is utilized with an input of a single continuous

5D coordinate. The 5D coordinate here is composed of spatial location (x, y, z) and

viewing direction (✓,�). This outputs the volume density and emitted radiance at the

spatial location. The conventional volume rendering step projects the output colors and
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Figure 3.2. Overview of NeRF Pipeline

densities into an image by merging 5D coordinates with camera rays [23]. The overview

of this NeRF process is illustrated in Figure 3.2.

NeRF proposed the novel view synthesis by directly optimizing a continuous 5D scene

representation parameters, and this minimizes the error between rendered and ground

truth observed images. Minimizing this residual across multiple views allows the network

to predict a coherent model by assigning high volume densities with accurate scene colors.

The first step, neural radiance field scene representation takes an input of 3D location

of x = (x, y, z) and 2D viewing direction (✓,�). These are fed into the multi-layer per-

ceptron (MLP) network to optimize its weights ⇥ and to map the 5D coordinates to the

corresponding volume density � and color emitted c = (r, g, b). Equation 3.2 shows the

described the fully connected layer model [23].

(3.2) F⇥ : (x, d)! (c, �)

The model is built with 8 fully-connected layers and one additional fully-connected layer,

with 256 and 128 channels respectively. All layers used the ReLU activation function

for each layer. The MLP first supplies the volume density � and a feature vector with

a dimension of 256, from the first 8 fully-connected layers with the 3D coordinates x.

This feature vector is then used in the last layer along with the 2D viewing direction to

construct the view-dependent RGB color outputs c. Figure 3.3 visualizes the network
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Figure 3.3. MLP F⇥ Network Architecture

architecture of the model [23]. After obtaining the volume density � and the colors c via

training the MLP model, classical volume rendering is done using the radiance field result.

The di↵erential probability of a ray terminating at an infinitesimal particle at point x is

the volume density �(x). Within the near tn and far tf bounds, the expected color C(r)

of camera ray r(t) can be explained with the di↵erential equation 3.3.

(3.3) C(r) =

Z
tf

tn

T (t)�(r(t))c(r(t), d) dt,where T (t) = exp

✓
�

Z
t

tn

�(r(s)) ds

◆

The function T (t) denotes the accumulated transmittance, which is a probability that the

ray travels from tn to t. C(r) renders the color of each ray. The estimation of this color

C(r) is required in order to render the view with continuous neural radiance fields [23].

This ordinary or “vanilla” NeRF procedure has a limitation when rendering the com-

plex scene: it does not converge to a high resolution rendering. Thus, the NeRF method

adds a new feature to overcome this limitation: positional encoding of coordinates, and
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hierarchical volume sampling. As Rahaman et al. (2019) proposed, there is an empiri-

cal evidence of bias in deep neural networks; lower frequencies are learned first in deep

networks [26]. Similarly, vanilla NeRF gave represented high-frequency (small, localized)

color and geometry variations poorly. Thus, positional encoding is introduced here. This

encoding was adopted from the popular Transformer architecture, where they provided

the discrete positions of tokens in a sequence [35]. This converted input, the order of the

sequence, is required in the model because the architecture contains neither recurrence

nor convolution.

In NeRF, positional encoding is used to map continuous coordinates into a higher

dimensional space. This allows MLP to approximate a higher frequency function more

easily, and makes the model less biased [23]. Hierarchical volume sampling makes the

rendering more e�cient. Evaluating neural radiance field at N points along each camera is

ine�cient since free space and occluded regions will also be evaluated every time although

they do not contribute significantly to the rendered output. In NeRF, “coarse” and “fine”

networks are simultaneously optimized instead of using a single network. Each network

samples Nc and Nf locations and evaluate the corresponding network at these locations.

Finally, the fine network computes the final rendered color of the ray using all samples

Nc +Nf . The loss function in equation 3.4 is simply the total squared error between the

pixel colors of rendered and ground truth images.

(3.4) L =
X

r2R

h
||Ĉc(r)� C(r)||22 + ||Ĉf (r)� C(r)||22

i

R denotes the set of rays in each batch and r denotes each ray of it. C(r), Ĉf (r), Ĉc(r)

refers to the ground truth, coarse and fine volume predicted in RGB colors, respectively.
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Note that the loss of coarse Ĉc(r) should be minimized although the final rendering is

done in the fine Ĉf (r). This will allocate samples in the fine network by utilizing the

weight distributions from the coarse network. This process allocates more samples to the

interested regions which contain more ‘visible’ content [23].

Although it requires the camera positions and information in addition to the image

dataset, NeRF is able to produce renderings by representing 3D scenes as 5D neural radi-

ance fields and sampling them to create images from any desired 3D viewpoint. Milden-

hall et al. (2020) also claimed that NeRF outputs better renderings compared to the

discretized voxel representations via training deep convolutional networks [23].

3.3. NeRF--: NeRF Without Known Camera Parameters

Another open-source software for representing scene as neural raidance field is called

NeRF--, or NeRFMM. Unlike NeRF, NeRF-- proposed a novel view synthesis (NVS) with-

out camera positions or intrinsic parameters. This state-of-art end-to-end framework is

able to output a synthesized view only with the input RGB images, and without camera

parameters. Instead, NeRF-- jointly optimizes the intrinsic and extrinsic camera param-

eters while training the NeRF model. Wang et al. (2021) proposed that NeRF-- results

on par with the baseline trained with COLMAP, and also produces robust results in case

where COLMAP fails [37].

NeRF-- added the important step of a new joint optimization of camera parameters

to the NeRF training step. Refer to Algorithm 1, which is taken from Wang et al.

(2021), to see the detailed steps [37]. This joint optimization of model parameter ⇥ and

camera intrinsic and extrinsic parameter of ⇧, with an input of image set I is denoted in



31

Algorithm 1 NeRF-- Pipeline [37]

Input: N Images, I = {I}N
i=1

Output: NeRF Model F⇥, camera parameters ⇡̂ = (f̂x, f̂y, �̂i, t̂i)
1: import torch.nn as nn
2: f̂x, f̂y  nn.Parameter(shape=(2,), · · · ) . estimate initial focal lengths
3: [�̂i] nn.Parameter(shape=(N, 3), · · · ) . estimate initial rotation matrix
4: [t̂i] nn.Parameter(shape=(N, 3), · · · ) . estimate initial translation matrix
5: F⇥  NeRF . get NeRF network model
6: for i in range(N) do . training step
7: for m in range(M) do . randomly selected pixel locations
8: d̂i,m = construct ray(f̂x, f̂y, �̂i, t̂i, ⇢i,m) . get a ray from ⇡̂ through the pixel ⇢
9: for h from hn to hf do . within the ray range
10: xj  sample point(d̂i,m, t̂i, h) . joint optimization (Equation 3.5)
11: ch, �j  F⇥(xh, d̂i,m) . forward NeRF
12: end for
13: Îi,m  render ray([ch], [�h]) . rendering views (NVS)
14: end for
15: L loss(Îi, Ii) . loss from reconstructed pixel (Equation 3.5)
16: L.backward() . backward loss
17: optimizer.update(f̂x, f̂y, [�̂i], [t̂i], ⇥̂) . update the optimzer
18: end for

mathematical way in Equation 3.5.

(3.5) ⇥⇤
,⇧⇤ = argmin

⇥⇤,⇧⇤
L(Î , ⇧̂|I)

There are four camera parameters handled in NeRF--: f̂x, f̂y, �̂i, t̂i. The focal lengths f̂x,

and f̂y can be directly optimized. Note that NeRF-- assumes that the camera principle

points are as follows: cx ⇡ W

2 and cy ⇡ H

2 , where W and H denote the width and

height of the image. In case of extrinsic parameters, the rotation vector ti and translation

vector �i, for each image Ii, are also directly optimized. After initializing the intrinsic

and extrinsic parameters, for each image Îi, NeRF-- randomly selects M pixel locations

{⇢i,m}Mm=1. These pixel locations are what NeRF-- wants to reconstruct from NeRF model
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F⇥. Rendering the color of each pixel ⇢i,m = (u, v) involves the projection of a ray r̂i,m(h),

where h denotes the ray range from hn to hf , from the camera position through the pixel

into the radiance field. Note that constructing the ray also requires the camera parameters

⇡̂i = (f̂x, f̂y, �̂i, t̂i). This can be resolved with Equation 3.6, after converting into the

rotation matrix R from the representation of normalized rotation axis ! and a rotation

angle ↵, as solved in Equation 3.7.

(3.6) d̂i,m = R̂i

0

BBBB@

(u�W

2 )

f̂x

�(v�H

2 )

f̂y

�1

1

CCCCA

(3.7) R = I +
sin(↵)

↵
�
^ +

1� cos(↵)

↵2
(�^)2,

where the skew operator (·)^ in Equation 3.7 converts a vector � into a skew matrix. Since

the model may fall into local minima in case where the optimized camera parameters are

sub-optimal, additional refinement step is introduced in NeRF--. Falling into local minima

may result a blurry rendered output. This refinement step is done by dropping the trained

NeRF model and re-initialize with random parameters, after the first training step. Note

that camera parameters ⇡ are stay remained without re-initialization. After resetting

the parameters, repeat the joint optimization step. This refinement results relatively

sharpened rendering images [37].

Yet, there are some limitations in NeRF--. It struggles when rendering the scene with

large texture-less regions or photometric inconsistent across frames -i.e. motion blur.

Also, NeRF-- is limited to render the forward-facing scenes or short camera trajectories,
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and struggles in rendering 360� scenes or large camera trajectories. Still, this NeRF-based

pipeline results a NVS without known camera parameters, and estimates the parameters

through joint optimization [37].
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CHAPTER 4

Quantitative Analysis of Holography Interpolation

After introducing the limitations of preserving holography images as well as the ways

of performing interpolations with images, this chapter introduces various methods applied

in order to interpolate holography images including quantitative measures on the rendered

result.

4.1. Experimental Setup

This section discusses the experimental setup. To perform this experiment, a pho-

tographed hologram image dataset was collected by illuminating the hologram with a

fixed white LED light and photographing with a gantry-mounted camera that captured

images from a 2D grid of positions in front of the hologram. To train the NeRF model

with this dataset required some new hardware configurations that were di�cult for us to

achieve. I found that the workstation should be equipped with a GPU of at least 10GB

RAM for this task. Lastly, the three open-source software packages required to perform

the analysis must be carefully and correctly configured.

4.1.1. Obtaining Image Datasets

In this experiment, we named our three holography image datasets as: “train”, “lion

cubs,” and “polaroid”. Each dataset captured the visual appearance of an historic holo-

gram made by Steven Benton in the late 1960s and 1970s, and was named to describe the
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Figure 4.1. Image Dataset Capture Settings

3D scenes these holograms depicted. These image sets were taken using a DSLR camera

with a 50mm lens from numerous viewpoints. In the case of train and lion cubs dataset,

the camera moved in an x-y plane, with a vertical step size of 3.7cm and a horizontal

step size of 2.3cm. The distance between the hologram plane and the DSLR camera lens

is approximately 1.11m, and the camera lens and the holography panel are located in

parallel. This setup is shown in Fig. 4.1. On the other hand, the polaroid dataset is

not taken in a sequential order, but taken in a spiral view points with a di↵erent (tilted)

camera angles. There are multiple fiducial markers, provided by Agisoft Metashape 1,

attached around the holography panel. These landmarks have a role of features of the

scene, to obtain the camera position later on. The list of datasets that are utilized in this

experiment is addressed in Appendix B.

1Agisoft Metashape is a software that performs photogrammetric processing of image datasets and pro-
duces a 3D rendered output (https://www.agisoft.com/)

https://www.agisoft.com/
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4.1.2. Hardware Specifications

The view synthesis step utilized two servers with the following configuration for train-

ing and rendering the image dataset. The first server has a configuration of Intel® Core™

i9-9940X CPU @ 3.30GHz with 128GB RAM, and three GPUs of NVIDIA® GeForce®

RTX™ 2080 Ti. Another server has a configuration of Intel® Xeon® Processor (Cascade-

lake) with 96GB RAM, and three GPUs of NVIDIA® Quadro RTX™ 8000. Although

both servers lack of NVIDIA® NVLink® bridge and thus cannot distribute the task over

multiple GPUs, the utilization of a single GPU su�ces to train and render the novel view

with the optimization of neural radiance fields. With these settings, the average run time

of the training step takes around 15 to 20 hours, and rendering the photo-realistic view

takes less than 30 minutes.

Due to the lack of permission on those aforementioned servers, obtaining camera

positions through COLMAP utilized the local system. The local desktop system has a

configuration of AMD Ryzen™ 5 5600X 6-Core Processor, with 16GB ⇥ 2 DDR4 3600MHz

RAM and a single NVIDIA® GeForce® GT 1030 GPU. Obtaining camera positions takes

around 10 minutes, and converting these obtained positions through NeRF-formatted

positions takes less than a minute.

4.1.3. Software Usage

Chapter 3 introduces three rendering methods: COLMAP, NeRF, and NeRF-- renderings

are from all open-source software packages. Note that this also requires another software

package, LLFF, to convert the COLMAP positions into the NeRF-formatted positions.
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Table 4.1. Open-Source Rendering Software

Method Open-Source Implementation

LLFF https://github.com/Fyusion/LLFF
COLMAP https://github.com/colmap/colmap
NeRF https://github.com/bmild/nerf
NeRF-- https://github.com/ActiveVisionLab/nerfmm

The open-source URL of each method can be found in Table 4.1. Utilizing these software

packages enables analysis of the interpolation of holography image data sets.

4.2. Quantitative Metrics

In this section, the quantitative metrics used to compare the performance of renderings

will be introduced. The metrics include: MSE, PSNR, SSIM, and LPIPS. By comparing

the result from multiple metrics here, we can verify whether the rendering with neural

radiance field is able to interpolate hologram images. The calculation pipeline can be

found on: https://github.com/cjw531/neural-rendering.

4.2.1. MSE

The mean squared error (MSE) simply calculates the di↵erences between two images.

MSE is computed as the average of the squared pixel intensity di↵erences between a

source image and a rendered image [32]. The mathematical notation is described in

Equation 4.1.

(4.1) MSE =
1

mn

m�1X

i=0

n�1X

j=0

[I(i, j)�K(i, j)]2

https://github.com/Fyusion/LLFF
https://github.com/colmap/colmap
https://github.com/bmild/nerf
https://github.com/ActiveVisionLab/nerfmm
https://github.com/cjw531/neural-rendering


38

4.2.2. PSNR

The peak signal-to-noise ratio (PSNR) metric measure the quality of reconstruction, and

is an extension of MSE. The Equation 4.2 shows that PSNR make a use of MSE, while

it also incorporates the maximum value of the pixel -bits stored in the image, i.e. 8-bits

image has a maximum pixel value of 28 � 1 = 256.

(4.2) PSNR = 10 log10

✓
2552

MSE

◆

The PSNR value approaches infinity, as the MSE goes to 0. This shows that the higher

PSNR value provides the higher image quality, while a smaller value of the PSNR implies

the given two images are di↵erent [14].

4.2.3. SSIM

The structure similarity index method (SSIM) evaluates the structural similarity based on

a mathematical model of human perception. Equation 4.3 computes a normalized mean

value of structural similarity between the two images.

(4.3) SSIM =
(2µxµy + c1)(2�xy + c2)

(µ2
x
+ µ2

y
+ c1)(�2

x
+ �2

y
+ c2)

,

where µ⇤, �2
⇤, �xy indicates the average, variance, and covariance of image. c variables are

stabilizer o↵set for the weak denominator [27].
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4.2.4. LPIPS

The learned perceptual image patch similarity (LPIPS) metric evaluates the distances

between patches. LPIPS is one of the human perceptual metrics, which systematically

evaluate deep features across di↵erent architectures. Higher values indicate that they

are more varying, while the lower values indicate that two images are similar [41].

In this experiment, the open-source LPIPS library (ver. 0.1) is used to make com-

parison. This open-source library can be found in: https://github.com/richzhang/

PerceptualSimilarity.

4.3. Results of Quantitative Measurements

In this section, the rendered results NeRF and NeRF-- will be discussed. The ex-

periment utilized the three types of lion cubs datasets. Both visual and quantitative

performance evaluations at a fixed central camera locations have done.

4.3.1. Input Dataset

To compare the neural radiance rendering performance in a numerical way, lion cubs

dataset is used. In this experiment, the three di↵erent lion cubs datasets are provided to

the NeRF model:

(1) lioncubs-all: dataset with all captured images (sample size: 60)

(2) lioncubs-col: dataset without center columns, a 8:2 split (sample size: 48)

(3) lioncubs-row: dataset without center rows, a 2:1 split (sample size: 40)

To make it easy to mention, we named the dataset as “all”, “column” (col), and “row”,

respectively. The split of the dataset is also visualized in Figure 4.2. The numbering

https://github.com/richzhang/PerceptualSimilarity
https://github.com/richzhang/PerceptualSimilarity
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Figure 4.2. Lion Cubs Datasets (All, Col, Row) With COLMAP

of the images are the sequence of the images captured, as discussed in Section 4.1.1.

The red-colored images belong to each dataset, all, col, row, respectively. The view

point locations of images correspond to the camera position obtained through COLMAP.

Interesting point to note is that the density of COLMAP point cloud renderings. As the

number of input image decreases (figure from left-to-right) the more the rendering output

becomes sparse.

4.3.2. Rendering Performance of NeRF

To compare the performance, the rendering at the central view point location is used. The

rendered performance is compared against the ground truth captured hologram images

in Figure 4.3. Using NeRF and NeRF--, three lion cubs dataset produced a rendering

result as seen in Figure 4.4. To have the best rendering results, the model parameters,

the number of training step (iterations), and resize factor is not modified when rendering

this holography image. The parameters are set as default, given by each author. By
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Figure 4.3. Ground Truth Images: (a) Original; (b) Cropped

Figure 4.4. NeRF & NeRF-- Rendering Results With Di↵erent Datasets

NeRF rendering results at the center location with (a) all, (b) column, and (c) row dataset.
NeRF-- rendering results at the center location with (d) all, (e) column, and (f) row dataset.

default, the resize ratio of NeRF and NeRF-- is 8 and 4, respectively. Thus, the resulted

rendering image has a dimension of 720⇥480 and 1440⇥960, from the original input image

dimension of 5760⇥3840. This resizing factor will be revisited later when performing the

quantitative analysis.

As briefly discussed in Figure 4.2, NeRF and NeRF-- rendering result also demonstrate

the similar trend. As the number of image samples decrease, the quality of rendering also
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decreases. This is a nature of machine learning –the more the sample provided, the model

will less likely be biased, and produce a prolific model after training. Surprisingly, both

NeRF and NeRF-- resulted in a decently-interpolated central view point, even without

having the information (the input data) of center column or row.

In the visual comparison aspect, NeRF outperforms NeRF--. This is due to the exis-

tence of camera parameters obtained via COLMAP in NeRF. With the camera parameters

computed in mathematical way, COLMAP has more robust camera parameters than the

trained parameters obtained through joint optimization in NeRF--. This can be evalu-

ated by comparing the location of the holography panel in the ground truth versus the

rendered result. This also a↵ected the ‘center’ location of the view point. The rendering

results of NeRF, at the fixed view point located in the center, is relatively more accurate

than the one of NeRF--. NeRF-- initializes the camera parameter by assuming that the

camera principle points are the midpoint of the pixel of the image, and this assumption

may lead to the inaccurate optimization of camera parameters.

These NeRF and NeRF-- rendering results are best viewed as videos, so it is recom-

mended to view the supplementary full-rendered results for visually convincing compar-

isons -i.e. continuous rendering results in various view points even without some images.

The supplementary videos can be viewed here: https://youtube.com/playlist?list=

PLCVV8jHcNib2x8O69JZgkum6l1j63_K2V.

The synthesized rendering results need to be evaluated in mathematical way as dis-

cussed in Section 4.2. Before the computation step, the preprocessing step is taken first.

Since the resizing factors are di↵er by the rendering method, the ground truth image has

resized into its 1
8 , and NeRF-- renderings have resized into its 1

2 , to match the image

https://youtube.com/playlist?list=PLCVV8jHcNib2x8O69JZgkum6l1j63_K2V
https://youtube.com/playlist?list=PLCVV8jHcNib2x8O69JZgkum6l1j63_K2V
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Table 4.2. Quantitative Analysis of Rendering at Center View Point

Metrics
All Dataset Column Dataset Row Dataset
NeRF NeRF-- NeRF NeRF-- NeRF NeRF--

MSE # 37.9767 44.1436 38.7402 45.9238 38.6376 47.3010
PSNR " 32.3356 31.6821 32.2492 31.5104 32.2607 31.3821
SSIM " 0.6550 0.6136 0.6443 0.6013 0.6452 0.5877
LPIPS # 0.2511 0.3345 0.2514 0.3449 0.2472 0.3575

dimension with the NeRF result. The quantitative rendering result of the rendered holog-

raphy images of Figure 4.4 is stated in Table 4.2. Each of the 6 images are compared and

calculated against the ground truth image, which is taken in the central viewpoint. The

quantitative analysis show that NeRF outperforms NeRF--. For all dataset, MSE and

PSNR values are significantly less than those of NeRF--’s. In case of PSNR and SSIM,

NeRF’s values are greater than those of NeRF--’s. By considering that MSE and LPIPS

are better when the values are lower, while PSNR and SSIM are better with lower values,

NeRF results comply to all of these principles. The same trend presence here as well,

the more the dataset, the better the rendered result. Also, the aid of COLMAP camera

positions allowed NeRF to render the scene closer to the ground truth.

Since the quantitative comparison done in Table 4.2 includes the uninteresting region

(i.e. dark boundaries), the cropping of each rendered images are required for more accurate

comparison. To get the interested area (i.e. holography panel), the four corner boundaries

of ground truth and the rest of rendered images are required. Due to the usage of fiducial

markers provided by Agisoft instead of ArUco marker, the detection of markers and

cropping process cannot be fully automated but requires the manual verification step.

Thus, the center circle in fiducial markers are detected, instead of the whole fiducial

marker itself, and add an o↵set to obtain the four corners. In case of detecting markers
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Figure 4.5. Homorgraphy Transformation

Figure 4.6. Cropped NeRF & NeRF-- Rendering With Di↵erent Dataset

Cropped NeRF rendering at the center location with (a) all, (b) column, and (c) row dataset.
Cropped NeRF-- rendering at the center location with (d) all, (e) column, and (f) row dataset.

from rendered images, the manual validation of holography panel boundaries is required.

With these corners, the homography has applied to align the rendered image based on the

ground truth view. The example of the homography is demonstrated in Figure 4.5. In

this example, the original holography panel in rendered view moved slightly up to match

with the holography panel in ground truth image.
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Table 4.3. Quantitative Analysis of Interest-Area at Center View Point

Metrics
All Dataset Column Dataset Row Dataset
NeRF NeRF-- NeRF NeRF-- NeRF NeRF--

MSE # 54.1463 86.9383 54.0687 90.5415 63.4583 86.6946
PSNR " 30.7951 28.7386 30.8013 28.5623 30.1059 28.7509
SSIM " 0.6665 0.4795 0.6658 0.4608 0.6578 0.4627
LPIPS # 0.2323 0.4303 0.2426 0.4670 0.2346 0.4421

The homography-applied cropped rendered results can be found in Figure 4.6. These

cropped scenes are further analyzed with quantitative metrics as done for original rendered

scenes. The computation approach and methodology are the same, but does not involve

the resizing preprocessing. The resizing factors are already addressed in homography

process. The quantitative rendering results for the interested scenes are evaluated in Table

4.3. Compared to the analysis done in original scenes in 4.2, the SSIM values increase and

LPIPS value decrease in NeRF for all dataset. This indicates that NeRF interplolates the

scene well, in terms of human perceptual way –both SSIM and LPIPS metrics evaluate

images in human-perceptual way. The other metrics which merely compares the pixel

values, reported degraded values compared to the one from fully reconstructed scenes.

NeRF-- reported worse scores in every dataset and in all metrics. The poor performance

of NeRF-- can be correlated to the aforementioned limitations; it is limited to render the

frontal scene only, since the model has to estimate and optimize the camera parameters

from scratch. The lack of images due to the sub-sampled datasets might inaccurately

optimize camera parameters with the discontinuous camera trajectory. This phenomena

may yield another limitation, which is less-precisely rendered novel views.

Compared to other NeRF rendering experiments conducted by Mildenhall et al. (2020),

the di↵erences between measurements of holography reconstruction is minute [23]. Table
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Table 4.4. NeRF Quantitative Measurement Results [23]

Metrics Di↵use Synthetic 360� Realistic Synthetic 360� Real Forward-Facing

PSNR " 40.15 31.01 26.50
SSIM " 0.991 0.947 0.811
LPIPS # 0.023 0.081 0.250

4.4 conveys NeRF results driven from other types of datasets. Note that these values

are adapted from Mildenhall et al. Although the captured holography images are lack of

density in its surface, the evaluation result turned out well.

4.4. Limitations

There is one significant limitation I investigated in holography rendering with neural

radiance field representation. Even considering the resizing factor of 8 and 4, the ren-

dered result of both NeRF and NeRF-- failed to produce a high-dimension image. The

assumption here is the existence of low-pass filter within the NeRF neural network model.

To overcome this low-quality scene output, the experiment was done with adjusting the

resizing factor into 1 and 2. However, due to the limitation of system memory (RAM),

the operating system “kills” the process due to over-claiming system resources. This is

happening because multiple high-quality images are getting loaded and allocated to the

system memory at the same time.

Since the rendering experiment itself failed in case of train and polaroid dataset,

quantitative measures cannot be applied to those. Train dataset firstly fed into COLMAP

pipeline to acquire the camera position. Since rendering the interest area is critical,

the holography panel area is cropped. This cropped train images are used to train the

NeRF model, along with the camera positions obtained via raw and uncalibrated train

images. The rendering failed, and it is illustrated in Figure 4.7, along with the COLMAP
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Figure 4.7. COLMAP from Raw Train Dataset & NeRF With Cropped
Train Dataset

(a) COLMAP Front; (b) COLMAP 45�; (c) Train Cropped NeRF Rendering

Figure 4.8. NeRF-- With Raw, Calibrated, and Cropped Train Dataset

(a) Raw Dataset; (b) Calibrated Dataset; (c) Calibrated & Cropped Dataset

output from the raw images. Although the camera lens and the holography panels are

located in a parallel plane, the COLMAP result shows that the camera views are not

aligned. This might also be a reason for the failure. Since NeRF failed, NeRF-- pipeline

was executed in multiple train dataset. The three dataset that are used here is: raw

dataset, calibrated dataset which contains holography panel with fiducial markers, and

calibrated dataset only with the innner-holography panel region. The view synthesis is

portrayed in Figure 4.8. Among these view synthesis, the only successful rendering was
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produced by the raw train dataset. Although this view synthesis with the raw data was

able to depict the appropriate depth reconstruction, the interest area is only a small

portion out of the whole image. Once the inner-holography area gets cropped for the

quantitative analysis, the quality of image became deteriorated, and result in a blurry

image. This raw synthesis is thus not appropriate for the quantitative evaluations. The

view synthesis with calibrated and cropped dataset are problematic. As seen in the

rendering, the scene gets warped and the original shape of train gets ruined. The warped

region is the back side of train and the bottom-front part, underneath train, for (b)

and (c) in Figure 4.8, respectively. These failed rendering results are best viewed as

videos, so it is recommended to view the supplementary full-rendered video here: https:

//youtube.com/playlist?list=PLCVV8jHcNib3maFLJ1xNK-xh1M_MonHtX.

Although polaroid dataset produced a decent spiral-COLMAP output, both NeRF

and NeRF-- failed to render the novel views. From the original dataset, the central region

is cropped uniformly all over the images. The intention behind was maximizing the

interest region. Afterwards, the experiment firstly ran with the dataset will all images.

However, it failed to produce scenes, so some outer camera trajectories are removed,

based on the COLMAP result. The reasoning behind was to avoid any potential aperture

occlusion. The example of aperture occlusion is depicted in Figure 4.9. With the sub-

sampled dataset, both NeRF and NeRF-- pipeline were executed. The rendered views are

illustrated in Figure 4.10. For both NeRF and NeRF--, the rendering failed and produced

a black output. The best inference can be made here is the input images are too dark;

less-varying pixel values may yield failure in training the NeRF model, since it is di�cult

for the neural network to capture the features.

https://youtube.com/playlist?list=PLCVV8jHcNib3maFLJ1xNK-xh1M_MonHtX
https://youtube.com/playlist?list=PLCVV8jHcNib3maFLJ1xNK-xh1M_MonHtX
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Figure 4.9. Aperture Occlusion In Polaroid Dataset

(a) Normal Image; (b) Aperture Occlusion

Figure 4.10. NeRF & NeRF-- Rendering With Polaroid Datasets

All polaroid dataset produces (a) COLMAP, (b) NeRF, and (c) NeRF--.
Inner polaroid dataset produces (d) COLMAP, (e) NeRF, and (f) NeRF--.
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4.5. Future Work

As discussed, train dataset has failed to reconstruct the COLMAP precisely. The

parallel relationship between the camera lens and view points are not reflected. Also, the

cropped images’ synthesized views are warped. Further research is needed to decompose

the reasons of the failure behind. In case of polaroid dataset, it failed to render views

although acquiring the camera parameters via COLMAP was done successfully. Thus,

another further investigations are needed.

In order to analyze the interesting region in a better way and with many more rendered

results, having a universally-used marker system is required. This will allow automatic

marker detection with a Python library, yet only require a simple o↵set to compensate

for the point where the markers are detected. After this, we can easily get the boundary

of holography panel to crop to this area-of-interest.

The NeRF network needs to be further investigated to avoid producing low-quality

reconstructed scenes. The two recommendations can be made here. First, run the network

with a higher configuration RAM settings, so that the resizing factor can be minimized

as much as possible. Another recommendation is re-structuring the NeRF neural network

to get rid of the low-pass filter.

Yet, it is still challenging to render only the inner area of holography panel. Further

research is needed to enhance the quality of rendering as well as minimize the free space.

Minimizing this boundary area may also lead to a reduction in computation time and

enhance the e�ciency in training step.
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CHAPTER 5

Conclusion

This paper analyzes the performance of two rendering approaches, with and without

COLMAP: NeRF and NeRF--. The multi-mode quantitative analysis performed supports

the claim that the neural radiance field representation of view reconstruction is able to

accurately interpolate the photographed hologram images. The di↵erence between the

captured hologram images and real-capture images is negligible, by considering that the

surface of the captured hologram images are not as continuous as real-capture images.

The contribution of this thesis is twofold. First, a holography preservation method

of sparse image capture can be substantially improved by applying neural radiance fields

for novel view synthesis. Second, I confirmed the quality and validity of this method

by multi-dimensional assessment of the performance in mathematical approach with four

di↵erent metrics. I believe that this work makes progress towards a trustworthy, long-term

hologram preservation pipeline.
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APPENDIX A

Holography Renderings With Di↵erent Methods

In this section, the result of holography renderings from di↵erent methods will be

covered, to visually compare the rendered against the rendered view with neural radiance

field. Note that the rendered views are adapted from the original corresponding authors.

Figure A.1. Holography Rendering Result by Lucente et al. [20], Nishi et
al. [24], and Matsushima et al. [22]

(1) Image with three cut cubes located at di↵erent depths, photographed from di↵erent view
locations. Top: center. Left: left. Right: right.
(2) Photographs of optical reconstructions of The Metal Venus I.
(3) Optical reconstruction of the polygon-based high-definition computer hologram which
rendered by texture mapping and Gouraud shading.
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Figure A.2. Holography Rendering Result by Chen et al. [6], Zhang et al.
[40], and Walton et al. [36]

(1) Reconstructed holography images. (a) target image as rendered by computer graphics; (b)
holographic reconstruction with a single plane; (c) and (d) holographic reconstruction with
depth information, around the head and the tail, respectively. (b)-(d) are projected on a
di↵usive screen.
(2) Holography optical reconstruction results with a following viewing directions: (a) left, (b)
center, and (c) right.
(3) The holography of MIT Engine no. 9 copy rendered with Agisoft Metashape Professional
Edition.
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APPENDIX B

Holography Image Datatsets

In this section, the list of captured data that are used in the experiment is discussed.

There are three big categories: lion cubs, train, and polaroid. This name indicates the

di↵erent holography images. Each of these datasets are further sub-sampled to discover

meaningful rendering results.

Table B.1. List of Holography Image Dataset

Name Dimension Sample Description

Lion Cubs All 5760⇥ 3840 60 All captured raw data
Lion Cubs Column 5760⇥ 3840 48 All captured data without central columns
Lion Cubs Row 5760⇥ 3840 40 All captured data without central rows
Train Raw 3840⇥ 5760 176 All captured data
Train Calibrated 1064⇥ 1136 176 Raw data with calibration & registration
Train Cropped 943⇥ 861 176 Cropped data after calibration
Polaroid All 2500⇥ 2500 100 All captured raw data
Polaroid Inner 2500⇥ 2500 47 All captured data without occluded ones
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