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Abstract

While it is known that all Boolean function complexity measures are equivalent up to
polynomial factors, some exact relationships are unknown and separations still exist.
This project focuses on the suboptimal degree upper bound on sensitivity, and begins by
reproving the best known separation, s(f)  deg(f)2. The Kushilevitz Boolean function
provides the largest known gap between the sensitivity of a function and its degree:
s(f) = deg(f)1.63. Creating a function with a larger gap would not only tighten the
bound between sensitivity and degree, but also between other complexity measures that
are bounded by the Kushilevitz function. This project reasons about creating similar
functions which have high sensitivity but low degree. By defining well balanced sets,
this project gives a framework to the properties such a function might possess. Using
what is learned about well balanced sets, a constrained exhaustive search over Boolean
functions with n = 10, deg(f) = 4, s(f) = n reveals what properties such a Boolean
function might have, should one exist. Such a Boolean function would provide a larger
gap between the sensitivity and degree: s(f) = deg(f)1.66. Using results from the search,
a n = i, deg(f) = 4, s(f) = i function is presented for i 2 {7, 8, 9}. This project concludes
with a discussion of maximal binary constant weight codes as a source for generating well
balanced sets.

Notation

[n] The set {1, 2, . . . , n}�
[n]
k

�
The set of all subsets s ✓ [n] with size k.�

n

k

�
The Binomial Coe�cient indexed at n, k.

�
n

k

�
= n!

k!(n�k)!

f : {0, 1}n ! {0, 1} A function that maps elements from {0, 1}n to 0 or 1
|x| Hamming weight (number of 1’s) of binary string x 2 {0, 1}n.
f=k =

P
|S|=k

f̂(S)�S The function f with terms with degree 6= k zeroed out.

fk =
P

|S|k
f̂(S)�S The function f with terms with degree > k zeroed out.
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Chapter 1

Introduction

1.1 Boolean Function Complexity Measures

A fundamental model for computational problems are Boolean functions, a function f :
{0, 1}n ! {0, 1} which given some n bit binary string, outputs 0 or 1. Boolean functions
are a useful model for decision problems in which the answer is either yes or no. Examples
of such functions include AND, Dictator, and Parity. The AND Boolean function outputs
1 if all of the input bits are 1, and outputs 0 if any of them are 0. The Dictator Boolean
function outputs the first bit of the input. The Parity function outputs 1 if there are an
odd number of 1’s in the input and 0 if there are an even number of 1’s.

A central measure of complexity for a Boolean function is its query complexity, which
quantifies the complexity of the function by analyzing its resource consumption with
respect to input use. Specifically, the Deterministic Query Complexity, D(f), of a Boolean
function f is the minimum number of queries an optimal deterministic algorithm that
computes f needs to make on any input string to compute the output.

We can imagine that non-deterministic algorithms that also compute f , such as ran-
domized or quantum algorithms, query the input strings with di↵erent behavior. A ran-
domized algorithm might query the input string, or choose to make a random decision,
while a quantum algorithm uses quantum queries. Therefore, we also define Random-
ized, and Quantum Query Complexity, denoted as R(f) and Q(f), respectively, as the
minimum number of queries that an optimal randomized, and quantum algorithm that
computes f needs to make on any input string in order to compute an output [BE90].
Understanding the relationship between query complexity measures under these di↵er-
ent models of computation could help us understand their comparative strengths across
problem classes.

To help compare D(f), R(f), and Q(f) to each other, several other measures of
Boolean function complexity are used. Such Boolean complexity measures include sensi-
tivity, block sensitivity, degree, and approximate degree, among others. These measures
help bound the deterministic, randomized, and quantum query complexities. For exam-
ple, it has been shown that D(f)  bs(f)deg(f)  O(Q(f)4), where bs(f) is the block
sensitivity of f , and deg(f) is the degree of f [ABDK+21b]. While it is known that these
complexity measures are all polynomially related to each other, some exact relationships
are still unknown, and separations still exist [BE90]. Table 1 from [ABDK+21b] depicts
the most up-to-date separations between these measures. Tightening some of the gaps
between these complexity measures would ultimately lead to stronger guarantees between
the query complexities under the di↵erent models of computation.
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1.2 Sensitivity and Degree

This thesis focuses on the polynomial separation between sensitivity and degree. The
sensitivity of a Boolean function, s(f), is the maximum number of bits that can be
individually flipped which would change the output bit. For example, the AND function
is fully sensitive, with s(f) = n, since a bit flip on any of the input bits will change the
output of the function for the input 1, 1, . . . , 1.

It is known that every Boolean function can be represented as a unique multilinear
polynomial [O’D14]. The degree of a function deg(f) is the degree of the unique mul-
tilinear polynomial that represents the Boolean function f exactly. The degree of the
AND function is deg(f) = n, since the polynomial representation of the AND function
is x1 · x2 · · · · · xn, where xi is the value of the ith bit of the input string.

Currently, Huang [Hua19] and Nisan [NS94] have proven the best-known separations
between the sensitivity and the degree for all Boolean functions f :

deg(f)0.5  s(f)  deg(f)2

Huang [Hua19] was able to prove that for all Boolean functions, deg(f)0.5  s(f), and
since the AND-of-ORs Boolean function has deg(f)0.5 = s(f), the lower bound is optimal.
Nisan [NS94] shows by approximation theory that there does not exist a Boolean function
for which s(f) > deg(f)2. It is not known whether there exists a Boolean function for
which s(f) = deg(f)2, and the Boolean function with the largest separation so far is the
Kushilevitz function, with s(f) = deg(f)1.63. To create this separation, Eyal Kushilevitz
constructed a Boolean function f : {0, 1}6 ! {0, 1} with s(f) = 6 and deg(f) = 3, to
create a power separation of log(6)/ log(3) = 1.63. This function was found in [HKP10]
and can be found in Chapter 3 of this thesis.

With this relationship in mind, this thesis aims to construct and prove a tighter up-
per bound on sensitivity by degree by constructing a Boolean function with a larger gap
between its sensitivity and degree than the Kushilevitz function. Constructing such a
Boolean function would lead to a closer indication of the true polynomial separation be-
tween sensitivity and degree. This result would also tighten the degree upper bound on
communication complexity C(f), randomized communication RC(f), and block sensitiv-
ity bs(f), all of which are bounded by the Kushilevitz function [ABDK+21a].

1.3 Thesis Outline

This thesis begins by reproving the best known upper bound on sensitivity by degree in
Chapter 2. Then, the Kushilevitz function is reviewed in Chapter 3, and its degree and
sensitivity are proved. In Chapter 4, the notion of well balanced subsets are introduced.
A subset S ✓

�
[n]
m

�
is said to be lower well balanced if every subset of [n] of size i < m is

included the same amount of times in S. A subset S ✓
�
[n]
m

�
is said to upper well balanced

if elements of S are included in every subset of [n] of size i > m the same amount of
times. Using properties of well balanced subsets that are proved in Chapter 4, Chapter
5 reviews an exhaustive search conducted over Boolean functions f : {0, 1}i ! {0, 1}
for i 2 {7, 8, 9, 10} that have upper well balanced degree 3 terms and degree 4 terms
and that have deg(f) = 4, s(f) = i. Using results from this search, a Boolean function
f : {0, 1}7 ! {0, 1} with s(f) = 7 and deg(f) = 4 is constructed. Chapter 6 reviews
strategies to construct upper well balanced subsets, including the use of maximal binary
constant weight codes.
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Chapter 2

Sensitivity vs Degree

Sensitivity and Degree are two complexity measures for Boolean functions. For any
Boolean function f , we know that its sensitivity is less than its degree squared. The
following chapter formally defines sensitivity, degree, and reproves the degree upper bound
on sensitivity.

2.1 Sensitivity

Let f : {0, 1}! {0, 1} be a Boolean function, and let x 2 {0, 1}n be a binary string. We
say a bit i is sensitive for x if the f(x) 6= f(x� i), where i is the n-bit string that is 1
at bit i and 0 otherwise. The number of sensitive bits for x is called the sensitivity of x,
denoted by sx(f). We define the sensitivity of function f as s(f) = maxx2{0,1} sx(f).

Example 2.1.1. Let f : {0, 1}n ! {0, 1} be the AND function on n bits. We note that
for x = {1, 1, . . . , 1}, f(x) = 1. Furthermore, we note that f(x) 6= f(x � i) for all
i 2 {1, . . . , n}. We see then that sx(f) = n. It follows that the sensitivity of the AND
Boolean function is n.

2.2 Degree

A polynomial q 2 R[x1, . . . , xn] is said to represent the function f : {0, 1} ! {0, 1} if
q(x) = f(x) for all x 2 {0, 1}n. As mentioned in the introduction, it is known that
every Boolean function has a unique multilinear polynomial expansion called its Fourier
expansion [O’D14]. The degree of a function f is defined as deg(f) = max{|S| : |f̂(S)| 6=
0}, where f̂(S) is the coe�cient of S in f .

Example 2.2.1. Let f : {0, 1}n ! {0, 1} be the AND function on n bits. The Fourier
expansion of f is:

f(x1, . . . , xn) =
nY

i=1

xi

We see that |f̂(S)| 6= 0 only for S = {1, . . . , n}. It follows that the degree of the AND
function is n.
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2.3 Spectral Sensitivity

Spectral Sensitivity is a Boolean function complexity measure which is used to bound
sensitivity and degree. Thus we provide the definition here.

Let f : {0, 1}! {0, 1} be a Boolean function. The sensitivity graph of f , Gf = (V,E)
is a subgraph of the Boolean hypercube, where V = {0, 1}n, and E = {(x, x�ei) 2 V ⇥V :
i 2 [n], f(x) 6= f(x� ei)}. In other words, Gf is the subgraph of the Boolean hypercube
such that an edge exists between two vertices v1 and v2 if and only if f(v1) 6= f(v2). Let
Af be the adjacency matrix of the graph Gf . We define the spectral sensitivity of f as
�(f) = ||Af ||.

2.4 Sensitivity vs. Degree Proof

The current best known upper bound on sensitivity by degree is reproved below for
completeness. We know from [ABDK+21b] that

p
s(f)  �(f)  deg(f). (2.1)

We reprove the bounds below. We start with the lower bound.

Theorem 2.4.1. For all total Boolean functions f : {0, 1}n ! {0, 1},
p

s(f)  �(f).

Proof. Consider any input x with sensitivity s(f). This means x has s(f) neighbors x0 on
the hypercube such that f(x) 6= f(x0). The sensitivity graph restricted to these s(f) + 1
vertices is a star graph centered at x. The spectral norm of the adjacency matrix of a
star graph on k + 1 vertices is

p
k. Note that for any graph, the norm of a subgraph is

less than the norm of the original graph, since the adjacency matrix of the subgraph is
the adjacency matrix of the original graph with some entries zeroed out. It follows that
the spectral norm of Af is lower bounded by that of the star graph centered at x, sop

s(f)  �(f).

We now prove the upper bound.

Theorem 2.4.2. For all total Boolean functions f : {0, 1}n ! {0, 1}, �(f)  deg(f).

Proof. The proof is split into 4 lemmas. We begin with the first lemma which expresses
�(f) in a way that relates it to a polynomial representing f .

Lemma 2.4.3. Let f : {0, 1}n ! {0, 1} be a total Boolean function and g : {0, 1}n !
{�1, 1} be defined as g = 1�2f . Let diag(g) be the diagonal matrix such that diag(g)xx =
g(x). Then the spectral sensitivity �(f) = maxv:||v||=1 vT (RXR � X)v, where R =
Hdiag(g)H, and H = Hn 2 {�1, 1}2n⇥2n is the Hadamard matrix.

Proof. By definition, we know know that �(f) = ||Af ||. Since Af is an adjacency matrix,
it is symmetric, and so �(f) is equal to the max eigenvalue of Af . �(f) can then be
expressed as �(f) = maxv:||v||=1 |vTAfv|. Furthermore, Gf is a bipartite graph, since
there are no edges between any pair of vertices with even hamming weight, and there are
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no edges between any pair of vertices with odd hamming weight. This means that the
spectrum of Af is symmetric about 0, and so �(f) = maxv:||v||=1 vTAfv [GR01].

�(f) = max
v:||v||=1

vTAfv

= max
v:||v||=1

vTHAfHv, (2.2)

where H = Hn 2 {�1, 1}2n⇥2n is the Hadamard matrix. The second line uses the fact
that HT = H and ||Hv|| = ||v||. Let AH be the adjacency matrix of the hypercube
graph, which is defined as the graph (V,E) where V = {0, 1}n and E = {(x, x � ei) 2
V ⇥ V |x 2 {0, 1}n and i 2 [n]}. Af can be expressed as

2Af = AH � diag(g)AHdiag(g), (2.3)

where g = 1�2f is the function f mapped on the set {�1, 1}, and diag(g) is the diagonal
matrix such that diag(g)xx = g(x). Equation 2.3 follows from the right hand side equaling
1� g(x)g(y) for entries (x, y) with an edge in the Boolean hypercube.

It is known that H diagonalizes AH , and that AH = H(nI � 2X)H, where I is the
identity matrix and X is the matrix such that Xxx = |x|.

Substituting equation 2.3 into equation 2.2, we get

�(f) = max
v:||v||=1

1

2
vTH(AH � diag(g)AHdiag(g))Hv,

= max
v:||v||=1

1

2
vT (HAHH �Hdiag(g)AHdiag(g)H)v,

= max
v:||v||=1

1

2
vT (nI � 2X �Hdiag(g)H(nI � 2X)Hdiag(g)H)v,

= max
v:||v||=1

vT (�X +Hdiag(g)HXHdiag(g)H)v,

= max
v:||v||=1

vT (RXR�X)v,

where R = Hdiag(g)H.

We note that R is a symmetric, orthonormal matrix. The following lemma proves
that Rxy = 0 if |x� y| > deg(g) = deg(f).

Lemma 2.4.4. Let g : {0, 1}n ! R have real degree d and let R = Hdiag(g)H. Then for
all x, y 2 {0, 1}n, Rxy = ĝ(x�y), where for all z 2 {0, 1}n, ĝ(z) = 1

2n

P
y2{0,1}n(�1)hz,yig(y).

Consequently, Rxy = 0 if |x� y| > d.

Proof. By matrix multiplication, we can rewrite Rxy as

Rxy =
1

2n

X

x2{0,1}n
(�1)hx,zi(�1)hz,yig(z) = 1

2n

X

z2{0,1}n
(�1)hx�y,zig(z) = ĝ(x� y), (2.4)

where the last equality follows by definition of Fourier coe�cients [O’D14]. Since g has
degree d, all Fourier coe�cients ĝ(z) with |z| > d are 0. It follows that if |x� y| > d, we
have Rxy = ĝ(x� y) = 0.
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Recall that �(f) = maxv:||v||=1 vT (RXR�X)v. By definition of matrix multiplication,
vT (RXR�X)v can be expressed as

vT (RXR�X)v =
X

x2{0,1}n
|x|(Rv)2

x
�

X

x2{0,1}n
|x|v2

x
=

nX

i=1

ici �
nX

j=1

jbj, (2.5)

where we define ci :=
P

x:|x|=i
(Rv)2

x
and bj :=

P
x:|x|=j

v2
x
. In order to upper bound

equation 2.5, the two summations must be compared. The following lemma shows that
the first summation is bounded above by the second summation when the bounds of
the summation are restricted. This is useful for the last lemma, which uses this fact to
complete the proof.

Lemma 2.4.5. Let R be a matrix with ||R||  1 satisfying Rxy = 0 when |x � y| > d.
For any vector v, define ci :=

P
x:|x|=i

(Rv)2
x
and bj :=

P
x:|x|=j

v2
x
. Then for any r 2

{d+ 1, . . . , n}, we have
nX

i=r

ci 
nX

j=r�d

bj (2.6)

Proof. By definition, we can express ci as

nX

i=r

ci =
X

y:|y|�r

(Rv)2
y
=
X

y:|y|�r

0

@
X

x2{0,1}n
Ryxvx

1

A
2

(2.7)

Define ⇧(�r) to be the diagonal projector that satisfies the following for any vector v:

(⇧(�r)v)x =

(
vx if |x| � r

0 otherwise
(2.8)

Since Ryx = 0 when |x � y| > d, we note that for x with |x| < r � d, Ryx = 0. We can
therefore express equation 2.7 as

nX

i=r

ci =
X

y:|y|�r

0

@
X

x2{0,1}n
Ryx⇧(�r�d)vx

1

A
2

=
X

y:|y|�r

�
R⇧(�r�d)v

�2
y

(2.9)

By relaxing the constraints on y, we have

nX

i=r

ci 
X

y2{0,1}n

�
R⇧(�r�d)v

�2
y
= ||R⇧(�r�d)v||2 (2.10)

We note that since ||R||  1, ||R⇧(�r�d)v||2  ||⇧(�r�d)v||2. By definition ||⇧(�r�d)v||2 =P
x:|x|�r�d

v2
x
:

nX

i=r

ci 
X

x:|x|�r�d

v2
x
,

nX

i=r

ci 
nX

j=r�d

bj, (2.11)

where the second line follows by definition. This completes the lemma.
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We now prove the final lemma which completes the proof for Theorem 2.4.2.

Lemma 2.4.6. Let R be a matrix with ||R||  1 satisfying Rxy = 0 when |x � y| > d.
For any unit vector v, we have

vT (RXR�X)v  d. (2.12)

Proof. Recall from equation 2.5 that

vT (RXR�X)v =
nX

i=1

ici �
nX

j=1

jbj, (2.13)

where ci :=
P

x:|x|=i
(Rv)2

x
and bj :=

P
x:|x|=j

v2
x
. We know from Lemma 2.4.5 that for any

r 2 {d+ 1, . . . , n},
nX

i=r

ci 
nX

j=r�d

bj, (2.14)

Summing over all r 2 {d+ 1, . . . , n}, this equation changes to:

X

r2{d+1,...,n}

nX

i=r

ci 
X

r2{d+1,...,n}

nX

j=r�d

bj, (2.15)

nX

i=d+1

(i� d)ci 
n�d�1X

j=1

jbj +
nX

j=n�d

(n� d)bj, (2.16)

where the second line follows after simplifying. Note that for any r 2 {1, . . . , d}, we have
nX

i=r

ci  1, (2.17)

since
P

n

i=r
ci 

P
n

i=0 ci = ||Rv||2  1 (recall ||R||  1 and ||v|| = 1). Summing over all
r 2 {1, . . . , d}, we have

X

r2{1,...,d}

nX

i=r

ci 
X

r2{1,...,d}

1, (2.18)

d�1X

i=1

ici +
nX

i=d

dci  d, (2.19)

where the second line follows after simplifying. Also note that for any k 2 {0, . . . , d� 1},
we trivially have

0 
nX

n�k

bj (2.20)

Summing over all k 2 {0, . . . , d� 1}, we have

0 
X

k2{0,...,d�1}

nX

n�k

bj, (2.21)


nX

j=n�d+1

(d� n+ j)bj (2.22)
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Combining equations 2.16, 2.19, and 2.22, we have

nX

i=d+1

(i� d)ci +
d�1X

i=1

ici +
nX

i=d

dci 
n�d�1X

j=1

jbj +
nX

j=n�d

(n� d)bj +
nX

j=n�d+1

(d� n+ j)bj + d,

nX

i=1

ici 
nX

j=1

jbj + d (2.23)

where the second line follows after simplifying. This shows that vT (RXR�X)v  d for
all unit vectors v.

We can now establish Theorem 2.4.2. From lemma 2.4.3, we know that �(f) =
maxv:||v||=1 vT (RXR � X)v, and from lemma 2.4.6 we know that for any unit vector,
vT (RXR�X)v  d = deg(g) = deg(f).

From equation 2.1, we get the best known upper bound on sensitivity by degree:

s(f)  deg(f)2. (2.24)
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Chapter 3

The Kushilevitz Function

In the previous chapter, we proved that s(f)  deg(f)2 for all Boolean functions f .
However, it is not known whether a Boolean function with s(f) = deg(f)2 exists, and
the function with largest separation between sensitivity and degree is the Kushilevitz
function. This chapter studies the family of Kushilevitz functions, and proves their
sensitivity and degree.

3.1 Definition

3.1.1 Kushilevitz Function

The Kushilevitz Function is the Boolean function fk : {0, 1}6k ! {0, 1} defined as fk =
g ⇧ g ⇧ · · · ⇧ g (k times), where g : {0, 1}6 ! {0, 1} is defined as:

g(x1, . . . , x6) =
6X

i=1

xi �
X

{i,j}2([6]2 )

xixj +
X

{i,j,k}2K

xixjxk (3.1)

and

K = {{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5},
{2, 3, 4}, {2, 3, 5}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}}.

Note that the Kushilevitz function leads to a family of functions by composition. Most
of this thesis studies f1 = g for simplicity.

3.1.2 Composition Function

For a Boolean function f : {0, 1}m ! {0, 1} and a Boolean function g : {0, 1}n ! {0, 1},
[HKP10] defines the composition function f ⇧ g on mn variables as follows:

(f ⇧ g)(x1, . . . , xmn) = f(g(x1, . . . , xn), . . . , g(xmn�n+1, . . . , xmn))

3.2 Sensitivity and Degree of the Kushilevitz Func-

tion

We give with proof, the values of s(fk) and d(fk) in order to show that s(fk) = d(fk)1.63.
This is the largest known separation between sensitivity and degree for Boolean functions.

11



Claim 3.2.1. s(fk) = 6k

Proof. A proof by induction is used:
Base Case: It is easy from Equation 3.1 see above that

f1(0, 0, 0, 0, 0, 0) = 0,

f1(x) = 1 for inputs x 2 {0, 1}6 with |x| = 1.

It follows that s(f1) = 6.
Induction: Assume that s(fn) = 6n, and that fn is fully sensitive on the input x =
(0, . . . , 0). We will show that fn+1 : {0, 1}6

n+1 ! {0, 1} has s(fn+1) = 6n+1.
We know that

fn+1(x1, . . . , x6n+1) = fn(f1(x1, . . . , x6), . . . , f1(x6n+1�5, . . . , x6n+1)| {z }
6n times

)

We know from the base case that on the input with all 0’s,

fn+1(0, . . . , 0) = fn(f1(0, . . . , 0), . . . , f1(0, . . . , 0)),

= fn(0, . . . , 0),

= 0

where the last equation follows from our assumption.
For inputs x = x1, . . . , x6n+1 2 {0, 1}6n+1

with hamming weight one, we know from the
base case that all but 1 of the inside f1 functions will evaluate to 0, and the f1 that takes
on the input that has the 1 bit will evaluate to 1. Thus,

fn+1(x1, . . . , x6n+1) = fn(x
0
1, . . . , x

0
6n), where |x0

1, . . . , x
0
6n | = 1

= 1

where the last equation follows from our assumption. This completes the proof.

Claim 3.2.2. deg(fk) = 3k

Proof. A proof by induction is used:
Base Case: It is easy from Equation 3.1 that deg(f1) = 3.
Induction: Assume that deg(fn) = 3n. We will show that fn+1 : {0, 1}6n+1 ! {0, 1} has
deg(fn+1) = 3n+1.
Let

fn(x1, . . . , x6n) =
X

S✓[6n],|S|3n

f̂n(S)
Y

i2S

xi (3.2)

be the Fourier expansion of fn. We note by assumption that for all S such that |S| > 3n,
f̂(S) = 0. We know that

fn+1(y1, . . . , y6n+1) = fn(f1(y1, . . . , y6), . . . , f1(y6n+1�5, . . . , y6n+1)| {z }
6n times

)

Substituting equation 3.2 into the equation above, we get

fn+1(y1, . . . , y6n+1) =
X

S✓[6n],|S|3n

f̂(S)
Y

i2S

f1(y6i�5, . . . , y6i), (3.3)

Where xi in equation 3.2 is determined by f1(y6i�5, . . . , y6i). Let S be the term for which
|S| = deg(fn) = 3n. We note from equation 3.3 that for each i 2 S, i is determined by a
Kushilevitz function f1, which has degree 3. Then the term S has degree 3n ⇥ 3 = 3n+1

in fn+1. This concludes the proof.
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It follows from Claims 3.2.1 and 3.2.2 that the power separation between sensitiv-
ity and degree of the Kushilevitz function is s(fk) = d(fk)log(6

k)/ log(3k) = d(fk)1.63. The
Kushilevitz function retains the largest known separation between sensitivity and de-
gree of any known Boolean function. It also provides the bounds between several other
complexity measures [ABDK+21a, NW95].

3.3 Kushilevitz Output Table

Recall from the notation section that f=3
1 is equal to the Fourier expansion of f1 where

terms with degree 6= 3 are zeroed out. Similarly, f2
1 is equal to the Fourier expansion of

f1, where terms with degree > 2 are zeroed out. These definitions help us analyze how
polynomials across the same degree a↵ect the output of a Boolean function.

For some input x = (x1, . . . , x6), the Kushilevitz function f1(x) can be represented by
the following output table:

|x| f2
1 (x) f=3

1 (x) f1(x)
0 0 0 0
1 1 0 1
2 1 0 1

3 0
0 10/20 times
1 10/20 times

0 10/20 times
1 10/20 times

4 �2 2 0
5 �5 5 0
6 �9 10 1

Where for inputs x with hamming weight 3,

f1(x) = 1 if x =110010, 110001, 101100, 101001, 100110, 011100,

011010, 010101, 001011, 000111,

f1(x) = 0 if x =001101, 001110, 010011, 010110, 011001, 100011,

100101, 101010, 110100, 111000

3.4 Orbit of the Kushilevitz Function

We note from the table above that for inputs with hamming weight 0, 1, 2, 4, 5, 6, the
value of Kushilevitz function depends only on the hamming weight of the input, and not
on the permutation of the input bits. The Kushilevitz function f1 is symmetric for all
hamming weights but 3.

In order to more fully understand the structure of the Kushilevitz f1 degree 3 terms,
the orbit of the Kushilevitz function is computed with respect to the symmetric group
S6 in order to find all Boolean functions isomorphic to f1. O’Donnell [O’D14] defines a
Boolean function g : {0, 1}n ! {0, 1} to be isomorphic to f if g = f⇡ for some ⇡ 2 Sn.

Claim 3.4.1. Let S6 · f1 = {� · f1 = f1(x�(1), . . . , x�(6))|� 2 S6} be the orbit of f1 when
acted on by the symmetric group S6. |S6 · f1| = 12, and the degree-3 terms of the 12
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functions are listed below.

{{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}
{{1, 2, 3}, {1, 2, 4}, {1, 3, 6}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}}
{{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 4, 5}, {3, 5, 6}}
{{1, 2, 3}, {1, 2, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {2, 3, 4}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 5, 6}}
{{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5}, {2, 4, 5}, {2, 4, 6}, {3, 4, 6}, {3, 5, 6}}
{{1, 2, 3}, {1, 2, 6}, {1, 3, 5}, {1, 4, 5}, {1, 4, 6}, {2, 3, 4}, {2, 4, 5}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}}
{{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 6}, {1, 5, 6}, {2, 3, 5}, {2, 3, 6}, {2, 4, 6}, {3, 4, 5}, {4, 5, 6}}
{{1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 3, 4}, {2, 3, 6}, {2, 5, 6}, {3, 4, 5}, {4, 5, 6}}
{{1, 2, 4}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 5, 6}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}}
{{1, 2, 4}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 5, 6}, {3, 4, 6}, {4, 5, 6}}
{{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 4, 6}, {2, 3, 4}, {2, 3, 6}, {2, 4, 5}, {3, 5, 6}, {4, 5, 6}}
{{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}}

Proof. The following algorithm was used to determine the orbit:

Algorithm 1 Algorithm that computes all Boolean functions isomorphic to the Kushile-
vitz function
Require: K  Kushilevitz deg 3 terms
1: n {1, 2, 3, 4, 5, 6}
2: perms P (n, 6) . List of size 720
3: orbit {K}
4: for perm 2 perms do

5: deg three terms permute(K, perm)
6: if deg three terms /2 orbit then
7: orbit.append(deg three terms)
8: end if

9: end for

10: return orbit

The orbit of the Kushilevitz function generates all functions isomorphic to the Kushile-
vitz function. These functions are useful in order to recognize patterns between their
structures, which helps to better understand the Kushilevitz function. The next chapter
introduces a new class of subsets which formalizes such properties found across the 12
subsets above.

14



Chapter 4

Well Balanced Sets

4.1 Introduction

Note from the table in Section 3.3 that for any pair of inputs with the same hamming
weight greater than 3, the output of the Kushilevitz function degree 3 terms, f=3

1 (x), is
the same. This means that the number of degree 3 terms of the Kushilevitz function that
are included in any permutation of bits with the same hamming weight are the same.

The following chapter formalizes the notion of such subsets S ✓
�
[n]
m

�
which are “well

balanced” with respect to their representation in every subset of [n] of size i 6= m.
Learning more about the properties and structure of the Kushilevitz degree 3 terms helps
to understand how the Kushilevitz function retains such a large separation between its
sensitivity and degree. Furthermore, creating subsets that have similar properties to the
Kushilevitz degree 3 terms could help in the construction of a Boolean function with
larger separation.

4.2 Lower Well Balanced Subsets

We begin the chapter by defining lower well balanced subsets, which is a subset S ✓
�
[n]
m

�

such that every subset of [n] of size i < m is included the same amount of times in S.
We give trivial examples of lower well balanced subsets (S = ; and S =

�
[n]
m

�
), then show

more interesting examples.

4.2.1 Definition and Examples

Definition 4.2.1. A subset S ✓
�
[n]
m

�
is level i lower well balanced, where i 2 {1, . . . ,m�

1}, if for every t 2
�

[n]
m�i

�
, |{s 2 S|t ✓ s}| is the same for all t, which we denote by Xm,i.

Remark 1. The set S = ; ✓
�
[n]
m

�
is level 1 lower well balanced, since for every t 2

�
[n]

m�1

�
,

|{s 2 S|t ✓ s}| = 0.

Remark 2. The set S =
�
[n]
m

�
is level 1 lower well balanced, since for every t 2

�
[n]

m�1

�
,

|{s 2 S|t ✓ s}| = n�m+ 1.

We call the sets S = ; and S =
�
[n]
m

�
trivial lower balanced subsets.
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Example 4.2.2. The degree 3 terms S ✓
�
[6]
3

�
of the Kushilevitz function f1 : {0, 1}6 !

{0, 1} are level 1 lower well balanced, since for every t 2
�
[6]
2

�
, |{s 2 S|t ✓ s}| = X3,1 = 2.

The degree 3 terms S ✓
�
[6]
3

�
of the Kushilevitz function are as follows:

S = {{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5},
{2, 3, 4}, {2, 3, 5}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}}.

The table below shows {s 2 S|t ✓ s} for every t 2
�
[6]
2

�
:

t 2
�[6]

2

�
{s 2 S|t ✓ s}

{1, 2} {1, 2, 5}, {1, 2, 6}
{1, 3} {1, 3, 4}, {1, 3, 6}
{1, 4} {1, 3, 4}, {1, 4, 5}
{1, 5} {1, 2, 5}, {1, 4, 5}
{1, 6} {1, 2, 6}, {1, 3, 6}
{2, 3} {2, 3, 4}, {2, 3, 5}
{2, 4} {2, 3, 4}, {2, 4, 6}
{2, 5} {1, 2, 5}, {2, 3, 5}
{2, 6} {1, 2, 6}, {2, 4, 6}
{3, 4} {1, 3, 4}, {2, 3, 4}
{3, 5} {2, 3, 5}, {3, 5, 6}
{3, 6} {1, 3, 6}, {3, 5, 6}
{4, 5} {1, 4, 5}, {4, 5, 6}
{4, 6} {2, 4, 6}, {4, 5, 6}
{5, 6} {3, 5, 6}, {4, 5, 6}

Example 4.2.3. The subset S = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}} ✓�
[6]
3

�
is level 2 lower well balanced, since for every t 2

�
[6]
1

�
, |{s 2 S|t ✓ s}| = X3,2 = 3.

The table below shows {s 2 S|t ✓ s} for all t 2
�
[6]
1

�
:

t 2
�[6]

5

�
{s 2 S|t ✓ s}

{1} {1, 2, 3}, {1, 2, 4}, {1, 2, 5}
{2} {1, 2, 3}, {1, 2, 4}, {1, 2, 5}
{3} {1, 2, 3}, {3, 4, 6}, {3, 5, 6}
{4} {1, 2, 4}, {3, 4, 6}, {4, 5, 6}
{5} {1, 2, 5}, {3, 5, 6}, {4, 5, 6}
{6} {3, 4, 6}, {3, 5, 6}, {4, 5, 6}

The following claim shows that a level i lower well balanced subset S ✓
�
[n]
m

�
is also

level k lower well balanced for k > i. This claim is useful because it determines how
many times any subset of [n] of size m� k is included in S, as a function of Xm,i.

Claim 4.2.4. Let S ✓
�
[n]
m

�
be a level i lower well balanced subset and let k be an integer

such that i + 1  k  m. Then for every t 2
�

[n]
m�k

�
, |{s 2 S|t ✓ s}| = Xm,k =

�
k

i

��1�n�m+k

k�i

�
Xm,i. This implies that S is a level k lower well balanced subset.

Proof. Fix a t 2
�

[n]
m�k

�
. Define L :=

�
l 2

�
[n]
m�i

�
|t ✓ l

 
. If follows that |L| =�

n�(m�k)
(m�i)�(m�k)

�
=
�
n�m+k

k�i

�
. For each l 2 L, define Sl := {s 2 S|l ✓ s} to be the set
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of elements in S that contain l. Define SL := [l2LSl to the set of elements in S that
contain some l 2 L. It follows directly that Xt =

��SL

��.
The Principle of Inclusion Exclusion states that for finite sets A1, . . . , An,
�����

n[

i=1

Ai

����� =
nX

i=1

��Ai

���
X

1i<jn

��Ai\Aj

��+
X

1i<j<kn

��Ai\Aj\Ak

���· · ·+(�1)n+1
��A1\· · ·\An

��.

Applied to SL, we get:

Xt = |SL| =

�����
[

l2L

Sl

����� =
X

l2L

��Sl

���
X

{l1,l2}✓L

��Sl1 \ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 \ Sl2 \ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 \ · · · \ Sl|L|

��.

Note that by definition, for all l 2 L, |Sl| = Xm,i :

Xt =

✓
n�m+ k

k � i

◆
Xm,i �

X

{l1,l2}✓L

��Sl1 \ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 \ Sl2 \ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 \ · · · \ Sl|L|

��.

Define l,s : L⇥ S ! {0, 1} such that l,s = 1 if and only if l ✓ s.

Xt =

✓
n�m+ k

k � i

◆
Xm,i �

X

{l1,l2}✓L

X

c2SL

l1,c l2,c +
X

{l1,l2,l3}✓L

X

c2SL

l1,c l2,c l3,c

� · · ·+ (�1)|L|+1
X

c2SL

Y

l2L
l,c

=

✓
n�m+ k

k � i

◆
Xm,i �

X

c2SL

X

{l1,l2}✓L

l1,c l2,c +
X

c2SL

X

{l1,l2,l3}✓L

l1,c l2,c l3,c

� · · ·+ (�1)|L|+1
X

c2SL

Y

l2L
l,c

where the second line follows from switching the order of summations. Note that for each
c 2 SL (recall that |c| = m), as we iterate through subsets {l1, . . . , lj} ✓ L, there exists
�
m+(ki)�m

j

�
=
�(ki)

j

�
subsets {l1, . . . , lj} such that ⇧j

i=1 li,c = 1:

Xt =

✓
n�m+ k

k � i

◆
Xm,i �

X

c2SL

✓�
k

i

�

2

◆
+
X

c2SL

✓�
k

i

�

3

◆
� · · ·+ (�1)|L|+1

X

c2SL

✓�
k

i

�

|L|

◆
,

=

✓
n�m+ k

k � i

◆
Xm,i �Xt

✓�
k

i

�

2

◆
+Xt

✓�
k

i

�

3

◆
� · · ·+ (�1)|L|+1Xt

✓�
k

i

�

|L|

◆
,

=

✓
n�m+ k

k � i

◆
Xm,i +

(ki)X

j=2

(�1)j+1Xt

✓�
k

i

�

j

◆
,

=

✓
n�m+ k

k � i

◆
Xm,i �Xt

✓✓
k

i

◆
� 1

◆
+

(ki)X

j=0

(�1)j+1Yt

✓�
k

i

�

j

◆
, (4.1)

17



where the second equation follows from |SL| = Xt, the third equation expresses the
equation as a summation, and Equation 4.1 relaxes the summation. By the Binomial
Theorem, Equation 4.1 becomes

Xt =

✓
n�m+ k

k � i

◆
Xm,i �Xt

✓✓
k

i

◆
� 1

◆
,

Xt =

✓
k

i

◆�1✓n�m+ k

k � i

◆
Xm,i (4.2)

Since t was chosen arbitrarily, Equation 4.2 can be generalized to:

Xm,k =

✓
k

i

◆�1✓n�m+ k

k � i

◆
Xm,i (4.3)

Since for every t 2
�

[n]
m�k

�
,
��{s 2 S|t ✓ s}

�� =
�
k

i

��1�n�m+k

k�i

�
Xm,i, S is level k lower well

balanced.

Note that
�
[n]
0

�
trivially appears in all elements of S. Using this fact, the following

useful remark gives |S| as a function of Xm,i.

Remark 3. Let S ✓
�
[n]
m

�
be a level i lower well balanced subset with Xm,i. Then |S| =

Xm,m =
�
m

i

��1� n

m�i

�
Xm,i.

As will be further discussed in Chapter 5, creating lower well balanced subsets is not
a trivial task. It is useful then to discuss conditions under which lower well balanced
subsets cannot exist. The following claim and corollary provide some of these conditions.

Claim 4.2.5. If m > n/2, then there does not exist a level i nontrivial lower well balanced
subset S ✓

�
[n]
m

�
for all 1  i  2m� n.

Proof. We begin by proving that there does not exist a level i = 2m � n lower well
balanced subset.
As defined in [Rao21], let P #

n,i,m
2 R(

[n]
m�i)⇥(

[n]
m) be the matrix defined by

P #
n,i,m

(x, y) =

(
1 if xj = 1 implies yj = 1

0 otherwise
(4.4)

Suppose that for some m > n/2, there exists a level 2m�n nontrivial lower well balanced

subset S ✓
�
[n]
m

�
with Xm,2m�n. Let S 2 R(

[n]
m) be the matrix defined by

S(x) =

(
1 if x 2 S

0 otherwise

We note that P #
n,2m�n,m S(y) = |{x 2 S|y ✓ x}|:

P #
n,2m�n,m S = Xm,2m�n1,

We replace the all ones matrix 1 with an equivalent
�

m

2m�n

��1
P #
n,2m�n,m

1:

P #
n,2m�n,m S = Xm,2m�n

✓
m

2m� n

◆�1

P #
n,2m�n,m

1,
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P #
n,2m�n,m

 

S �Xm,2m�n

✓
m

2m� n

◆�1

1

!
= 0.

where the second line follows from moving around terms. We note that there exists a
nontrivial S �Xm,2m�n

�
m

2m�n

��1
1 if and only if P #

n,2m�n,m
does not have full rank. We

know from [Rao21] that P #
n,2m�n,m

has full rank.

S �Xm,2m�n

✓
m

2m� n

◆�1

1 = 0,

S = Xm,2m�n

✓
m

2m� n

◆�1

1

where the second line follows from moving around terms. Since the above statement is
true if and only if S =

�
[n]
m

�
or S = ;, which are trivial lower well balanced subsets, we

have reached a contradiction. It follows that there does not exist a level 2m � n lower
well balanced subset S ✓

�
[n]
m

�
if m > n/2.

For 1  i < 2m � n, a very similar proof follows. We note that P #
n,i,m

has full rank,

since P #
n,2m�n,m

can be expressed as:

P #
n,2m�n,m

= P #
n,2m�n�i,m�i

P #
n,i,m

Since rank(P #
n,2m�n,m

)  min{rank(P #
n,2m�n�i,m�i

), rank(P #
n,i,m

)}, the rank of P #
n,i,m

must

be at least that of P #
n,2m�n,m

, and so it has full rank.

Corollary 4.2.6. If a nontrivial subset S ✓
�
[n]
m

�
is level i lower well balanced, then

m  n+i�1
2 .

Proof. Suppose there exists a subset S ✓
�
[n]
m

�
that is level i lower well balanced with

m > n+i�1
2 . We have two cases:

Case 1: n + i is odd. Then m � n+i+1
2 > n/2. Claim 4.2.5 states that there does not

exist a level j lower well balanced subset for all 1  j  2(n+i+1
2 )� n. This simplifies to

1  j  i+ 1. This is a contradiction.
Case 2: n + i is even. Then m � n+i

2 > n/2. Claim 4.2.5 states that there does not
exist a level j lower well balanced subset for all 1  j  2(n+i

2 ) � n. This simplifies to
1  j  i. This is a contradiction.

4.3 Upper Well Balanced Subsets

The following section defines upper well balanced subsets, which is a subset S ✓
�
[n]
m

�

such that the number of elements of S that are included in any subset of [n] of size
i > m is the same amount. We give trivial examples of upper well balanced subsets
(S = ; and S =

�
[n]
m

�
), then show more interesting examples. Note that this section

follows a similar outline to the previous section.
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4.3.1 Definition and Examples

Definition 4.3.1. A subset S ✓
�
[n]
m

�
is level i upper well balanced, where i 2 {1, . . . , n�

m � 1}, if for every t 2
�

[n]
m+i

�
, |{s 2 S|s ✓ t}| is the same for all t, which we denote by

Ym,i.

Remark 4. The set S = ; ✓
�
[n]
m

�
is level 1 upper well balanced, since for every t 2

�
[n]

m+1

�
,

|{s 2 S|s ✓ t}| = Ym,1 = 0.

Remark 5. The set S =
�
[n]
m

�
is level 1 upper well balanced, since for every t 2

�
[n]

m+1

�
,

|{s 2 S|s ✓ t}| = Ym,1 = m+ 1.

We call the sets S = ; and S =
�
[n]
m

�
trivial upper balanced subsets.

Example 4.3.2. The degree 3 terms S ✓
�
[6]
3

�
of the Kushilevitz function f1 : {0, 1}6 !

{0, 1} are level 1 upper well balanced, since for every t 2
�
[6]
4

�
, |{s 2 S|s ✓ t}| = Y3,1 = 2.

The table below shows {s 2 S|s ✓ t} for all t 2
�
[6]
4

�
:

t 2
�[6]

4

�
{s 2 S|s ✓ t}

{1, 2, 3, 4} {1, 3, 4}, {2, 3, 4}
{1, 2, 3, 5} {1, 2, 5}, {2, 3, 5}
{1, 2, 3, 6} {1, 2, 6}, {1, 3, 6}
{1, 2, 4, 5} {1, 2, 5}, {1, 4, 5}
{1, 2, 4, 6} {1, 2, 6}, {2, 4, 6}
{1, 2, 5, 6} {1, 2, 5}, {1, 2, 6}
{1, 3, 4, 5} {1, 3, 4}, {1, 4, 5}
{1, 3, 4, 6} {1, 3, 4}, {1, 3, 6}
{1, 3, 5, 6} {1, 3, 6}, {3, 5, 6}
{1, 4, 5, 6} {1, 4, 5}, {4, 5, 6}
{2, 3, 4, 5} {2, 3, 4}, {2, 3, 5}
{2, 3, 4, 6} {2, 3, 4}, {2, 4, 6}
{2, 3, 5, 6} {2, 3, 5}, {3, 5, 6}
{2, 4, 5, 6} {2, 4, 6}, {4, 5, 6}
{3, 4, 5, 6} {3, 5, 6}, {4, 5, 6}

Similar to Claim 4.2.4, the following claim shows that a level i upper well balanced
subset S ✓

�
[n]
m

�
is also level k upper well balanced for k > i. This claim is useful because

it determines how many elements of S are included in any subset of [n] of size m+ k as
a function of Ym,i.

Claim 4.3.3. Let S ✓
�
[n]
m

�
be a level i upper well balanced subset and let k be an integer

such that i + 1  k  n � m. Then for every t 2
�

[n]
m+k

�
,
��{s 2 S|s ✓ t}

�� = Ym,k =
�
k

i

��1�m+k

m+i

�
Ym,i. This implies that S is a level k upper well balanced subset.

Proof. The proof follows a procedure similar to that of Claim 4.2.4. Fix a t 2
�

[n]
m+k

�
.

Define L :=
�
l 2

�
[n]
m+i

�
|l ✓ t

 
. It follows that |L| =

�
m+k

m+i

�
. For each l 2 L, define

Sl := {s 2 S|s ✓ l} to be the set of elements in S that are contained in l. Define
SL := [l2LSl to be the set of elements in S that are contained in some l 2 L. It follows
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directly that Yt =
��SL

��.
The Principle of Inclusion Exclusion tells us that for finite sets A1, . . . , An,
�����

n[

i=1

Ai

����� =
nX

i=1

��Ai

���
X

1i<jn

��Ai\Aj

��+
X

1i<j<kn

��Ai\Aj\Ak

���· · ·+(�1)n+1
��A1\· · ·\An

��.

Applied to set SL, we get:

Yt = |SL| =

�����
[

l2L

Sl

����� =
X

l2L

��Sl

���
X

{l1,l2}✓L

��Sl1 \ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 \ Sl2 \ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 \ · · · \ Sl|L|

��.

We note that by definition, for all l 2 L, |Sl| = Ym,i :

Yt =

✓
m+ k

m+ i

◆
Ym,i �

X

{l1,l2}✓L

��Sl1 \ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 \ Sl2 \ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 \ · · · \ Sl|L|

��.

Define s,l : S ⇥ L! {0, 1} such that s,l = 1 if and only if s ✓ l.

Yt =

✓
m+ k

m+ i

◆
Ym,i �

X

{l1,l2}✓L

X

c2SL

c,l1 c,l2 +
X

{l1,l2,l3}✓L

X

c2SL

c,l1 c,l2 c,l3

� · · ·+ (�1)|L|+1
X

c2SL

Y

l2L
c,l

=

✓
m+ k

m+ i

◆
Ym,i �

X

c2SL

X

{l1,l2}✓L

c,l1 c,l2 +
X

c2SL

X

{l1,l2,l3}✓L

c,l1 c,l2 c,l3

� · · ·+ (�1)|L|+1
X

c2SL

Y

l2L
c,l

where the second line follows from switching the order of summations. We note that for
each c 2 SL (recall that |c| = m), as we iterate through subsets {l1, . . . , lj} ✓ L, there

exists
�
m+(ki)�m

j

�
=
�(ki)

j

�
subsets {l1, . . . , lj} such that ⇧j

i=1 c,li = 1:

Yt =

✓
m+ k

m+ i

◆
Ym,i �

X

c2SL

✓�
k

i

�

2

◆
+
X

c2SL

✓�
k

i

�

3

◆
� · · ·+ (�1)|L|+1

X

c2SL

✓�
k

i

�

|L|

◆
,

=

✓
m+ k

m+ i

◆
Ym,i � Yt

✓�
k

i

�

2

◆
+ Yt

✓�
k

i

�

3

◆
� · · ·+ (�1)|L|+1Yt

✓�
k

i

�

|L|

◆
,

=

✓
m+ k

m+ i

◆
Ym,i +

(ki)X

j=2

(�1)j+1Yt

✓�
k

i

�

j

◆
,

=

✓
m+ k

m+ i

◆
Ym,i � Yt

✓✓
k

i

◆
� 1

◆
+

(ki)X

j=0

(�1)j+1Yt

✓�
k

i

�

j

◆
, (4.5)
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where the second equation follows from |SL| = Yt, the third equation expresses the
equation as a summation, and Equation 4.5 relaxes the summation. By the Binomial
Theorem, Equation 4.5 becomes

Yt =

✓
m+ k

m+ i

◆
Ym,i � Yt

✓✓
k

i

◆
� 1

◆
,

Yt =

✓
k

i

◆�1✓m+ k

m+ i

◆
Ym,i (4.6)

Since t was chosen arbitrarily, Equation 4.6 can be generalized to:

Ym,k =

✓
k

i

◆�1✓m+ k

m+ i

◆
Ym,i (4.7)

Since for every t 2
�

[n]
m+k

�
,
��{s 2 S|s ✓ t}

�� =
�
k

i

��1�m+k

m+i

�
Ym,i, S is level k upper well

balanced.

Similar to Remark 3, the following remark makes use of the fact that every element
in S is included in

�
[n]
n

�
. Thus, we give |S| as a function of Ym,i.

Remark 6. Let S ✓
�
[n]
m

�
be a level i upper well balanced subset with Ym,i. Then |S| =

Ym,n�m =
�
n�m

i

��1� n

m+i

�
Ym,i.

The following claim and corollary provide some constraints under which no upper well
balanced subsets exist. Again, note that the proof follows a similar procedure to that of
Claim 4.2.5

Claim 4.3.4. If m < n/2, then there does not exist a nontrivial level i upper well balanced
subset S ✓

�
[n]
m

�
for all 1  i  n� 2m.

Proof. We begin by proving that there does not exist a level i = n � 2m upper well

balanced subset. As defined in [Rao21], let P "
n,i,m

2 R(
[n]

m+i)⇥(
[n]
m) be the matrix defined by

P "
n,i,m

(x, y) =

(
1 if yj = 1 implies xj = 1

0 otherwise
(4.8)

Suppose that for some m < n/2, there exists a level n�2m nontrivial upper well balanced

subset S ✓
�
[n]
m

�
with Ym,n�2m. Let S 2 R(

[n]
m) be the matrix defined by

S(x) =

(
1 if x 2 S

0 otherwise

We note that P "
n,n�2m,m S(y) = |{x 2 S|x ✓ y}|:

P "
n,n�2m,m S = Ym,n�2m1

We replace the all ones matrix 1 with an equivalent
�
n�m

m

��1
P "
n,n�2m,m

1:

P "
n,n�2m,m S = Ym,n�2m

✓
n�m

m

◆�1

P "
n,n�2m1,
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P "
n,n�2m,m

 

S � Ym,n�2m

✓
n�m

m

◆�1

1

!
= 0.

where the second line follows from moving around terms. We note that there exists a
nontrivial S � Ym,n�2m

�
n�m

m

��1
1 if and only if P "

n,n�2m,m
does not have full rank. We

know from [Rao21] that P "
n,n�2m,m

has full rank:

S � Ym,n�2m

✓
n�m

m

◆�1

1 = 0,

S = Ym,n�2m

✓
n�m

m

◆�1

1.

where the second line follows from moving around terms. We note that the above state-
ment is true if and only if S =

�
[n]
m

�
or S = ;, which are trivial upper well balanced

subsets. Therefore, we have reached a contradiction. It follows that there does not exist
a level n� 2m upper well balanced subset S ✓

�
[n]
m

�
if m < n/2.

For 1  i < n � 2m, a very similar proof follows. We note that P "
n,i,m

has full rank,

since P "
n,n�2m,m

can be expressed as:

P "
n,n�2m,m

= P "
n,n�2m�i,m+i

P "
n,i,m

Since rank(P "
n,n�2m,m

)  min{rank(P "
n,n�2m�i,m+i

), rank(P "
n,i,m

)}, the rank of P "
n,i,m

must

be at least that of P "
n,n�2m,m

, and so it has full rank.

Corollary 4.3.5. If a nontrivial subset S ✓
�
[n]
m

�
is level i upper well balanced, then

m � n�i+1
2 .

Proof. Suppose there exists a subset S ✓
�
[n]
m

�
that is level i upper well balanced with

m < n�i+1
2 . We have two cases:

Case 1: n � i is odd. Then m  n�i�1
2 < n/2. Claim 4.3.4 states that there does not

exist a level j upper well balanced subset for all 1  j  n� 2(n�i�1
2 ). This simplifies to

1  j  i+ 1. This is a contradiction.
Case 2: n � i is even. Then m  n�i

2 < n/2. Claim 4.3.4 states that there does not
exist a level j upper well balanced subset for all 1  j  n � 2(n�i

2 ). This simplifies to
1  j  i. This is a contradiction.

4.4 Upper () Lower

The following section proves that a subset S ✓
�
[n]
m

�
is upper well balanced if and only

if it is lower well balanced. This implies that any proposition that is made about upper
well balanced subsets can be made about lower well balanced subsets, and vice versa.

Claim 4.4.1. If S ✓
�
[n]
m

�
is a level i lower well balanced subset with Xm,i, then it is level

n� 2m+ i upper well balanced with Ym,n�2m+i =
�
m

i

��1�n�m

m�i

�
Xm,i
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Proof. Fix a t 2
�

[n]
m+(n�2m+i)

�
. Define L := [n] \ t. It follows that |L| = n � (m + (n �

2m + i)) = m � i. For each l 2 L, define Sl :=
�
s 2 S|l 2 s

 
to be the set of elements

in S that contain l. Define SL := [l2LSl to be the set of elements in S that contain any
l 2 L. It follows directly that Yt = |S|� |SL|.
The Principle of Inclusion Exclusion states that for finite sets A1, . . . , An,
�����

n[

i=1

Ai

����� =
nX

i=1

��Ai

���
X

1i<jn

��Ai\Aj

��+
X

1i<j<kn

��Ai\Aj\Ak

���· · ·+(�1)n+1
��A1\· · ·\An

��.

Applied to set SL, we get:

|SL| =

�����
[

l2L

Sl

����� =
X

l2L

��Sl

���
X

{l1,l2}✓L

��Sl1 \ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 \ Sl2 \ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 \ · · · \ Sl|L|

��.

Note that for all l 2 L, |Sl| = Xm,m�1:

|SL| = (m� i)Xm,m�1 �
X

{l1,l2}✓L

��Sl1 \ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 \ Sl2 \ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 \ · · · \ Sl|L|

��. (4.9)

We note that as we iterate through subsets {l1, . . . , lj} ✓ L, where j  |L| = m� i,
������

\

l2{l1,...,lj}

Sl

������
= |{s 2 S|{l1, . . . , lj} ✓ s}| = Xm,m�j.

Applying this to Equation 4.9, we get

|SL| = (m� i)Xm,m�1 �
✓
m� i

2

◆
Xm,m�2 +

✓
m� i

3

◆
Xm,m�3

� · · ·+ (�1)|L|+1

✓
m� i

|L|

◆
Xm,m�|L|.

Expressed as a summation, this becomes

|SL| =
m�iX

a=1

(�1)a+1

✓
m� i

a

◆
Xm,m�a,

= Xm,m +
m�iX

a=0

(�1)a+1

✓
m� i

a

◆
Xm,m�a

The equation for Yt = |S|� |SL| is now

Yt = |S|�Xm,m �
m�iX

a=0

(�1)a+1

✓
m� i

a

◆
Xm,m�a,

= �
m�iX

a=0

(�1)a+1

✓
m� i

a

◆
Xm,m�a,

=
m�iX

a=0

(�1)a
✓
m� i

a

◆
Xm,m�a
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where the second line follows by remark 3.
Using Equation 4.3, Xm,m�a =

�
m�a

i

��1� n�a

m�a�i

�
Xm,i:

Yt =
m�iX

a=0

(�1)a
✓
m� i

a

◆✓
m� a

i

◆�1✓ n� a

m� a� i

◆
Xm,i,

= Xm,i

m�iX

a=0

(�1)a
✓
m� i

a

◆✓
m� a

i

◆�1✓ n� a

m� a� i

◆
,

= Xm,i

✓
n

m� i

◆✓
m

i

◆�1

2F1(i�m,�m;�n; 1), (4.10)

where the third line follows from the definition of the Gaussian hypergeometric function.
We know from Lemma 4.4.4 that 2F1(i�m,�m;�n; 1) =

�
n�m

m�i

��
n

m�i

��1
:

Yt = Xm,i

✓
n

m� i

◆✓
m

i

◆�1✓n�m

m� i

◆✓
n

m� i

◆�1

,

= Xm,i

✓
m

i

◆�1✓n�m

m� i

◆
.

Since t was chosen arbitrarily, this equation can be generalized to:

Ym,n�2m+i =

✓
m

i

◆�1✓n�m

m� i

◆
Xm,i (4.11)

Claim 4.4.2. If S ✓
�
[n]
m

�
is a level i upper well balanced subset with Ym,i, then it is level

2m� n+ i lower well balanced with Xm,2m�n+i =
�
n�m

i

��1� m

n�m�i

�
Ym,i

Proof. Fix a t 2
�

[n]
m�(2m�n+i)

�
. Define L := t. It follows that |L| = m � (2m � n + i) =

n�m� i. For each l 2 L, define Sl :=
�
s 2 S|l 2 s

 
to be the set of elements in S that

contain l. Define SL := \l2LSl to be the set of elements in S that contain all L. It follows
directly that Xt = |SL|.
The Principle of Inclusion Exclusion [jh] states that for finite sets A1, . . . , An,
�����

n\

i=1

Ai

����� =
nX

i=1

��Ai

���
X

1i<jn

��Ai[Aj

��+
X

1i<j<kn

��Ai[Aj[Ak

���· · ·+(�1)n+1
��A1[· · ·[An

��.

Applied to set SL, we get:

Xt = |SL| =

�����
\

l2L

Sl

����� =
X

l2L

��Sl

���
X

{l1,l2}✓L

��Sl1 [ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 [ Sl2 [ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 [ · · · [ Sl|L|

��.

We note that for any l 2 L, |Sl| = |S| � |{s 2 S|l /2 s}|. From remark 6, we know that
|S| = Ym,n�m. Since S is upper well balanced, |{s 2 S|l /2 s}| = Ym,n�m�1 for any l:

Xt = (n�m� i)(Yn,n�m � Yn,n�m�1)�
X

{l1,l2}✓L

��Sl1 [ Sl2

��+
X

{l1,l2,l3}✓L

��Sl1 [ Sl2 [ Sl3

��

� · · ·+ (�1)|L|+1
��Sl1 [ · · · [ Sl|L|

��. (4.12)
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We note that as we iterate through subsets {l1, . . . , lj} ✓ L,
������

[

l2{l1,...,lj}

Sl

������
= |S|� |{s 2 S|{l1, . . . , lj} * s}| = (Ym,n�m � Ym,n�m�j).

Applying this to Equation 4.12, we get

Xt = (n�m� i)(Ym,n�m � Ym,n�m�1)�
✓
n�m� i

2

◆
(Ym,n�m � Ym,n�m�2)

+ · · ·+ (�1)|L|+1

✓
n�m� i

|L|

◆
(Ym,n�m � Ym,n�m�|L|). (4.13)

Expressed as a summation, this becomes

Xt =
n�m�iX

a=0

(�1)a+1

✓
n�m� i

a

◆
(Ym,n�m � Ym,n�m�a)

=
n�m�iX

a=0

(�1)a+1

✓
n�m� i

a

◆
Ym,n�m +

n�m�iX

a=0

(�1)a
✓
n�m� i

a

◆
Ym,n�m�a

=
n�m�iX

a=0

(�1)a
✓
n�m� i

a

◆
Ym,n�m�a,

where the third line follows from the Binomial Theorem. Using Equation 4.7, Ym,n�m�a =�
n�m�a

i

��1�n�a

m+i

�
Ym,i:

Xt =
n�m�iX

a=0

(�1)a
✓
n�m� i

a

◆✓
n�m� a

i

◆�1✓n� a

m+ i

◆
Ym,i,

= Ym,i

✓
n

m+ i

◆✓
n�m

i

◆�1

2F1(m� n, i+m� n;�n; 1)

where the second line follows from the definition of the Gaussian hypergeometric function.
We know from Lemma 4.4.5 that 2F1(m� n, i+m� n;�n; 1) =

�
m+i

n�m

��
n

n�m

��1
:

Xt = Ym,i

✓
n

m+ i

◆✓
n�m

i

◆�1✓m+ i

n�m

◆✓
n

n�m

◆�1

= Ym,i

✓
n�m

i

◆�1✓ m

n�m� i

◆

where the second line follows from simplifying. Since t was chosen arbitrarily, this equa-
tion can be generalized to:

Xm,2m�n+i =

✓
n�m

i

◆�1✓ m

n�m� i

◆
Ym,i (4.14)

Corollary 4.4.3. If a nontrivial subset S ✓
�
[n]
m

�
is level 1 upper well balanced and level

1 lower well balanced, then m = n/2.
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Proof. If a subset S ✓
�
[n]
m

�
is level 1 upper well balanced, then we know from Claim

4.3.5 that m � n/2. If the same subset is level 1 lower well balanced, then we know from
Claim 4.2.6 that m  n/2. Therefore m = n/2.

Lemma 4.4.4. Let 0 < i < m < n. Then 2F1(i�m,�m;�n; 1) =
�
n�m

m�i

��
n

m�i

��1

Proof. The Jacobi Polynomial P (↵,�)
n (z) is defined as

P (↵,�)
n

(z) =

✓
↵ + n

n

◆
2F1(�n, 1 + ↵ + � + n;↵ + 1;

1

2
(1� z))

Using this definition we know that

P (�n�1,n�2m+i)
m�i

(�1) =
✓
m� n� i� 1

m� i

◆
2F1(i�m,�m;�n; 1)

Following the symmetry relation of Jacobi Polynomials, P (�n�1,�2m+i+n)
m�i

(�1) can be nor-
malized to (�1)m�i

�
m�i�2m+i+n

m�i

�
= (�1)m�i

�
n�m

m�i

�
:

(�1)m�i

✓
n�m

m� i

◆
=

✓
m� n� i� 1

m� i

◆
2F1(i�m,�m;�n; 1) (4.15)

Note that m � n � i � 1 < 0, so the binomial coe�cient for negative arguments is used
[Kro11]:

✓
m� n� i� 1

m� i

◆
= (�1)m�i

✓
n+ i+ 1�m+m� i� 1

m� i

◆
= (�1)m�i

✓
n

m� i

◆

Equation 4.15 becomes

(�1)m�i

✓
n�m

m� i

◆
= (�1)m�i

✓
n

m� i

◆
2F1(i�m,�m;�n; 1)

✓
n�m

m� i

◆✓
n

m� i

◆�1

= 2F1(i�m,�m;�n; 1)

Lemma 4.4.5. Let 0 < i < m < n. Then 2F1(m� n, i+m� n;�n; 1) =
�
m+i

n�m

��
n

n�m

��1

Proof. The Jacobi Polynomial P (↵,�)
n (z) is defined as

P (↵,�)
n

(z) =

✓
↵ + n

n

◆
2F1(�n, 1 + ↵ + � + n;↵ + 1;

1

2
(1� z))

Using this definition we know that

P (�n�1,i+2m�n)
n�m (�1) =

✓
�m� 1

n�m

◆
2F1(m� n, i+m� n;�n; 1)

Following the symmetry relation of Jacobi Polynomials, P (�n�1,i+2m�n)
n�m (�1) can be nor-

malized to (�1)n�m
�
n�m+i+2m�n

n�m

�
= (�1)n�m

�
m+i

n�m

�
:

(�1)n�m

✓
m+ i

n�m

◆
=

✓
�m� 1

n�m

◆
2F1(m� n, i+m� n;�n; 1) (4.16)
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Note that �m�1 < 0, so the binomial coe�cient for negative arguments is used [Kro11]:

✓
�m� 1

n�m

◆
= (�1)n�m

✓
m+ 1 + n�m� 1

n�m

◆
= (�1)n�m

✓
n

n�m

◆

Equation 4.16 becomes

(�1)n�m

✓
m+ i

n�m

◆
= (�1)n�m

✓
n

n�m

◆
2F1(m� n, i+m� n;�n; 1)

✓
m+ i

n�m

◆✓
n

n�m

◆�1

= 2F1(i�m,�m;�n; 1)
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Chapter 5

Results of Scan

5.1 Introduction

This chapter reviews an exhaustive search conducted to find the properties that a Boolean
function that is fully sensitive on the input with all 0’s with upper well balanced degree
3 and degree 4 terms might have.

Specifically, in an e↵ort to find a Boolean function with a larger separation between
sensitivity and degree than the Kushilevitz function, the goal of this search is to find what
characteristics a Boolean function f : {0, 1}10 ! {0, 1} with deg(f) = 4 and s(f) = 10
might have, if such a function exists. These constraints are chosen because the power
separation between its sensitivity and degree is s(f) = deg(f)log(10)/log(4) = deg(f)1.66,
which is a greater separation than the Kushilevitz function. We do not search for functions
with deg(f) = 3, since there does not exist a Boolean function with f : {0, 1}n ! {0, 1}
such that n � 7, s(f) � 7, deg(f) = 3 [MMST21].

5.1.1 Constraints and Assumptions

In order to ensure that any function that is found in the search is fully sensitive, without
loss of generality we let the input with hamming weight 0 be the input with full sensitivity.
For this to be true, f(0, . . . , 0) = 0, and f(x0, . . . , xn) = 1 for inputs x0, . . . , xn with
hamming weight 1.

Note that in order for inputs x with hamming weight 2 to have an output of 0 or 1,
a degree 2 term must be added with coe�cient �1 or �2 for each permutation of x such
that |x| = 2. For this search, we assume the degree 2 terms have coe�cient �1.

Thus we search for functions which are constrained to the following stub:

f(x0, . . . , xn) =
nX

i=0

xi �
X

{i,j}✓[n]

xixj + · · ·

For some input x = (x1, . . . , x10), a function with this stub is represented by the following
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table:
|x| f=1

(x) f=2
(x) f2

(x)
0 0 0 0
1 1 0 1
2 2 �1 1
3 3 �3 0
4 4 �6 �2
5 5 �10 �5
6 6 �15 �9
7 7 �21 �14
8 8 �28 �20
9 9 �36 �27
10 10 �45 �35

We note that for the function to be Boolean, f=3(x) + f=4(x) should equal 2 or 3
for inputs x with hamming weight |x| = 4, +5 or +6 for inputs x with hamming weight
|x| = 5, and so on. An exhaustive search through all possible combinations of degree 3

and degree 4 terms to find those that satisfy these constraints is not possible (2(
10
3 ) ⇤2(

10
4 )

di↵erent combinations of degree 3 and degree 4 terms, before considering variations of
coe�cients). A better strategy is then to constrain the search space.

We constrain the search to those Boolean functions that have upper well balanced
degree 3 and degree 4 terms. The reasons for this are twofold:

• The degree 3 terms of the Kushilevitz function are upper well balanced. Like the
Kushilevitz function, a function with the properties n = 10, deg(f) = 4, s(f) = 10
may also have upper well balanced degree 3 and degree 4 terms.

• Since level i upper well balanced subsets are deterministic with respect to their
inclusion in any subset of [n] of size greater than m+ i (see Claim 4.3.3), it is easy
to set up a system of equations for solutions to the characteristics of the upper well
balanced subset (i.e. scanning for n,m, i, Y ), as will soon be seen.

For now, we assume the degree 3 and degree 4 terms are level 1 upper well balanced
subsets. The following system of equations adequately describe the constraints above:

|x| f2
(x) f=3

(x) + f=4
(x) f(x)

5 �5 cY3,2 + cY4,1 {0, 1}
6 �9 cY3,3 + cY4,2 {0, 1}
7 �14 cY3,4 + cY4,3 {0, 1}
8 �20 cY3,5 + cY4,4 {0, 1}
9 �27 cY3,6 + cY4,5 {0, 1}
10 �35 cY3,7 + cY4,6 {0, 1}

Since for inputs x with hamming weight 3, the function stub f(x) = 0, note that any
degree 3 terms that may be in the Boolean function must have a coe�cient of +1.

Furthermore, we assume that any degree 4 terms that may be in the function will
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have a coe�cient of -1. Thus the system of equations is modified to:

�5 + Y3,2 � Y4,1 = {0, 1}
�9 + Y3,3 � Y4,2 = {0, 1}
�14 + Y3,4 � Y4,3 = {0, 1}
�20 + Y3,5 � Y4,4 = {0, 1}
�27 + Y3,6 � Y4,5 = {0, 1}
�35 + Y3,7 � Y4,6 = {0, 1}

Recall from Claim 4.3.3 that for a level 1 upper well balanced subset S ✓
�
[n]
m

�
with Ym,1,

Ym,k =
1

k

✓
m+ k

m+ 1

◆
Ym,1,

where k is an integer such that 2  k  n � m. Thus, the equations can be further
simplified to:

�5 + 1

2

✓
5

4

◆
Y3,1 � Y4,1 = {0, 1}

�9 + 1

3

✓
6

4

◆
Y3,1 �

1

2

✓
6

5

◆
Y4,1 = {0, 1}

�14 + 1

4

✓
7

4

◆
Y3,1 �

1

3

✓
7

5

◆
Y4,1 = {0, 1}

�20 + 1

5

✓
8

4

◆
Y3,1 �

1

4

✓
8

5

◆
Y4,1 = {0, 1}

�27 + 1

6

✓
9

4

◆
Y3,1 �

1

5

✓
9

5

◆
Y4,1 = {0, 1}

�35 + 1

7

✓
10

4

◆
Y3,1 �

1

6

✓
10

5

◆
Y4,1 = {0, 1}

This simplifies to

�5 + 2.5Y3,1 � Y4,1 = {0, 1}
�9 + 5Y3,1 � 3Y4,1 = {0, 1}

�14 + 8.75Y3,1 � 7Y4,1 = {0, 1}
�20 + 14Y3,1 � 14Y4,1 = {0, 1}
�27 + 21Y3,1 � 25.2Y4,1 = {0, 1}
�35 + 30Y3,1 � 42Y4,1 = {0, 1}

In order to accommodate upper well balanced subsets of levels i > 1, we relax the
right side of the system of equations to allow some fraction of inputs of a certain hamming
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weight to be 0, and the others to have 1.

�5 + 2.5Y3,1 � Y4,1 =

(
0�
10
5

� , 1�
10
5

� , . . .
�
10
5

�
�
10
5

�
)

�9 + 5Y3,1 � 3Y4,1 =

(
0�
10
6

� , 1�
10
6

� , . . .
�
10
6

�
�
10
6

�
)

�14 + 8.75Y3,1 � 7Y4,1 =

(
0�
10
7

� , 1�
10
7

� , . . .
�
10
7

�
�
10
7

�
)

�20 + 14Y3,1 � 14Y4,1 =

(
0�
10
8

� , 1�
10
8

� , . . .
�
10
8

�
�
10
8

�
)

�27 + 21Y3,1 � 25.2Y4,1 =

(
0�
10
9

� , 1�
10
9

� , . . .
�
10
9

�
�
10
9

�
)

�35 + 30Y3,1 � 42Y4,1 = {0, 1}

We also allow Ym,1 to be rational numbers as well as integers in the scan. In order to
interpret rational number solutions for Ym,1, we use the following remark.

Remark 7. If S ✓
�
[n]
m

�
is a level i upper well balanced subset with Ym,i, then for t 2�

[n]
m+1

�
, the average value of Ym,1 is E(|{s 2 S|s ✓ t}|) = i

�
m+i

m+1

��1
Ym,i

5.1.2 Search Setup and Interpreting Results

We begin by searching for Boolean functions with n = 7, deg(f) = 4, s(f) = 7, then
expand the search until we reach n = 10, deg(f) = 4, s(f) = 10. For each n 2 {7, 8, 9, 10},
the system of equations above is checked for exact solutions up to hamming weight n.

For a solution pair (Y3,1, Y4,1) = (a, b), we use Remark 7 to map the solution to
(Y3,i, Y4,j) = (a0, b0), where i, j are the smallest positive integers such that a0 = (a/i)⇤

�
m+i

m+1

�

and b0 = (b/j) ⇤
�
m+j

m+1

�
are integers, respectively. Solutions with a (*) are solutions that

involve degree 3 terms that are level n�3 upper well balanced, or degree 4 terms that are
level n� 4 upper well balanced. By definition, these are not upper well balanced subsets.
They are included here for completeness. Solution rows that are gray represent solutions
whose explicit Boolean function is presented in the section after.

5.2 n=7

The least squares solution to the following system of equations is computed.

2

4
2.5 �1
5 �3

8.75 �7

3

5

Y3,1

Y4,1

�
=

2

4
h5

h6

h7

3

5

where h5 2
⇢
5 0

(75)
, 5 1

(75)
, . . . 5

(75)
(75)

�
, h6 2

⇢
9 0

(76)
, 9 1

(76)
, . . . 9

(76)
(76)

�
, h7 2 {14, 15} .
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5.2.1 Solutions

Exact solutions are shown in the table below. Solutions are enumerated for reference.

h5 h6 h7 (Y3,1,Y4,1) map

1 5 9 14 (2.4, 1) (Y3,2, Y4,1) = (6, 1)
2 6 10 14 (3.2, 2) (Y3,2, Y4,1) = (8, 2)
3 5 65/7 15 (2.286, 0.714) (Y3,4, Y4,3) = (20, 5)⇤
4 36/7 64/7 14 (2.514, 1.143) (Y3,4, Y4,3) = (22, 8)⇤
5 36/7 66/7 15 (2.4, 0.857) (Y3,2, Y4,3) = (6, 6)⇤
6 37/7 65/7 14 (2.629, 1.286) (Y3,4, Y4,3) = (23, 9)⇤
7 37/7 67/7 15 (2.514, 1) (Y3,4, Y4,1) = (22, 1)⇤
8 38/7 66/7 14 (2.743, 1.429) (Y3,4, Y4,3) = (24, 10)⇤
9 38/7 68/7 15 (2.629, 1.143) (Y3,4, Y4,3) = (23, 8)⇤
10 39/7 67/7 14 (2.857, 1.571) (Y3,4, Y4,3) = (25, 11)⇤
11 39/7 69/7 15 (2.743, 1.286) (Y3,4, Y4,3) = (24, 9)⇤
12 40/7 68/7 14 (2.971, 1.714) (Y3,4, Y4,3) = (26, 12)⇤
13 40/7 10 15 (2.857, 1.429) (Y3,4, Y4,3) = (25, 10)⇤
14 41/7 69/7 14 (3.086, 1.857) (Y3,4, Y4,3) = (27, 13)⇤

5.2.2 Boolean Functions

We present four Boolean functions with n = 7, deg = 4, s = 7.
(1) Ledins [LO] shows a Boolean function f : {0, 1}7 ! {0, 1} with s(f) = 7, deg(f) =

4:

f(x1, . . . , x7) =
7X

i=1

xi �
X

{i,j}2([7]2 )

xixj +
X

{i,j,k}2A

xixjxk �
X

{i,j,k,l}2B

xixjxkxl,

where

A = {{1, 2, 3}, {1, 2, 5}, {1, 2, 7}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5}, {1, 4, 6},
{1, 4, 7}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6}, {2, 4, 7}, {2, 5, 6},
{2, 6, 7}, {3, 4, 5}, {3, 4, 6}, {3, 5, 7}, {3, 6, 7}, {4, 5, 7}, {5, 6, 7}},

B = {{1, 2, 3, 7}, {1, 2, 5, 6}, {1, 3, 4, 6}, {1, 4, 5, 7}, {2, 3, 4, 5}, {2, 4, 6, 7}, {3, 5, 6, 7}}

For some input x = (x1, . . . , x7), the function f(x) can be represented by the following
table:

|x| f<=2
(x) f=3

(x) f=4
(x) f(x)

0 0 0 0 0
1 1 0 0 1
2 1 0 0 1

3 0
1 21/35 times
0 14/35 times

0
1 21/35 times
0 14/35 times

4 �2 2 21/35 times
3 14/35 times

0 28/35 times
-1 7/35 times

1 7/35 times
0 28/35 times

5 �5 6 �1 0
6 �9 12 �3 0
7 �14 21 �7 0
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Note that the degree 3 terms are level 2 upper well balanced, with Y3,2 = 6, and the
degree 4 terms are level 1 upper well balanced, with Y4,1 = 1. This Boolean function is
an explicit form of solution 1 from the table in Section 5.2.1.

(2) We construct a Boolean function f : {0, 1}7 ! {0, 1} with s(f) = 7, deg(f) = 4,
with the properties of solution 2 from the table in Section 5.2.1:

f(x1, . . . , x7) =
7X

i=1

xi �
X

{i,j}2([7]2 )

xixj +
X

{i,j,k}2A

xixjxk �
X

{i,j,k,l}2B

xixjxkxl,

where

A = {{1, 2, 3}, {1, 2, 4}, {1, 2, 6}, {1, 2, 7}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 5},
{1, 4, 6}, {1, 4, 7}, {1, 5, 6}, {1, 5, 7}, {2, 3, 4}, {2, 3, 5}, {2, 3, 7}, {2, 4, 5},
{2, 4, 6}, {2, 5, 6}, {2, 5, 7}, {2, 6, 7}, {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 5, 6},
{3, 6, 7}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}}

B = {{2, 5, 6, 7}, {3, 4, 6, 7}, {1, 4, 5, 7}, {2, 3, 4, 5}, {1, 2, 4, 6}, {1, 3, 5, 6}, {1, 2, 3, 7},
{4, 5, 6, 7}, {2, 3, 4, 7}, {2, 3, 5, 6}, {1, 3, 4, 6}, {1, 3, 5, 7}, {1, 2, 4, 5}, {1, 2, 6, 7}}

For some input x = (x1, . . . , x7), the function f(x) can be represented by the following
table:

|x| f<=2
(x) f=3

(x) f=4
(x) f(x)

0 0 0 0 0
1 1 0 0 1
2 1 0 0 1

3 0
1 28/35 times
0 7/35 times

0
0 7/35 times
1 28/35 times

4 �2 3 28/35 times
4 7/35 times

0 21/35 times
-1 14/35 times

0 7/35 times
1 28/35 times

5 �5 8 �2 1
6 �9 16 �6 1
7 �14 28 �14 0

Note that the degree 3 terms are level 2 upper well balanced, with Y3,2 = 8, and the
degree 4 terms are level 1 upper well balanced, with Y4,1 = 2. This function was created
by using Algorithm 6.2 with parameters (n = 7,m = 4, i = 1, Y = 2, res = 1) to find the

degree 4 terms, and then doing a scan over all
�([7]3 )

28

�
sets of 28 degree 3 terms to find the

set that fit the degree 4 terms. This Boolean function is an explicit form of solution 2
from the table in Section 5.2.1.

(3) The following Boolean function f : {0, 1}7 ! {0, 1} has deg(f) = 4 and s(f) = 7.
It is constructed by retrieving the polynomial of f : {0, 1}9 ! {0, 1} from Section 5.4.2
on the input (0, x2, . . . , x8, 0):

f(x1, . . . , x7) =
7X

i=1

xi �
X

{i,j}2([7]2 )

xixj +
X

{i,j,k}2A

xixjxk �
X

{i,j,k,l}2B

xixjxkxl,
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where

A = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5},
{1, 6, 7}, {2, 6, 7}, {1, 2, 6}, {1, 2, 7}, {3, 6, 7}, {4, 6, 7}, {5, 6, 7}, {3, 4, 6}, {3, 4, 7},
{3, 5, 6}, {3, 5, 7}, {4, 5, 6}, {4, 5, 7}}

B = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 2, 6, 7}, {3, 4, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}}

For some input x = (x1, . . . , x7), the function f(x) can be represented by the following
table:

|x| f<=2
(x) f=3

(x) f=4
(x) f(x)

0 0 0 0 0
1 1 0 0 1
2 1 0 0 1

3 0
0 13/35 times
1 22/35 times

0
0 13/35 times
1 22/35 times

4 �2
2 24/35 times
3 4/35 times
4 7/35 times

0 28/35 times
-1 7/35 times

0 24/35 times
1 11/35 times

5 �5 6 19/21 times
9 2/21 times

0 4/21 times
-1 15/21 times
-3 2/21 times

0 15/21 times
1 6/21 times

6 �9 12 3/7 times
13 4/7 times

�3 0 3/7 times
1 4/7 times

7 �14 22 �7 1

This Boolean function is an explicit form of solution 7 from the table in Section 5.2.1.
(4) The following Boolean function f : {0, 1}7 ! {0, 1} has deg(f) = 4 and s(f) = 7.

It is constructed by retrieving the polynomial of f : {0, 1}9 ! {0, 1} from Section 5.4.2
on the input (x1, . . . , x7, 0, 0):

f(x1, . . . , x7) =
7X

i=1

xi �
X

{i,j}2([7]2 )

xixj +
X

{i,j,k}2A

xixjxk �
X

{i,j,k,l}2B

xixjxkxl,

where

A = {{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6},
{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6},
{1, 2, 7}, {1, 3, 7}, {2, 3, 7}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}}

B = {{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5},
{2, 3, 4, 6}, {2, 3, 5, 6}}

For some input x = (x1, . . . , x7), the function f(x) can be represented by the following
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table:
|x| f<=2

(x) f=3
(x) f=4

(x) f(x)
0 0 0 0 0
1 1 0 0 1
2 1 0 0 1

3 0
0 11/35 times
1 24/35 times

0
0 11/35 times
1 24/35 times

4 �2
2 18/35 times
3 8/35 times
4 9/35 times

0 26/35 times
-1 9/35 times

0 18/35 times
1 17/35 times

5 �5 6 15/21 times
9 6/21 times

0 6/21 times
-1 9/21 times
-3 6/21 times

0 9/21 times
1 12/21 times

6 �9 13 6/7 times
18 1/7 times

-3 6/7 times
-9 1/7 times

0 1/7 times
1 6/7 times

7 �14 24 �9 1

This Boolean function is an explicit form of solution 11 from the table in Section 5.2.1.

5.3 n=8

The following system of equations is checked for solutions:

2

664

2.5 �1
5 �3

8.75 �7
14 �14

3

775


Y3,1

Y4,1

�
=

2

664

h5

h6

h7

h8

3

775

where

h5 2
(
5
0�
8
5

� , 5 1�
8
5

� , . . . 5
�
8
5

�
�
8
5

�
)
, h6 2

(
9
0�
8
6

� , 9 1�
8
6

� , . . . 9
�
8
6

�
�
8
6

�
)

h7 2
(
14

0�
8
7

� , 14 1�
8
7

� , . . . 14
�
8
7

�
�
8
7

�
)
, h8 2 {20, 21} .
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5.3.1 Solutions

Exact solutions are shown in the table below. Solutions are enumerated for reference.

h5 h6 h7 h8 (Y3,1,Y4,1) map

1 40/7 10 15 20 (2.857, 1.429) (Y3,4, Y4,3) = (25, 10)
2 66/13 129/14 117/8 21 (2.357, 0.857) (Y3,5, Y4,3) = (33, 6)⇤
3 71/14 64/7 57/4 20 (2.429, 1) (Y3,5, Y4,1) = (34, 1) ⇤ 1

4 36/7 131/14 59/4 21 (2.429, 0.929) (Y3,5, Y4,4) = (34, 13)⇤
5 145/28 65/7 115/8 20 (2.5, 1.071) (Y3,5, Y4,4) = (35, 15)⇤
6 21/4 19/2 119/8 21 (2.5, 1) (Y3,5, Y4,1) = (35, 1) ⇤ 1

7 37/7 66/7 29/2 20 (2.571, 1.143) (Y3,5, Y4,3) = (36, 8)⇤
8 75/14 135/14 15 21 (2.571, 1.071) (Y3,5, Y4,4) = (36, 15)⇤
9 151/28 67/7 117/8 20 (2.643, 1.214) (Y3,5, Y4,4) = (37, 17)⇤
10 11/2 68/7 59/4 20 (2.714, 1.286) (Y3,5, Y4,3) = (38, 9)⇤
11 157/28 69/7 119/8 20 (2.786, 1.357) (Y3,5, Y4,4) = (39, 19)⇤

5.3.2 Boolean Functions

The following Boolean function f : {0, 1}8 ! {0, 1} has deg(f) = 4 and s(f) = 8. It is
constructed by retrieving the polynomial of f : {0, 1}9 ! {0, 1} from Section 5.4.2 on the
input (x1, . . . , x8, 0):

f(x1, . . . , x8) =
8X

i=1

xi �
X

{i,j}2([8]2 )

xixj +
X

{i,j,k}2A

xixjxk �
X

{i,j,k,l}2B

xixjxkxl,

where

A = {{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6},
{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6},
{1, 7, 8}, {2, 7, 8}, {3, 7, 8}, {1, 2, 7}, {1, 2, 8}, {1, 3, 7}, {1, 3, 8}, {2, 3, 7}, {2, 3, 8},
{4, 7, 8}, {5, 7, 8}, {6, 7, 8}, {4, 5, 7}, {4, 5, 8}, {4, 6, 7}, {4, 6, 8}, {5, 6, 7}, {5, 6, 8}}

B = {{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5},
{2, 3, 4, 6}, {2, 3, 5, 6}, {1, 2, 7, 8}, {1, 3, 7, 8}, {2, 3, 7, 8}, {4, 5, 7, 8}, {4, 6, 7, 8},
{5, 6, 7, 8}}

For some input x = (x1, . . . , x8), the function f(x) can be represented by the following
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table:
|x| f<=2

(x) f=3
(x) f=4

(x) f(x)
0 0 0 0 0
1 1 0 0 1
2 1 0 0 1

3 0
0 20/56 times
1 36/56 times

0
0 20/56 times
1 36/56 times

4 �2
2 45/70 times
3 10/70 times
4 15/70 times

0 55/70 times
-1 15/70 times

0 45/70 times
1 25/70 times

5 �5 6 48/56 times
8 8/56 times

0 12/56 times
-1 36/56 times
-3 8/56 times

0 36/56 times
1 20/56 times

6 �9
12 9/28 times
13 18/28 times
18 1/28 times

-3 27/28 times
-9 1/28 times

0 10/28 times
1 18/28 times

7 �14 22 6/8 times
24 2/8 times

-7 6/8 times
-9 2/8 times

1

8 �20 36 �15 1

Note that this function is an explicit form of solution 8 from the table in Section 5.3.1.

5.4 n=9

The following system of equations is checked for solutions:
2

66664

2.5 �1
5 �3

8.75 �7
14 �14
21 �25.2

3

77775


Y3,1

Y4,1

�
=

2

66664

h5

h6

h7

h8

h9

3

77775

where

h5 2
(
5
0�
9
5

� , 5 1�
9
5

� , . . . 5
�
9
5

�
�
9
5

�
)
, h6 2

(
9
0�
9
6

� , 9 1�
9
6

� , . . . 9
�
9
6

�
�
9
6

�
)
,

h7 2
(
14

0�
9
7

� , 14 1�
9
7

� , . . . 14
�
9
7

�
�
9
7

�
)
, h8 2

(
20

0�
9
8

� , 20 1�
9
8

� , . . . 20
�
9
8

�
�
9
8

�
)
, h9 2 {27, 28} .

5.4.1 Solutions

Exact solutions are shown in the table below. Solutions are enumerated for reference.

h5 h6 h7 h8 h9 (Y3,1,Y4,1) map

1 75/14 135/14 15 21 27 (2.571, 1.071) (Y3,5, Y4,4) = (36, 15)
2 5 55/6 175/12 21 28 (2.333, 0.833) (Y3,6, Y4,5) = (49, 21)⇤
3 635/126 55/6 130/9 185/9 27 (2.381, 0.913) (Y3,6, Y4,5) = (50, 23)⇤
4 215/42 65/7 175/12 62/3 27 (2.429, 0.952) (Y3,5, Y4,5) = (34, 24)⇤
5 655/126 395/42 265/18 187/9 27 (2.476, 0.992) (Y3,6, Y4,5) = (52, 25)⇤
6 95/18 200/21 535/36 188/9 27 (2.524, 1.032) (Y3,6, Y4,5) = (53, 26)⇤
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5.4.2 Boolean Functions

Using composition on the function f 0 : {0, 1}3 ! {0, 1} with s(f 0) = 3, deg(f 0) = 2,
found in [NW95], the following function f : {0, 1}9 ! {0, 1} with s(f) = 9, deg(f) = 4 is
constructed:

f(x1, . . . , x9) = f 0 ⇧ f 0 =
9X

i=1

xi �
X

{i,j}2([9]2 )

xixj +
X

{i,j,k}2A

xixjxk �
X

{i,j,k,l}2B

xixjxkxl,

where

A = {{1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6},
{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6},
{1, 7, 8}, {1, 7, 9}, {1, 8, 9}, {2, 7, 8}, {2, 7, 9}, {2, 8, 9}, {3, 7, 8}, {3, 7, 9}, {3, 8, 9},
{1, 2, 7}, {1, 2, 8}, {1, 2, 9}, {1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {2, 3, 7}, {2, 3, 8}, {2, 3, 9},
{4, 7, 8}, {4, 7, 9}, {4, 8, 9}, {5, 7, 8}, {5, 7, 9}, {5, 8, 9}, {6, 7, 8}, {6, 7, 9}, {6, 8, 9},
{4, 5, 7}, {4, 5, 8}, {4, 5, 9}, {4, 6, 7}, {4, 6, 8}, {4, 6, 9}, {5, 6, 7}, {5, 6, 8}, {5, 6, 9}}

B = {{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5},
{2, 3, 4, 6}, {2, 3, 5, 6}, {1, 2, 7, 8}, {1, 2, 7, 9}, {1, 2, 8, 9}, {1, 3, 7, 8}, {1, 3, 7, 9},
{1, 3, 8, 9}, {2, 3, 7, 8}, {2, 3, 7, 9}, {2, 3, 8, 9}, {4, 5, 7, 8}, {4, 5, 7, 9}, {4, 5, 8, 9},
{4, 6, 7, 8}, {4, 6, 7, 9}, {4, 6, 8, 9}, {5, 6, 7, 8}, {5, 6, 7, 9}, {5, 6, 8, 9}}

For some input x = (x1, . . . , x9), the function f(x) can be represented by the following
table:

|x| f<=2
(x) f=3

(x) f=4
(x) f(x)

0 0 0 0 0
1 1 0 0 1
2 1 0 0 1

3 0
0 30/84 times
1 54/84 times

0
0 30/84 times
1 54/84 times

4 �2
2 81/126 times
3 18/126 times
4 27/126 times

0 99/126 times
-1 27/126 times

0 81/126 times
1 45/126 times

5 �5 6 108/126 times
9 18/126 times

0 27/126 times
-1 81/126 times
-3 18/126 times

0 81/126 times
1 45/126 times

6 �9
12 27/84 times
13 54/84 times
18 3/84 times

-3 81/84 times
-9 3/84 times

0 30/84 times
1 54/84 times

7 �14 22 27/36 times
24 9/36 times

-7 27/36 times
-9 9/36 times

1

8 �20 36 �15 1
9 �27 54 �27 0

Note that the degree 3 terms are level 5 upper well balanced, with Y3,5 = 36, and the
degree 4 terms are level 4 upper well balanced, with Y4,4 = 15. This Boolean function is
an explicit form of solution 1 from the table in Section 5.4.1.
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5.5 n=10

The following system of equations is checked for solutions:

2

6666664

2.5 �1
5 �3

8.75 �7
14 �14
21 �25.2
30 �42

3

7777775


Y3,1

Y4,1

�
=

2

6666664

h5

h6

h7

h8

h9

h10

3

7777775

where

h5 2
(
5

0�
10
5

� , 5 1�
10
5

� , . . . 5
�
10
5

�
�
10
5

�
)
, h6 2

(
9

0�
10
6

� , 9 1�
10
6

� , . . . 9
�
10
6

�
�
10
6

�
)
,

h7 2
(
14

0�
10
7

� , 14 1�
10
7

� , . . . 14
�
10
7

�
�
10
7

�
)
, h8 2

(
20

0�
10
8

� , 20 1�
10
8

� , . . . 20
�
10
8

�
�
10
8

�
)
,

h9 2
(
27

0�
10
9

� , 27 1�
10
9

� , . . . 27
�
10
9

�
�
10
9

�
)
, h10 2 {35, 36}

5.5.1 Solutions

Exact solutions are shown in the table below. Solutions are enumerated for reference.

h5 h6 h7 h8 h9 h10 (Y3,1,Y4,1) map

1 5 55/6 175/12 21 28 35 (2.333, 0.833) (Y3,6, Y4,5) = (49, 21)

Using Remark 6, note that the above mapping corresponds to a set of 70 degree 3 terms
and 35 degree 4 terms.

5.6 Conclusion

This exhaustive search reveals what properties a function f : {0, 1}k ! {0, 1} with
deg(f) = 4, s(f) = k that has upper well balanced degree 3 and degree 4 terms might
have for k 2 {7, 8, 9, 10}. Specifically, the search answers the following question: What
pairs (i, Y3,i) and (j, Y4,j) exist such that their expected sum, combined with f2, are
within the bounds of [0, 1] with respect to each hamming weight level? For inputs x
with hamming weight greater than m+ i or m+ j, Claim 4.3.3 is used to calculate their
expected sum. For inputs x with hamming weight less than m + i or m + j, Remark
7 is used to calculate their expected sum. While the properties of the functions are
given, verifying whether a function with the properties exists, and then creating upper
well balanced subsets that fit these properties is a hard task. The next chapter discusses
methods to generate well balanced sets.
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Chapter 6

Creating Well Balanced Sets

In Chapter 4, well balanced sets were defined, and Claims 4.2.5 and 4.3.4 introduced
conditions under which no such sets exist. These claims are important because generating
well balanced sets is not a trivial task, so it is useful to know when they cannot exist.
This chapter explores two methods to generate well balanced sets.

The first method of creating well balanced sets is by using the explicit form of a
maximal binary constant weight code. A maximal binary constant weight code A(n, 4,m)
is the maximum amount of binary strings of length n with hamming weight m such that
any two of the strings have a hamming distance greater than or equal to 4.

The second method of creating well balanced sets is through an algorithm which se-
quentially picks elements t 2

�
[n]
m

�
such that the distance from the subset being generated

to an upper well balanced subset is minimized.

6.1 Maximal Binary Constant Weight Codes

A Binary Constant Weight Code with parameters n, d, w is a set of binary strings each
of size n with hamming weight w such that any pair of strings have a hamming distance
greater than or equal to d. Recall that the hamming distance between strings x, y 2
{0, 1}n, denoted |x� y|, is the number of positions i such that xi 6= yi.

A central problem for binary constant weight codes is finding the maximum size of a
binary code. We denote this value as A(n, d, w). A partial table is shown below for lower
bounds on values A(n, 4, w) [BE90]. Note that values with a period indicate optimal
values.

n\w 3 4 5 6 7 8

6 4.
7 7.
8 8. 14.
9 12. 18.
10 13. 30. 36.
11 17. 35. 66.
12 20. 51. 80. 132.
13 26. 65. 123 166
14 28. 91. 169 278 325
15 35. 105. 242 399 585
16 37. 140. 322 624 836 1170
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Note that there exists a bijection f : {0, 1}n ! P ([n]) between the set of all binary strings
of length n and the power set of [n]. Therefore, there is a one-to-one correspondence
between binary strings {0, 1}n with hamming weight w to elements in

�
[n]
w

�
. We say

that the hamming distance between two subsets a, b 2
�
[n]
w

�
, denoted |a � b|, is equal to

|f�1(a) � f�1(b)|. For the rest of the section, note that elements of
�
[n]
w

�
are used when

working with binary constant weight codes.
We notice that many, but not all, of the explicit forms of optimal A(n, 4, w) are upper

and lower well balanced. Below are some examples of maximal binary constant weight
codes that are well balanced.

Example 6.1.1. The explicit form of A(12, 4, 6) ✓
�
[12]
6

�
is level 1 upper well balanced,

with Y6,1 = 1, and level 1 lower well balanced, with X6,1 = 1. The explicit form of
A(12, 4, 6) can be found in the appendix.

Example 6.1.2. The explicit form of A(9, 4, 3) ✓
�
[9]
3

�
is level 4 upper well balanced, with

Y3,4 = 5, and level 1 lower well balanced, with X3,1 = 1. The explicit form of A(9, 4, 3)
can be found in the appendix.

Example 6.1.3. The explicit form of A(10, 4, 4) ✓
�
[10]
4

�
is level 3 upper well balanced,

with Y4,3 = 5, and is level 1 lower well balanced, with X4,1 = 1. The explicit form of
A(10, 4, 4) can be found in the appendix.

Example 6.1.4. The explicit form of A(11, 4, 5) ✓
�
[11]
5

�
is level 2 upper well balanced,

with Y5,2 = 3, and is level 1 lower well balanced, with X5,1 = 1. The explicit form of
A(11, 4, 5) can be found in the appendix.

The following claim provides a bound on the Y value of an upper well balanced subset
retrieved from an explicit code A(n, 4,m). This is useful in order to understand the
limitations of using maximal binary constant weight codes as a source for well balanced
sets.

Claim 6.1.5. If the explicit form of A(n, 4,m) is level i upper well balanced, then Ym,i 
1
i

�
m+i

m+1

�
.

Proof. Let A ✓
�
[n]
m

�
be the explicit subset of A(n, 4,m). We begin by proving that

elements of A do not appear in subsets of [n] of size m+ 1 more than once.

Lemma 6.1.6. Let A ✓
�
[n]
m

�
be the explicit subset of A(n, 4,m). Then for every t 2�

[n]
m+1

�
, |{a 2 A|a ✓ t}|  1.

Proof. Assume for contradiction that there exists a t 2
�

[n]
m+1

�
for which |{a 2 A|a ✓

t}| > 1. Let a1, a2 2 A such that a1 ✓ t, a2 ✓ t. It follows directly that |a1 \ a2| = m� 1.
This corresponds to a pairwise hamming distance of 2 < 4. Thus we have reached a
contradiction.

Lemma 6.1.6 implies that A cannot be level 1 upper well balanced such that Ym,1 > 1.
Using Claim 4.3.3, we can say that A cannot be level i upper well balanced such that
Ym,i >

1
i

�
m+i

m+1

�
. Since A is level i upper well balanced, it follows that Ym,i  1

i

�
m+i

m+1

�

The following claim makes an equivalence between optimal explicit forms ofA(n, 4, n/2)
and level 1 upper well balanced subsets S ✓

�
[n]
n/2

�
with Yn/2,1 = 1.
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Claim 6.1.7. There exists a subset S ✓
�
[n]
n/2

�
that is level 1 upper well balanced with

Yn/2,1 = 1 if and only if the optimal value of A(n, 4, n/2) = 2
n

�
n

n/2+1

�
.

Proof. We begin by proving that if S ✓
�
[n]
n/2

�
is a level 1 upper well balanced subset with

Yn/2,1 = 1, then it is an explicit code of the optimal value of A(n, 4, n/2) = |S|.
First, we show that S is a binary constant weight code. For any two elements s1, s2 2

S, we note that the hamming distance between them is at least 4. If it were 0, they would
be the same element, and if it were 2, then s1 [ s2 2

�
[n]

n/2+1

�
, which is a contradiction to

their upper well balanced property. It follows that S is a valid binary constant weight
code with parameters n, 4, n/2. Using Remark 6, |S| = 2

n

�
n

n/2+1

�
.

We will now prove that the optimal value of A(n, 4, n/2)  |S|. Assume that there
exists an explicit code A for which A(n, 4, n/2) > |S|.

Note that for each a 2 A, |{t 2
�

[n]
n/2+1

�
|a ✓ t}| = n � n/2 = n/2. Note also that

for every a1, a2 2 A, |{t 2
�

[n]
n/2+1

�
|a1 ✓ t} \ {t 2

�
[n]

n/2+1

�
|a2 ✓ t}| = 0. To see this,

assume there exists an a1, a2 2 A such that a1 ✓ t, a2 ✓ t for some t 2
�

[n]
n/2+1

�
. Then

|a1 \ a2| = m� 1, so their hamming distance would be 2 < 4. This is a contradiction.
It follows that |{t 2

�
[n]

n/2+1

�
|a 2 A, a ✓ t}| > n/2 · |S| =

�
n

n/2+1

�
. By the Pigeonhole

Principle, there exists a t 2
�

n

n/2+1

�
for which |{a 2 A|a ✓ t}| > 1. Let a1, a2 2 {a 2

A|a ✓ t}. Then |a1 \ a2| = m� 1, so their hamming distance would be 2 < 4. This is a
contradiction. Therefore the optimal value of A(n, 4, n/2)  |S|.

We now prove that if the optimal value of A(n, 4, n/2) = 2
n

�
n

n/2+1

�
, then the explicit

code of A(n, 4, n/2) is level 1 upper well balanced with Yn/2,1 = 1.
Let A be the explicit code of A(n, 4, n/2). Note that for every element a 2 A,

|{t 2
�

[n]
n/2+1

�
|a ✓ t}| = n � n/2 = n/2. Note also that for every a1, a2 2 A, |{t 2

�
[n]

n/2+1

�
|a1 ✓ t} \ {t 2

�
[n]

n/2+1

�
|a2 ✓ t}| = 0 (as discussed earlier in the proof). Thus

if A(n, 4, n/2) = 2
n

�
n

n/2+1

�
, |{t 2

�
[n]

n/2+1

�
|a 2 A, a ✓ t}| = n

2 · 2
n

�
n

n/2+1

�
=
�

n

n/2+1

�
. This

implies that each element t 2
�

n

n/2+1

�
includes exactly 1 element of A. By definition, this

means that A is level 1 upper well balanced, with Yn/2,1 = 1.

Using this claim and the table above, we know that there exists a level 1 upper well
balanced subset S ✓

�
[n]
m

�
with Ym,1 = 1 for (n,m) = (8, 4) and (12, 6), and there does

not exist such a subset for (n,m) = (10, 5).

6.2 A Least Squares Approach

The following distance metric measures the l2 proximity of a subset S ✓
�
[n]
m

�
to it being

a level i upper well balanced subset with Ym,i:

dist(S) =

0

B@
X

t2( [n]
m+i)

(Ym,i � |{s 2 S|s ✓ t}|)2

1

CA

1/2

Note that a similar metric could be used to measure the proximity of a subset S to it
being lower well balanced. The choice to use upper well balanced is arbitrary due to
Claim 4.4.2. The following remark notes that if dist(S) = 0 for a subset S, then S is
upper well balanced, and vice versa.
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Remark 8. dist(S) = 0 if and only if S ✓
�
[n]
m

�
is a level i upper well balanced subset

with Ym,i.

The following algorithm attempts to create an upper well balanced subset S ✓
�
[n]
m

�

by iterating through groups of
�
[n]
m

�
of size res and adding those that minimize dist(S)

the most.

Algorithm 2 Algorithm that attempts to create upper well balanced subsets by append-
ing elements from

�
[n]
m

�
to S that minimize dist(S) the most.

Require: n,m, i, Y, res . where 0 < Y < m+1
i

�
m+k

m+1

�

1: S  {}
2: choose C([n],m) . List

�
[n]
m

�

3: S size C(n�m, i)�1 ⇤ C(n,m+ i) ⇤ Y . See Remark 6
4: candidates C(choose, res) . where 1  res  S size
5:

6: while get size(S) < S size do

7: min dist MAXINT
8: min c None
9: for c 2 candidates do

10: curr dist = dist(S [ c)
11: if curr dist < min dist then
12: min dist curr dist
13: min c c
14: end if

15: end for

16:

17: S.append(min c)
18: for c 2 min c do
19: choose.remove(c)
20: end for

21: candidates C(choose, res)
22: end while

23:

24: return S

We note that as resolution! S size, the algorithm will generate an upper well balanced
subset with the desired properties, if one exists. However, as resolution ! S size, the

size of candidates =
� ([n]

m)
S size

�
grows quickly.

The algorithm run with parameters alg 2(6, 3, 1, 2, res) was able to find the Kushilevitz
function degree 3 terms for res 2 {3, 5, 6, 7, 8, 9, 10}. The algorithm run with parameters
alg 2(8, 4, 1, 1, res) was able to find a subset S ✓

�
[8]
4

�
which is level 1 upper well balanced,

with Y4,1 = 1 when tested with res 2 {1, 2, 3}.
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Chapter 7

Conclusion

This thesis studies the degree upper bound on sensitivity for Boolean functions. In
Chapter 2, we reprove the best known separation s(f)  deg(f)2, and we analyze the
Kushilevitz function in Chapter 3. The Kushilevitz Boolean function provides the largest
known gap between the sensitivity of a function and its degree: s(f) = deg(f)1.63. We
then define well balanced sets, which gives a framework to many Boolean functions that
have high sensitivity and low degree. Boolean functions f : {0, 1}i ! {0, 1} with deg(f) =
4, s(f) = i are presented for i 2 {7, 8, 9}. Using construction methods from Chapter 6, we
present a novel function f : {0, 1}7 ! {0, 1} with deg(f) = 4, s(f) = 7 which has upper
well balanced degree 3 and degree 4 terms. Furthermore, we suggest what properties
a function f 0 : {0, 1}10 ! {0, 1} with deg(f 0) = 4, s(f 0) = 10 and upper well balanced
degree 3 and degree 4 terms might have. Constructing such a function f 0 would lead to a
gap larger than the Kushilevitz function: s(f 0) = deg(f 0)1.66. Finally, this thesis reviews
two methods of generating well balanced subsets. Maximal binary constant weight codes
are a source of some well balanced subsets, while we also present an algorithm that can
generate well balanced subsets given reasonably small parameters.

7.1 Future Work

Future work involves generating degree 3 and degree 4 terms which comprise a fully
sensitive Boolean function on 10 bits. Also, analyzing the proof in [ABDK+21a] and
seeing where there are opportunities for stronger claims could help tighten the degree
upper bound on sensitivity. We present suggested problems:

1. Does there exist an upper well balanced subset S ✓
�
[10]
3

�
and an upper well balanced

subset S ✓
�
[10]
4

�
which comprise the degree 3 and degree 4 terms of a fully sensitive

Boolean function on 10 bits?

2. What are the necessary and su�cient conditions for a level i well balanced subset
S ✓

�
[n]
m

�
to exist?

3. Gathan [vzGR97] states that for n � 2 and randomly chosen symmetric Boolean
function f : {0, 1}n ! {0, 1}, P (n�deg(f) � 1) < 2�n/3. Many of the Boolean func-
tions studied in this thesis are symmetric for some hamming weights, but not oth-
ers. How does P (n�deg(f) � 1) compare for a randomly chosen “semi-symmetric”
function f , such as those seen in this thesis?
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Chapter 8

Appendix

The following subset S ✓
�
[8]
4

�
is level 1 upper well balanced with Y4,1 = 1. Note that

this is also the explicit form of A(8, 4, 4).

{{1, 2, 3, 7}, {1, 2, 5, 6}, {1, 3, 4, 6}, {1, 4, 5, 7}, {2, 3, 4, 5}, {2, 4, 6, 7}, {3, 5, 6, 7},
{4, 5, 6, 8}, {3, 4, 7, 8}, {2, 5, 7, 8}, {2, 3, 6, 8}, {1, 6, 7, 8}, {1, 3, 5, 8}, {1, 2, 4, 8}}

The following subset S ✓
�
[9]
3

�
is an explicit form of A(9, 4, 3):

{{5, 7, 9}, {4, 7, 8}, {4, 5, 6}, {3, 6, 8}, {3, 4, 9}, {2, 8, 9}, {2, 6, 7}, {2, 3, 5}, {1, 6, 9},
{1, 5, 8}, {1, 3, 7}, {1, 2, 4}}

The following subset S ✓
�
[10]
4

�
is an explicit form of A(10, 4, 4):

{{5, 7, 9, 10}, {5, 6, 8, 9}, {4, 7, 8, 10}, {4, 6, 7, 9}, {4, 5, 6, 10}, {3, 7, 8, 9}, {1, 2, 5, 6},
{3, 5, 6, 7}, {3, 4, 9, 10}, {3, 4, 5, 8}, {2, 8, 9, 10}, {2, 6, 7, 10}, {2, 5, 7, 8}, {2, 4, 6, 8},
{2, 4, 5, 9}, {2, 3, 6, 9}, {2, 3, 5, 10}, {2, 3, 4, 7}, {1, 6, 9, 10}, {1, 6, 7, 8}, {1, 5, 8, 10},
{1, 4, 8, 9}, {1, 4, 5, 7}, {1, 3, 7, 10}, {1, 3, 5, 9}, {1, 3, 4, 6}, {1, 2, 4, 10}, {3, 6, 8, 10},
{1, 2, 7, 9}, {1, 2, 3, 8}}

The following subset S ✓
�
[8]
4

�
is level 3 upper well balanced, with Y4,3 = 10.

{{1, 2, 3, 7}, {1, 2, 5, 6}, {1, 3, 4, 6}, {1, 4, 5, 7}, {2, 3, 4, 5}, {2, 4, 6, 7}, {3, 5, 6, 7},
{4, 5, 6, 8}, {3, 4, 7, 8}, {2, 5, 7, 8}, {2, 3, 6, 8}, {1, 6, 7, 8}, {1, 3, 5, 8}, {1, 2, 4, 8},
{2, 4, 5, 6}, {2, 3, 6, 7}, {2, 3, 5, 8}, {1, 4, 6, 7}, {1, 4, 5, 8}, {1, 3, 7, 8}}

The following subset S ✓
�
[10]
4

�
is level 5 upper well balanced with Y4,5 = 21:

{{5, 7, 9, 10}, {5, 6, 8, 9}, {4, 7, 8, 10}, {4, 6, 7, 9}, {4, 5, 6, 10}, {3, 7, 8, 9}, {3, 6, 8, 10},
{3, 5, 6, 7}, {3, 4, 9, 10}, {3, 4, 5, 8}, {2, 8, 9, 10}, {2, 6, 7, 10}, {2, 5, 7, 8}, {2, 4, 6, 8},
{2, 4, 5, 9}, {2, 3, 6, 9}, {2, 3, 5, 10}, {2, 3, 4, 7}, {1, 6, 9, 10}, {1, 6, 7, 8}, {1, 5, 8, 10},
{1, 4, 8, 9}, {1, 4, 5, 7}, {1, 3, 7, 10}, {1, 3, 5, 9}, {1, 3, 4, 6}, {1, 2, 7, 9}, {1, 2, 5, 6},
{1, 2, 4, 10}, {1, 2, 3, 8}, {7, 8, 9, 10}, {3, 4, 5, 6}, {1, 2, 9, 10}, {5, 6, 7, 8}, {1, 2, 3, 4}}
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The following subset S ✓
�
[12]
6

�
is an explicit form of A(12, 4, 6):

{{2, 3, 4, 5, 6, 7}, {1, 2, 4, 6, 7, 8}, {1, 3, 5, 6, 7, 8}, {1, 2, 3, 4, 5, 8}, {1, 3, 4, 5, 7, 9},
{2, 3, 5, 6, 8, 9}, {1, 2, 3, 4, 6, 9}, {2, 4, 5, 7, 8, 9}, {1, 2, 5, 6, 7, 9}, {3, 4, 6, 7, 8, 9},
{1, 4, 5, 6, 8, 9}, {1, 2, 3, 7, 8, 9}, {1, 2, 4, 5, 6, 10}, {2, 3, 4, 7, 8, 10}, {1, 2, 3, 5, 7, 10},
{3, 4, 5, 6, 8, 10}, {4, 5, 6, 7, 9, 10}, {2, 3, 6, 7, 9, 10}, {2, 4, 6, 8, 9, 10}, {3, 5, 7, 8, 9, 10},
{1, 2, 5, 8, 9, 10}, {1, 3, 4, 8, 9, 10}, {1, 3, 5, 6, 9, 10}, {1, 2, 4, 7, 9, 10}, {1, 6, 7, 8, 9, 10},
{1, 2, 3, 6, 8, 10}, {1, 4, 5, 7, 8, 10}, {1, 3, 4, 6, 7, 10}, {2, 5, 6, 7, 8, 10}, {2, 3, 4, 5, 9, 10},
{1, 3, 4, 6, 8, 11}, {1, 2, 5, 7, 8, 11}, {2, 3, 6, 7, 8, 11}, {1, 4, 5, 6, 7, 11}, {1, 2, 4, 5, 9, 11},
{1, 3, 6, 7, 9, 11}, {3, 4, 5, 6, 9, 11}, {2, 3, 4, 8, 9, 11}, {5, 6, 7, 8, 9, 11}, {1, 4, 7, 8, 9, 11},
{2, 3, 5, 7, 9, 11}, {1, 2, 6, 8, 9, 11}, {1, 2, 3, 4, 7, 11}, {2, 4, 5, 6, 8, 11}, {1, 3, 5, 8, 9, 11},
{1, 2, 3, 5, 6, 11}, {3, 4, 5, 7, 8, 11}, {2, 4, 6, 7, 9, 11}, {2, 4, 5, 7, 10, 11}, {1, 3, 4, 5, 10, 11},
{1, 2, 6, 7, 10, 11}, {1, 5, 6, 8, 10, 11}, {2, 3, 5, 8, 10, 11}, {4, 6, 7, 8, 10, 11}, {2, 3, 4, 6, 10, 11},
{1, 3, 7, 8, 10, 11}, {1, 2, 3, 9, 10, 11}, {4, 5, 8, 9, 10, 11}, {2, 5, 6, 9, 10, 11}, {3, 4, 7, 9, 10, 11},
{3, 5, 6, 7, 10, 11}, {1, 4, 6, 9, 10, 11}, {2, 7, 8, 9, 10, 11}, {1, 2, 4, 8, 10, 11}, {1, 5, 7, 9, 10, 11},
{3, 6, 8, 9, 10, 11}, {4, 5, 6, 7, 8, 12}, {1, 2, 3, 6, 7, 12}, {1, 2, 5, 6, 8, 12}, {1, 3, 4, 7, 8, 12},
{2, 3, 4, 7, 9, 12}, {1, 2, 3, 5, 9, 12}, {1, 4, 6, 7, 9, 12}, {1, 3, 6, 8, 9, 12}, {3, 4, 5, 8, 9, 12},
{2, 6, 7, 8, 9, 12}, {2, 4, 5, 6, 9, 12}, {1, 5, 7, 8, 9, 12}, {1, 3, 4, 5, 6, 12}, {2, 3, 5, 7, 8, 12},
{1, 2, 4, 8, 9, 12}, {1, 2, 4, 5, 7, 12}, {2, 3, 4, 6, 8, 12}, {3, 5, 6, 7, 9, 12}, {1, 2, 3, 4, 10, 12},
{1, 5, 6, 7, 10, 12}, {2, 3, 5, 6, 10, 12}, {2, 4, 5, 8, 10, 12}, {3, 6, 7, 8, 10, 12}, {1, 2, 7, 8, 10, 12},
{3, 4, 5, 7, 10, 12}, {1, 4, 6, 8, 10, 12}, {3, 4, 6, 9, 10, 12}, {2, 5, 7, 9, 10, 12}, {1, 4, 5, 9, 10, 12},
{2, 3, 8, 9, 10, 12}, {2, 4, 6, 7, 10, 12}, {1, 3, 7, 9, 10, 12}, {5, 6, 8, 9, 10, 12}, {1, 3, 5, 8, 10, 12},
{1, 2, 6, 9, 10, 12}, {4, 7, 8, 9, 10, 12}, {1, 2, 4, 6, 11, 12}, {1, 3, 5, 7, 11, 12}, {3, 4, 6, 7, 11, 12},
{2, 5, 6, 7, 11, 12}, {1, 2, 3, 8, 11, 12}, {1, 4, 5, 8, 11, 12}, {3, 5, 6, 8, 11, 12}, {2, 4, 7, 8, 11, 12},
{2, 3, 4, 5, 11, 12}, {1, 5, 6, 9, 11, 12}, {3, 7, 8, 9, 11, 12}, {1, 2, 7, 9, 11, 12}, {4, 6, 8, 9, 11, 12},
{2, 3, 6, 9, 11, 12}, {4, 5, 7, 9, 11, 12}, {2, 5, 8, 9, 11, 12}, {1, 3, 4, 9, 11, 12}, {1, 6, 7, 8, 11, 12},
{1, 4, 7, 10, 11, 12}, {2, 6, 8, 10, 11, 12}, {1, 3, 6, 10, 11, 12}, {5, 7, 8, 10, 11, 12},
{3, 5, 9, 10, 11, 12}, {2, 4, 9, 10, 11, 12}, {1, 8, 9, 10, 11, 12}, {6, 7, 9, 10, 11, 12},
{3, 4, 8, 10, 11, 12}, {1, 2, 5, 10, 11, 12}, {4, 5, 6, 10, 11, 12}, {2, 3, 7, 10, 11, 12}}
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