Course:	Civ_Env 216, Mechanics of Materials, Spring 2023			
Credits:	1 Unit credit; contact hours; 3 hrs lecture			
Instructor:	Arantzazu Alarcon-Fleming			
Text:	<i>Mechanics of Materials,</i> F.B. Beer, E. R. Johnston, J. T. DeWolf, D. F. Mazurek, 8 th edition, Mc Graw Hill.			
Description:	Analytical study of stresses and deformations and their application to the design of machine and structural elements subjected to static loads.			
Prereq:	GEN_ENG 205-2 (Engineering Analysis II- Statics)			
Required :	Required			
Smarifia Caala far the Courses				

Specific Goals for the Course:

By the end of the course, students should be able to

- 1. Visualize and understand the fundamental behavior of structures and solids (ABET #1)
- Compute stresses in several types of structural and machine components subjected to external loading conditions (axial, torsion, bending and general transverse loading) (ABET #1,2)
- 3. Determine internal forces and stresses in indeterminate structures by using of equations of equilibrium, force-temperature-deformation relations, and expressions for the geometry of the deformations (ABET #1)
- 4. Conduct preliminary design of simple structural and machine components (ABET #1,2)
- 5. Write computer codes to design components (ABET #3)
- 6. Present calculations in a professional manner (ABET #3)

Course Grades

- **Homework 10%** Weekly homework due on Canvas. Solutions will be posted after due date. No late homework will be accepted. (Guidelines provided)
- Lab reports 15% Three written reports on computer lab assignments (Rubric provided)
- Midterm 1 20% Exam on Tuesday April 18, 11-11.50 am
- Midterm2 20% Exam on <u>Tuesday May 16, 11-11.50 am</u>
- Final exam 35% Two-hour final exam scheduled for Wednesday June 7, 7-9 pm

COURSE OUTLINE

Lecture	Date	Торіс	Reading (from textbook and my videos (PLi)
Lecture 1	March 28	Organization	
Lecture 2	March 29	Stress and Strain	1.2 - 1.4 & (*) videos PL1 & 2.1A & 2.7
Lecture 3	March 31	Matlab Review	
Lecture 4	April 3	Mechanical Properties, Poisson's Ratio & Multiaxial Loading	2.1B-2.1F & App. D, 2.4 & 2.5
Lecture 5	April 4	Axial Loading*	2.1G, 2.10 & (*) videos PL2

Lecture 6	April 5	Statically Indeterminate Axially Loaded Members	2.2
Lecture 7	April 7	Thermal Effects	2.3
Lecture 8	April 10	Torsion of circular shafts	3.1
Lecture 9	April 11	Angle of twist	3.2
Lecture 10	April 12	Statically Indeterminate Torque Loaded Members	3.3
Lecture 11	April 14	Statically Indeterminate Torque Loaded Members	
Lecture 12	April 17	Review	
Exam	April 18	Midterm # 1	(*) PL9
Lecture 13	April 19	Pure Bending	4.1-4.2
Lecture 14	April 21	Centroids and Moment of Inertia*	Appendix B & C & (*) videos PL3
Lecture 15	April 24	Shear and Bending Moment Diagrams	5.1, 5.2
Lecture 16	April 25	Shear and Bending Moment Diagrams*	(*) videos PL4
Lecture 17	April 26	Shear and Bending Moment Diagrams	
Lecture 18	April 28	Design of Prismatic Beams for Bending	5.3, Appendix E
Lecture 19	May 1	Design of Prismatic Beams for Bending	
Lecture 20	May 2	Shear Stress in Beams	6.1 & 6.2
Lecture 21	May 3	Shear Stress in Beams*	(*) videos PL8
Lecture 22	May 5	Shear Stress in Beams	
Lecture 23	May 8	Deflection of Beams: The elastic curve	9.1A
Lecture 24	May 9	Deflection of beams: Slope and Displacement by Integration	9.1B
Lecture 25	May 10	Method of Superposition: Statically Determinate Beams	9.4A & (*) videos PL6
Lecture 26	May 12	Statically Indeterminate Beams	9.4B
Lecture 27	May 15	Review	
Exam	May 16	Midterm # 2	
Lecture 28	May 17	Transformation of plane stress	7.1
Lecture 29	May 19	Mohr's Circle for plane stress	7.2 & (*) videos PL5
Lecture 30	May 22	Mohr's Circle	
Lecture 31	May 23	Principal Stresses under a given loading	8.1 & 8.3
Lecture 32	May 24	Principal Stresses under a given	

		loading	
Lecture 33	May 26	Buckling of Columns	10.1 & (*) videos PL7
WEEK 10	May 29	Memorial Day	NO CLASS
Lecture 34	May 30	Review Final Exam	
Lecture 35	May 31	Review Final Exam	
Lecture 36	June 2	Review Final Exam	

Contact Information:

Arantzazu Alarcon-Fleming, Ph.D., P.E., LEED AP Tech A220, Phone (847) 467-1392 E-mail: <u>arancha.alarconfleming@northwestern.edu</u> Office hours: Monday and Tuesday 12-1pm and Wednesday 2.30-4.30 pm and by appointment