CIV_ENV 455
Plasticity and Limit Analysis
Winter Quarter 2023

Instructor
Prof. James P. Hambleton
Office: Tech A122
Office hours: Mon 12:00-1:30pm; Wed 12:00-1:30pm; by appointment
Phone: (847)491-4858
Email: jphambleton@northwestern.edu

Class Times
Monday and Wednesday, 8:00-9:50am

Location
Technological Institute L170

Class Website
Northwestern Course Management System (Canvas)
http://www.it.northwestern.edu/education/login.html

Required Textbook
None

Suggested Reading

Prerequisites
Familiarity with elementary mechanics, including the concepts of stress, strain, and equilibrium
Familiarity with linear algebra and basic programming

Course Objectives

• Introduce fundamental theory of plasticity, including the concepts of yielding and plastic flow in materials and, by extension, the concepts of limit (collapse) loads and collapse mechanisms in boundary value problems
• Introduce the various techniques available for computing limit loads, including the slip-line method (method of characteristics), limit equilibrium, analytical and numerical limit analysis, and the finite element method*
• Understand and apply limit analysis as a method for evaluating rigorous bounds on limit loads for stability problems in engineering
• Understand key components of finite element limit analysis (FELA) and apply commercial code
• Introduce advanced concepts

* The course Civ_ENV 456 Computational Geotechnics addresses the implementation of plasticity, and aspects of material nonlinearity, in the displacement-based finite element method.
Course Outline

1. Introductions and course overview
2. Stress; Stress-traction relationship; Equilibrium
3. Motion and displacement; Strain
4. Mechanical properties of soils and solids
5. Preliminary Project Presentation, tentatively due Wednesday, January 25th
6. Perfect plasticity
7. Stress invariants; Principal stress space
8. Yield condition
9. Yield condition
10. Plastic flow rule
11. Boundary value problems
12. Limit equilibrium; slip-line method (method of characteristics); limit analysis; finite element method
13. Project Progress Reports tentatively due Wednesday, February 15th
14. Limit theorems
15. Lower bound limit analysis
16. Upper bound limit analysis
17. Possibilities and limitations of plasticity theory and limit analysis; non-associated flow
18. Advanced topics: generalized forces, steady-state flow problems, etc.
19. Final Project Presentation, tentatively due Wednesday, March 18th

Course Assessment

Grades are determined based on the following components, weighted as indicated:

- 15% Class participation (attendance, completion of in-class activities and quizzes, etc.)
- 15% Homework
- 15% Preliminary Project Presentation
- 20% Progress Report
- 35% Final Project Presentation

Inclusivity in CEE 455 – Plasticity and Limit Analysis

The instructor and Northwestern University are committed to creating an inclusive environment in which all students are respected and valued. We will not tolerate disrespectful language or behavior on the basis of age, ability, color/ethnicity/race, gender identity/expression, marital/parental status, military/veteran’s status, national origin, political affiliation, religious/spiritual beliefs, sex, sexual orientation, socioeconomic status or other visible or non-visible differences.

Accessibility Statement

Northwestern University is committed to providing the most accessible learning environment as possible for students with disabilities. Should you anticipate or experience disability-related barriers in the academic setting, please contact AccessibleNU to move forward with the university’s established accommodation process (e: accessiblenu@northwestern.edu; p: 847-467-5530). If you already have established accommodations with AccessibleNU, please let me know as soon as possible, preferably
within the first two weeks of the term, so we can work together to implement your disability accommodations. Disability information, including academic accommodations, is confidential under the Family Educational Rights and Privacy Act.

Recording of Synchronous Remote Class Sessions

This class or portions of this class will be recorded by the instructor for educational purpose and available to the class during the quarter. Your instructor will communicate how you can access the recordings. Portions of the course that contain images, questions or commentary/discussion by students will be edited out of any recordings that are saved beyond the current term.

Unauthorized student recording of classroom or other academic activities (including advising sessions or office hours) is prohibited. Unauthorized recording is unethical and may also be a violation of University policy and state law. Students requesting the use of assistive technology as an accommodation should contact AccessibleNU. Unauthorized use of classroom recordings – including distributing or posting them – is also prohibited. Under the University’s Copyright Policy, faculty own the copyright to instructional materials – including those resources created specifically for the purposes of instruction, such as syllabi, lectures and lecture notes, and presentations. Students cannot copy, reproduce, display, or distribute these materials. Students who engage in unauthorized recording, unauthorized use of a recording, or unauthorized distribution of instructional materials will be referred to the appropriate University office for follow-up.