
When Does Stochastic Gradient Algorithm Work Well?

Katya Scheinberg

Joint work with L. M. Nguyen, N. H. Nguyen, D. T. Phan and J. R.
Kalagnanam

Industrial and Systems Engineering Department

US & Mexico Workshop on
Optimization and its Applications

January 12, 2018

January 12, 2018Katya Scheinberg (Lehigh University) January 12, 2018 1 / 23



Outline

Basic setting

New look at convergence rates

Numerical evidence

Conclusions

Katya Scheinberg (Lehigh University) January 12, 2018 2 / 23



The usual SGD algorithm

Expected risk minimization

min
w∈Rd

{F (w) = E[f(w; ξ)]} ,

where ξ is a random variable obeying some distribution, or
empirical risk minimization (ERM):

min
w∈Rd

{
F (w) =

1
n

n∑
i=1

fi(w)

}
.
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Basic SG algorthms

Algorithm 1 Stochastic Gradient Method with Fixed Stepsize

1: Initialize w0, choose stepsize η > 0, and batch size b.
2: for i = 1, 2, · · · do
3: Generate random variables {ξt,i}bi=1 i.i.d.
4: Compute a stochastic gradient

gt =
1
b

b∑
i=1

∇f(wt; ξt,i).

5: Update the new iterate wt+1 = wt − ηgt.
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Two examples of behavior

min
w

{
F (w) =

1
n

n∑
i=1

(yi − (aT
i w)2)2

}
.

(i) All components fi(w) = (yi − (aT
i w)2)2 are small at w∗

(ii) Many components fi(w) = (yi − (aT
i w)2)2 are large at w∗

(i) (ii)
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Define quantities

Definition 1

Let w∗ be a stationary point of the objective function F (w). For any given
threshold ε > 0, define

pε := P
{
‖g∗‖2 ≤ ε

}
,

where g∗ = 1
b

∑b

i=1∇f(w∗; ξi).
We also define

Mε := E
[
‖g∗‖2 | ‖g∗‖2 > ε

]
.

Remark 1
pε decreases as ε increases. There exists an ε such that pε ≈ 1− ε.
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Strongly convex case

Theorem 1
Suppose that F (w) is µ-strongly convex and f(w; ξ) is L-smooth and convex
for every realization of ξ. Consider the fixed step SGD algorithm with η ≤ 1

L
.

Then, for any ε > 0

E[‖wt −w∗‖2] ≤ (1− µη(1− ηL))t‖w0 −w∗‖2

+
2η

µ(1− ηL)
pεε+

2η
µ(1− ηL)

(1− pε)Mε,

where w∗ = arg minw F (w).
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Strongly convex case

Corollary 1
For any ε such that 1− pε ≤ ε, and for η ≤ 1

2L , we have

E[‖wt −w∗‖2] ≤ (1− µη)t‖w0 −w∗‖2 +
2η
µ

(1 +Mε) ε.

If t ≥ T for T = 1
µη

log
(
µ‖w0−w∗‖2

2η(1+Mε)ε

)
, then

E[‖wt −w∗‖2] ≤
4η
µ

(1 +Mε) ε.
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Convex case

Theorem 2
Suppose that f(w; ξ) is L-smooth and convex for every realization of ξ. Let
η < 1

L
. Then for any ε > 0, we have

E[F (wt)− F (w∗)] ≤
‖w0 −w∗‖2

2η(1− ηL)t
+

η

(1− ηL)
pεε+

ηMε

(1− ηL)
(1− pε),

where w∗ is any optimal solution of F (w).
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Convex case

Corollary 2
For any ε such that 1− pε ≤ ε, and η ≤ 1

2L , it holds that

E[F (wt)− F (w∗)] ≤
‖w0 −w∗‖2

ηt
+ 2η (1 +Mε) ε.

Hence, if t ≥ T for T = ‖w0−w∗‖2

(2η2)(1+Mε)ε , we have

E[F (wt)− F (w∗)] ≤ 4η (1 +Mε) ε.
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Nonconvex case - assumption

Assumption 1

∃ N > 0, such that for any sequence of iterates w0, w1, . . . , wt of any
realization of SDG, there exists a stationary point w∗ of F (w) (possibly
dependent on that sequence) such that

1
t+ 1

t∑
k=0

(
E

[∥∥∥∥∥1
b

b∑
i=1

∇f(wk; ξk,i)−
1
b

b∑
i=1

∇f(w∗; ξk,i)

∥∥∥∥∥
2 ∣∣∣Fk])

≤ N
1

t+ 1

t∑
k=0

‖∇F (wk)‖2,

where the expectation is taken over random variables ξk,i. Let W∗ denote the
set of all such stationary points w∗, determined by the constant N and by
realizations w0, w1, . . . , wt.
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Nonconvex case - new definition

Definition 2
For any given threshold ε > 0, define

pε := inf
w∗
∈ W∗P

{
‖g∗‖2 ≤ ε

}
,

where g∗ = 1
b

∑b

i=1∇f(w∗; ξi).
Similarly,

Mε := sup
w∗∈W∗

E
[
‖g∗‖2 | ‖g∗‖2 > ε

]
.
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Nonconvex case - results

Theorem 3
Let Assumption 1 hold for some N > 0. Suppose that F is L-smooth and let
η < 1

LN
. Then, for any ε > 0, we have

1
t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤
[F (w0)− F ∗]

η (1− LηN) (t+ 1)

+
Lη

(1− LηN)
ε+

LηMε

(1− LηN)
(1− pε),

where F ∗ is any lower bound of F ; and pε and Mε are as defined.
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Nonconvex case - results

Corollary 3
For any ε such that 1− pε ≤ ε, and for η ≤ 1

2LN , we have

1
t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤
2[F (w0)− F ∗]

η(t+ 1)
+ 2Lη(1 +Mε)ε.

Hence, if t ≥ T for T = [F (w0)−F∗]
(Lη2)(1+Mε)ε , we have

1
t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤ 4Lη(1 +Mε)ε.
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Logistic Regression

Percentage of fi with small gradient value for different threshold ε

Datasets F (wSGD) − F (w∗) ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

covtype 5 · 10−4 100% 100% 100% 99.9995% 54.9340%
ijcnn1 (91701) 1 · 10−4 100% 100% 100% 96.8201% 89.0197%

ijcnn2 1 · 10−4 100% 100% 100% 99.2874% 90.4565%
w8a 1 · 10−4 100% 99.9899% 99.4231% 98.3557% 92.7818%
a9a 1 · 10−3 100% 100% 84.0945% 58.5824% 40.0909%

mushrooms 6 · 10−5 100% 100% 99.9261% 98.7568% 94.4239%
phishing 2 · 10−4 100% 100% 100% 89.9231% 73.8128%

skin nonskin 6 · 10−5 100% 100% 100% 99.6331% 91.3730%
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SGD behavior for logistic regression
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Neural Networks

Percentage of fi with small gradient value for different threshold ε (Neural
Networks)

Datasets Architecture ‖∇F (w∗)‖2 ε = 10−3 ε = 10−5 ε = 10−7 N M

MNIST FF 1.3 · 10−15 100% 100% 99.99% 6500 10−8

SVHN FF 3.5 · 10−3 99.94% 99.92% 99.91% 12000 500
MNIST CNN 1.6 · 10−17 100% 100% 100% 6083 10−8

SVHN CNN 8.1 · 10−7 99.99% 99.98% 99.96% 8068 0.18
CIFAR10 CNN 5.1 · 10−20 100% 100% 100% 1205 10−14

CIFAR100 CNN 5.5 · 10−2 99.50% 99.45% 99.42% 984 3000
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Existence of constant N

rt =
1
t+1
∑t

k=0

(
1
n

∑n

i=1 ‖∇fi(wk)−∇fi(w∗)‖2
)

1
t+1
∑t

k=0 ‖F (wk)‖2
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Conclusion

New view of complexity of SGD

Methods Strongly convex General convex Nonconvex
GD O

(
nL
µ

log
(

1
ε

))
O
(
n
ε

)
O
(
n
ε

)
SVRG O

(
(n+ L

µ
) log

(
1
ε

))
O
(
n+

√
n
ε

)
O
(
n+ n2/3

ε

)
SARAH O

(
(n+ L

µ
) log

(
1
ε

))
O
(

(n+ 1
ε

) log
(

1
ε

))
O
(
n+ 1

ε2

)
SGD O

(
1
ε

)
O
(

1
ε2

)
O
(

1
ε2

)
SGD

1− pε ≤ ε O
(
L
µ

log
(

1
ε

))
O
(

1
ε

)
O
(

1
ε

)
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Thank you, Don!

On the way back from Huatulco, 2007.
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