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Basic setting




The usual SGD algorithm

Expected risk minimization
min {F(w) = E[f(w; )]},
wERd

where £ is a random variable obeying some distribution, or
empirical risk minimization (ERM):

weRd

min ¢ F(w) = %Z fi(w)
=1
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Basic SG algorthms

Algorithm 1 Stochastic Gradient Method with Fixed Stepsize

1: Initialize wq, choose stepsize n > 0, and batch size b.
2: fori=1,2,--- do

3: Generate random variables {ft,i}?:l iid.

4: Compute a stochastic gradient

b
gt = % ZVf(Wt;Et,i)
=1

5: Update the new iterate w41 = wW¢ — ngs.




Two examples of behavior

n‘lni,n {F(w) = % Z(yz - (a;l'w)z)2} .

i=1

(i) All components fi(w) = (y; — (a] w)?)? are small at w.

(ii) Many components f;(w) = (y; — (a] w)?)? are large at w.
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Define quantities

Definition 1

Let wy be a stationary point of the objective function F(w). For any given
threshold € > 0, define

pe =P {|lg«l* <€},

b
where g« = % Zizl Vf(we; &)
We also define

Me :=E [llg«ll® | llg«l* > €] -

Remark 1

pe decreases as € increases. There exists an € such that pe ~ 1 — e.
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New look at convergence rates




Strongly convex case

Theorem 1

Suppose that F(w) is p-strongly conver and f(w;&) is L-smooth and convex

for every realization of . Consider the fized step SGD algorithm with n < %
Then, for any € >0

Elllw: — wa|’] < (1—pn(l —nL)) lwo — wa||?
2n 2n

+ De€ +
w1 —nL)" " " p(l—nL)

(1 —pe) Me,

where wy = arg minw F(w).
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Strongly convex case

Corollary 1

For any € such that 1 — pe < ¢, and for n < %, we have

2
Ellwe — w|?] < (1 — pm)*llwo — wa||* + 777 (14 Me)
2n(1+Me)e

2
Ift>T for T = Llog (M) then

4
E[flwe — wa||?] < 7” (1+Mo)e.

&
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Convex case

Theorem 2

Suppose that f(w;&) is L-smooth and convez for every realization of . Let
n < % Then for any € > 0, we have

lwo — w.||? n nMe

E[F(wi) — F(w«)] < o L) + (1—7;L)p€6+ —ul)

(1 _p€)7

where Wy is any optimal solution of F(w).




Convex case

Corollary 2

For any € such that 1 —pe <€, andn < ﬁ, it holds that

[[wo — w2

E[F(wi) = F(w.)] <
nt

+2n(1+ M)e.

2
Hence, if t > T for T = %, we have

E[F(w¢) — F(ws)] <4n(l+ Me)e.
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Nonconvex case - assumption

Assumption 1

3 N > 0, such that for any sequence of iterates wo, w1, ..., Wi of any
realization of SDG, there exists a stationary point wx of F(w) (possibly
dependent on that sequence) such that

t b b 2
1 1 1
P E 3 E Vf(“’k?fk,i)_g E V(W Ekyi) ‘]‘-k
k=0 =i =il
t

1 2
SN D IVEMw)I?,
k=0

where the expectation is taken over random variables & ;. Let Wiy denote the

set of all such stationary points w, determined by the constant N and by
realizations wo, Wi, ..., W¢.
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Nonconvex case - new definition

Definition 2
For any given threshold € > 0, define

pe :=inf € WP {|lg«|> <€},
W

b
where g« = % Ei:l Vf(ws;&i)-
Similarly,

M= sup E[Jlgl? | llg-l? > ] .

W €W




Nonconvex case - results

Theorem 3

Let Assumption 1 hold for some N > 0. Suppose that F' is L-smooth and let
n < ﬁ Then, for any € > 0, we have

t

1 2 [F(wo) — F™]
) 2 E[IVF(wi)[*] < O —ING+1)
Ln LnM.

A—2oM) " A= L)

<+ (1_p6)7

where F* is any lower bound of F'; and pe and M¢ are as defined.
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Nonconvex case - results

Corollary 3

For any € such that 1 — pe < ¢, and for n < L; we have
Z]E[HVF w2 < 2ECV0) = U1 o4 Mo
t+1 n(t+1)

Hence, if t > T for T = %, we have

ZJE[I\VF(Wk)II ] < 4Ln(1 + Mo)e.
k=0

t+1
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Numerical evidence




Logistic Regression

Percentage of f; with small gradient value for different threshold e

Datasets F(wggp) — F(wsx) e =102 e=10"3 e=10"1% e=10"" e=100
covtype 5.10" 4 100% 100% 100% 99.9995% | 54.9340%
ijcnnl (91701) 1-10- % 100% 100% 100% 06.8201% | 89.0197%
ijcnn2 1.10— 7 100% 100% 100% 09.2874% | 90.4565%
w8a 1-10- % 100% 09.9899% | 99.4231% | 98.3557% | 92.7818%

a9a 1.10 3 100% 100% 84.0945% | 58.5824% | 40.0909%
mushrooms 6-10 D 100% 100% 99.9261% | 98.7568% | 94.4239%
phishing 2.10— % 100% 100% 100% 89.9231% | 73.8128%
skin_nonskin 6.10 0 100% 100% 100% 99.6331% | 91.3730%




SGD behavior for logistic regression

mushrooms,

Fw - Fiw)

Epocn

phishing

Flw) - Fim)

The convergence comparisons of SGD, SVRG, and L-BFGS




Neural Networks

Percentage of f; with small gradient value for different threshold e (Neural

Networks)

Datasets Architecture ||VF(w,(<)||2 e =109 e =100 e =107 N M

MNIST FF 1.3.10"1° 100% 100% 99.99% 6500 10~°%

SVHN FF 3.5.10" 9 99.94% 99.92% 99.91% 12000 500

MNIST CNN 1.6-10 17 100% 100% 100% 6083 10~ 8

SVHN CNN 8.1-10— 7 99.99% 99.98% 99.96% 8068 0.18
CIFAR10 CNN 5.1-10—20 100% 100% 100% 1205 10— 17
CIFAR100 CNN 5.5.10 2 99.50% 99.45% 99.42% 984 3000




Existence of constant N

T Do (2 200 IVilwi) = Vi(wa)|1?)
o I (w2
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The behaviors of r¢
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Conclusions




Conclusion

New view of complexity of SGD

Methods Strongly convex General convex Nonconvex
> | 0(uLi(2)) o07) o[z
SVRG | O ((n+ L)log (1)) o<n+ﬁ) O(n+"/3)
SARAH [ O((n+L)log (L)) [O((n+Dlog (L)) | O(n+ %)
SGD °(z) (= (=)
SGD
L-pe<e| O(gle(2)) (1) (1)
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Thank you, Don!

On the way back from Huatulco, 2007.
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