When Does Stochastic Gradient Algorithm Work Well?

Katya Scheinberg

Joint work with L. M. Nguyen, N. H. Nguyen, D. T. Phan and J. R. Kalagnanam

Industrial and Systems Engineering Department

US & Mexico Workshop on Optimization and its Applications

January 12, 2018

Outline

Basic setting

New look at convergence rates

Numerical evidence

Expected risk minimization

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ F(\mathbf{w}) = \mathbb{E}[f(\mathbf{w}; \xi)] \right\},\label{eq:starses}$$

where ξ is a random variable obeying some distribution, or empirical risk minimization (ERM):

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}) \right\}.$$

Algorithm 1 Stochastic Gradient Method with Fixed Stepsize

- 1: Initialize \mathbf{w}_0 , choose stepsize $\eta > 0$, and batch size b.
- 2: for $i = 1, 2, \cdots$ do
- 3: Generate random variables $\{\xi_{t,i}\}_{i=1}^{b}$ i.i.d.
- 4: Compute a stochastic gradient

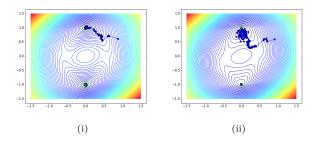
$$\mathbf{g}_t = \frac{1}{b} \sum_{i=1}^{b} \nabla f(\mathbf{w}_t; \xi_{t,i}).$$

5: Update the new iterate $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{g}_t$.

Two examples of behavior

$$\min_{\mathbf{w}} \left\{ F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\mathbf{a}_i^{\mathsf{T}} \mathbf{w})^2)^2 \right\}.$$

(i) All components f_i(**w**) = (y_i - (**a**_i^T**w**)²)² are small at **w**_{*}
(ii) Many components f_i(**w**) = (y_i - (**a**_i^T**w**)²)² are large at **w**_{*}



Definition 1

Let \mathbf{w}_* be a stationary point of the objective function $F(\mathbf{w})$. For any given threshold $\epsilon > 0$, define

 $p_{\epsilon} := \mathbb{P}\left\{ \|\mathbf{g}_*\|^2 \le \epsilon \right\},\,$

where $\mathbf{g}_* = \frac{1}{b} \sum_{i=1}^{b} \nabla f(\mathbf{w}_*; \xi_i)$. We also define

$$M_{\epsilon} := \mathbb{E}\left[\|\mathbf{g}_*\|^2 \mid \|\mathbf{g}_*\|^2 > \epsilon \right].$$

Remark 1

 p_{ϵ} decreases as ϵ increases. There exists an ϵ such that $p_{\epsilon} \approx 1 - \epsilon$.

Basic setting

New look at convergence rates

Numerical evidence

Theorem 1

Suppose that $F(\mathbf{w})$ is μ -strongly convex and $f(\mathbf{w}; \xi)$ is L-smooth and convex for every realization of ξ . Consider the fixed step SGD algorithm with $\eta \leq \frac{1}{L}$. Then, for any $\epsilon > 0$

$$\mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_*\|^2] \leq (1 - \mu\eta(1 - \eta L))^t \|\mathbf{w}_0 - \mathbf{w}_*\|^2 \\ + \frac{2\eta}{\mu(1 - \eta L)} p_\epsilon \epsilon + \frac{2\eta}{\mu(1 - \eta L)} (1 - p_\epsilon) M_\epsilon,$$

where $\mathbf{w}_* = \arg\min_{\mathbf{w}} F(\mathbf{w})$.

Corollary 1

For any ϵ such that $1 - p_{\epsilon} \leq \epsilon$, and for $\eta \leq \frac{1}{2L}$, we have

$$\mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_*\|^2] \le (1 - \mu\eta)^t \|\mathbf{w}_0 - \mathbf{w}_*\|^2 + \frac{2\eta}{\mu} (1 + M_\epsilon) \epsilon.$$

If
$$t \ge T$$
 for $T = \frac{1}{\mu\eta} \log\left(\frac{\mu \|\mathbf{w}_0 - \mathbf{w}_*\|^2}{2\eta(1+M_\epsilon)\epsilon}\right)$, then

$$\mathbb{E}[\|\mathbf{w}_t - \mathbf{w}_*\|^2] \le \frac{4\eta}{\mu} (1 + M_\epsilon) \epsilon.$$

Theorem 2

Suppose that $f(\mathbf{w};\xi)$ is L-smooth and convex for every realization of ξ . Let $\eta < \frac{1}{L}$. Then for any $\epsilon > 0$, we have

$$\mathbb{E}[F(\mathbf{w}_t) - F(\mathbf{w}_*)] \leq \frac{\|\mathbf{w}_0 - \mathbf{w}_*\|^2}{2\eta(1 - \eta L)t} + \frac{\eta}{(1 - \eta L)}p_\epsilon\epsilon + \frac{\eta M_\epsilon}{(1 - \eta L)}(1 - p_\epsilon),$$

where \mathbf{w}_* is any optimal solution of $F(\mathbf{w})$.

Corollary 2

For any ϵ such that $1 - p_{\epsilon} \leq \epsilon$, and $\eta \leq \frac{1}{2L}$, it holds that

$$\mathbb{E}[F(\mathbf{w}_t) - F(\mathbf{w}_*)] \le \frac{\|\mathbf{w}_0 - \mathbf{w}_*\|^2}{\eta t} + 2\eta \left(1 + M_\epsilon\right)\epsilon.$$

Hence, if $t \ge T$ for $T = \frac{\|\mathbf{w}_0 - \mathbf{w}_*\|^2}{(2\eta^2)(1+M_\epsilon)\epsilon}$, we have

$$\mathbb{E}[F(\mathbf{w}_t) - F(\mathbf{w}_*)] \le 4\eta \left(1 + M_\epsilon\right) \epsilon.$$

Assumption 1

 $\exists N > 0$, such that for any sequence of iterates $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_t$ of any realization of SDG, there exists a stationary point \mathbf{w}_* of $F(\mathbf{w})$ (possibly dependent on that sequence) such that

$$\begin{split} \frac{1}{t+1} \sum_{k=0}^{t} \left(\mathbb{E}\left[\left\| \frac{1}{b} \sum_{i=1}^{b} \nabla f(\mathbf{w}_{k}; \xi_{k,i}) - \frac{1}{b} \sum_{i=1}^{b} \nabla f(\mathbf{w}_{*}; \xi_{k,i}) \right\|^{2} \left| \mathcal{F}_{k} \right] \right) \\ & \leq N \frac{1}{t+1} \sum_{k=0}^{t} \| \nabla F(\mathbf{w}_{k}) \|^{2}, \end{split}$$

where the expectation is taken over random variables $\xi_{k,i}$. Let \mathcal{W}_* denote the set of all such stationary points \mathbf{w}_* , determined by the constant N and by realizations $\mathbf{w}_0, \mathbf{w}_1, \ldots, \mathbf{w}_t$.

Definition 2

For any given threshold $\epsilon > 0$, define

$$p_{\epsilon} := \inf_{\mathbf{w}_{*}} \in \mathcal{W}_{*} \mathbb{P}\left\{ \|\mathbf{g}_{*}\|^{2} \leq \epsilon \right\},$$

where $\mathbf{g}_* = \frac{1}{b} \sum_{i=1}^{b} \nabla f(\mathbf{w}_*; \xi_i)$. Similarly,

$$M_{\epsilon} := \sup_{\mathbf{w}_* \in \mathcal{W}_*} \mathbb{E} \left[\|\mathbf{g}_*\|^2 \mid \|\mathbf{g}_*\|^2 > \epsilon \right].$$

Theorem 3

Let Assumption 1 hold for some N > 0. Suppose that F is L-smooth and let $\eta < \frac{1}{LN}$. Then, for any $\epsilon > 0$, we have

$$\frac{1}{t+1} \sum_{k=0}^{t} \mathbb{E}[\|\nabla F(\mathbf{w}_k)\|^2] \leq \frac{[F(\mathbf{w}_0) - F^*]}{\eta (1 - L\eta N) (t+1)} + \frac{L\eta}{(1 - L\eta N)} \epsilon + \frac{L\eta M_{\epsilon}}{(1 - L\eta N)} (1 - p_{\epsilon}),$$

where F^* is any lower bound of F; and p_{ϵ} and M_{ϵ} are as defined.

Corollary 3

For any ϵ such that $1 - p_{\epsilon} \leq \epsilon$, and for $\eta \leq \frac{1}{2LN}$, we have

$$\frac{1}{t+1} \sum_{k=0}^{\iota} \mathbb{E}[\|\nabla F(\mathbf{w}_k)\|^2] \le \frac{2[F(\mathbf{w}_0) - F^*]}{\eta(t+1)} + 2L\eta(1+M_{\epsilon})\epsilon.$$

Hence, if $t \geq T$ for $T = \frac{[F(\mathbf{w}_0) - F^*]}{(L\eta^2)(1+M_\epsilon)\epsilon}$, we have

$$\frac{1}{t+1}\sum_{k=0}^{t} \mathbb{E}[\|\nabla F(\mathbf{w}_k)\|^2] \le 4L\eta(1+M_{\epsilon})\epsilon.$$

Basic setting

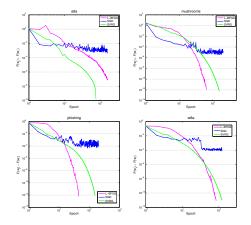
New look at convergence rates

Numerical evidence

Datasets	$F(\mathbf{w}_{SGD}) - F(\mathbf{w}_*)$	$\epsilon = 10^{-2}$	$\epsilon = 10^{-3}$	$\epsilon = 10^{-4}$	$\epsilon = 10^{-5}$	$\epsilon = 10^{-6}$
covtype	$5 \cdot 10^{-4}$	100%	100%	100%	99.9995%	54.9340%
ijcnn1 (91701)	$1 \cdot 10^{-4}$	100%	100%	100%	96.8201%	89.0197%
ijcnn2	$1 \cdot 10^{-4}$	100%	100%	100%	99.2874%	90.4565%
w8a	$1 \cdot 10^{-4}$	100%	99.9899%	99.4231%	98.3557%	92.7818%
a9a	$1 \cdot 10^{-3}$	100%	100%	84.0945%	58.5824%	40.0909%
mushrooms	$6 \cdot 10^{-5}$	100%	100%	99.9261%	98.7568%	94.4239%
phishing	$2 \cdot 10^{-4}$	100%	100%	100%	89.9231%	73.8128%
skin_nonskin	$6 \cdot 10^{-5}$	100%	100%	100%	99.6331%	91.3730%

Percentage of f_i with small gradient value for different threshold ϵ

SGD behavior for logistic regression



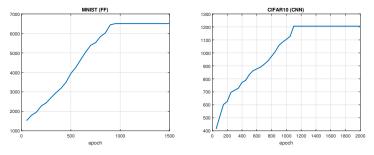
The convergence comparisons of SGD, SVRG, and L-BFGS

Percentage of f_i	with small	gradient	value	for	different	threshold	ϵ	(Neural
Networks)								

Datasets	Architecture	$\ \nabla F(\mathbf{w}_*)\ ^2$	$\epsilon = 10^{-3}$	$\epsilon = 10^{-5}$	$\epsilon = 10^{-7}$	N	M
MNIST	FF	$1.3 \cdot 10^{-15}$	100%	100%	99.99%	6500	10^{-8}
SVHN	FF	$3.5 \cdot 10^{-3}$	99.94%	99.92%	99.91%	12000	500
MNIST	CNN	$1.6 \cdot 10^{-17}$	100%	100%	100%	6083	10^{-8}
SVHN	CNN	$8.1 \cdot 10^{-7}$	99.99%	99.98%	99.96%	8068	0.18
CIFAR10	CNN	$5.1 \cdot 10^{-20}$	100%	100%	100%	1205	10^{-14}
CIFAR100	CNN	$5.5 \cdot 10^{-2}$	99.50%	99.45%	99.42%	984	3000

Existence of constant N

$$r_t = \frac{\frac{1}{t+1} \sum_{k=0}^{t} \left(\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(\mathbf{w}_k) - \nabla f_i(\mathbf{w}_*)\|^2\right)}{\frac{1}{t+1} \sum_{k=0}^{t} \|F(\mathbf{w}_k)\|^2}$$



The behaviors of r_t

Basic setting

New look at convergence rates

Numerical evidence

New view of complexity of SGD

Methods	Strongly convex	General convex	Nonconvex		
GD	$\mathcal{O}\left(n\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\frac{n}{\epsilon}\right)$	$\mathcal{O}\left(\frac{n}{\epsilon}\right)$		
SVRG	$\mathcal{O}\left((n+\frac{L}{\mu})\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(n+rac{\sqrt{n}}{\epsilon} ight)$	$\mathcal{O}\left(n+\frac{n^{2/3}}{\epsilon}\right)$		
SARAH	$\mathcal{O}\left(\left(n+\frac{L}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\left(n+\frac{1}{\epsilon}\right)\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(n+\frac{1}{\epsilon^2}\right)$		
SGD	$\mathcal{O}\left(\frac{1}{\epsilon}\right)$	$\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$	$\mathcal{O}\left(\frac{1}{\epsilon^2}\right)$		
SGD					
$1 - p_{\epsilon} \le \epsilon$	$\mathcal{O}\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(rac{1}{\epsilon} ight)$	$\mathcal{O}\left(\frac{1}{\epsilon}\right)$		

Thank you, Don!

On the way back from Huatulco, 2007.