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Background



What is “splitting”?

Sun-Tzu: “ZEZGER", “& & (400 BC)
Caesar: “divide-n-conquer” (100-44 BC)
Principle of computing: reduce a problem to simpler subproblems

Example: find x € C1 N Cy — project to C1 and C> alternatively
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Basic principles of splitting

split:

Also

x/y directions

linear from nonlinear
smooth from nonsmooth
spectral from spatial
convection from diffusion
composite operators

(I-XA+B)tto(I-XA)"tand (I-AB)™*

domain decomposition
block-coordinate descent

column generation, Bender's decomposition, etc.



Operator splitting pipeline

. Formulate

0 € A(z) + B(x)
where A and B are operators, possibly set-valued
. operator splitting: get a fixed-point operator T

P P

Applying T reduces to computing A and B successively

. Correctness and convergence:

= fixed-point z* = T'z* recovers a solution z*

= T is contractive or, more weakly, averaged



Example: constrained minimization

= ('is a convex set. f is a differentiable convex function.
minizmize f(x)
subject to x € C
= equivalent inclusion problem:
0 € Ne(z) + Vf(x)
Nc¢ is the normal cone
= projected gradient method:

2"« proje o (I —Vf)z"

T



Convergence



Contractive operator

= definition: T is contractive if, for some L € [0,1),

Tz — Ty|| < Lz —yl|, Vz,y
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Between L =1 and L <1

= [ <1 = geometric convergence
= [ =1 = iterates are bounded, but may diverge

= Some algorithms have L = 1 and still converge:
= Alternative projection (von Neumann)
= Gradient descent
= Proximal-point algorithm
= Operator splitting algorithms
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Averaged operator

*

= residual operator: R:=1 —T. Hence, Rz* =0 & z* =Tz
= averaged operator: from some n > 0,
1Tz — Ty|* < ||z — yl|I* = Rz — Ryll*, Va,y

= interpretation: set y as a fixed point, then distance to y improve by the
amount of fixed-point residual

= property': if T has a fixed point, then z**! < Tz* converges weakly to a
fixed point

1 Krasnosel'skii'57, Mann'56



Why called “averaged”?

lemma: For a € (0,1), T is a-averaged if, and only if, there exists a nonexpansive
(1-Lipschitz) map T” so that

T=(1-a)+aT.
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Composition of averaged operators

Useful theorem:
Th,T> nonexpansive = 717 o Th nonexpansive
T1,T> averaged = T o T, averaged

(though the averagedness constants get worse.)
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How to get an averaged-operator composition?



Forward-backward splitting

= derive:
0€ Ar+ Bx <= x— Brc€x+ Ax
< (I-B)xe(l+Ax
— (I+A)'(I-Baz=z
——— —

backward forward
—_— ——

operator Trpg

= Although (I + A) may be set-valued, (I + A)~" is single-valued!
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= forward-backward splitting (FBS) operator (Mercier'79): for v > 0
Trps := (I +7A) ' o (I —~B)

= key properties:

« if A is maximally monotone?, then (I +~A)~ " is %—averaged

« if B is B-cocoercive® and v € (0,28), then (I — vB) is averaged
= conclusion: Trps is averaged, thus if a fixed-point exists,
mk+l < TrBs (l’k)

converges

2(Az — Ay,z —y) >0, Va,y
*(Bx — By,x —y) > 8Bz — By||?, Va,y
12 /30



Major operator splitting schemes

0 € Az + Bz
forward-backward (Mercier'79) for
(maximally monotone) + (cocoercive)

Douglas-Rachford (Lion-Mercier'79) for

(maximally monotone) 4 (maximally monotone)

forward-backward-forward (Tseng’00) for

(maximally monotone) + (Lipschitz & monotone)

three-operator (Davis-Yin'15) for
(maximally monotone) 4+ (maximally monotone) + (cocoercive)

use non-Euclidean metric (Condat-Vu'13) for (maximally monotone o A)
A is bounded linear operator
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DRS for optimization
minimize f(z) + g(z)

f, g are proper closed convex, may be non-differentiable

DRS iteration: 2"T! = Tprs(2") =

a2 = prox. (=)

ot = proxﬁyg(2ack'~'1/2 — 2"

SRk (xk+1 _ xk+1/2)

2 = 2" and ¥ 2TV o ot if
= primal dual solutions exist, and

s —o <Pt =d" < .

otherwise, ||z*|| — occ.



New results



Overview

= pathological conic programs, even small ones, can cripple existing solvers

= proposed: use DRS

= to identify infeasible, unbounded, pathological problems
= to compute “certificates” if there is one

= to “restore feasibility”

= under the hood: understanding divergent DRS iterates
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Linear programming

» standard-form:

p* =min ¢’z subject to Az =b, >0
A oudi Vg
zel z€ERT

= every LP is in exactly one of the 3 cases:

1) p* finite & 3 primal solution < 3 primal-dual solution pair
2) p* = —oo: problem is feasible, unbounded < 3 improving direction®

3) p* = +oo: problem is infeasible < dist(L,R") > 0 < 3 strict
separating hyperplane®

= cases (2) (3) arise, e.g., during branch-n-bound

= existing solvers are reliable

4u is an improving direction if cTu < 0 and = + awu is feasible for all feasible x and o« > 0.
5{3: : hT'w = B} strictly separates two sets L and K if hT @ < B < KTy forallz € £,y € K.
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Conic programming

standard-form: K is a closed convex cone

p* =min ¢’z subject to Az =b, z € K
c
e

every problem is in one of the 7 cases:

1) p* finite: 1a) has PD sol pair, 1b) has P sol only, 1c) no P sol
2) p* = —oo: 2a) has improving direction, 2b) no improving direction

3) p* = +o0: 3a) dist(£, K) > 0 < has strict separating hyperplane
3b) dist(L, K) = 0 < no strict separating hyperplane

all “b" "c" cases are pathological

even nearly pathological problems can fail existing solvers

17 /30



Example 1

= 3-variable problem:

. . 2
minimize x1 subject to xe =1, 2zex3 > 7, x2,23 > 0.

rotated second-order cone

= belongs to case 2b):

= feasible

= p* = —o00, by letting x3 — oo and 1 — —o©

= no improving direction®

= existing solvers’:
= SDPT3: “Failed”, p* no reported
= SeDuMi: “Inaccurate/Solved”, p* = —175514
= Mosek: “Inaccurate/Unbounded”, p* = —oc0

S reason: any improving direction u has form (w1, 0, ug), but by the cone constraint 2ugusz = 0 > u%, so
w1 = 0, which implies cTu1 = 0 (not improving).
7using their default settings



Example 2

= 3-variable problem:

011 0
minimize 0 subject to { } z = [ ], xg > \/a? +al.
—— —

100 1

N—— —™— ze K
zel

= belongs to case 3b):

= infeasible®
«» dist(L,K)=0°
= no strict separating hyperplane

= existing solvers'’:
« SDPTS3: “Infeasible”, p* = co
= SeDuMi: “Solved”, p* =0
= Mosek: “Failed”, p* not reported

Srer imply z = [1, —a, a]T, a € R, which always violates the second-order cone constraint.

Ydist(£, K) < |[[1, —a, o] — [1, —av, (a2 + 1)1/2]]|2 = 0o as a — oo.
10using their default settings
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Conic DRS

minimize ¢’z subject to Az =b, x € K
< minimize (ch + (5A.:b(x)) + 0k (x)
—
f(z) g(x)

= cone K is nonempty closed convex'!, matrix A has full row rank
= each iteration: projection onto A- = b, then projection onto K
= per-iteration cost: O(n? 4 cost(projy)) with prefactorized AAT
= prior work: Wen-Goldfarb-Yin'09 for SDP

= we know: if not case 1a), DRS diverges; but how?

Mot necessarily self-dual
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What happens during divergence?

= iteration: 2" = T'(2*), where T is averaged

= general theorem!?: z° — 2F+1 5 ¢ = Projm(O)

= v is “the best approximation to a fixed point of 7"

12 Pazy'71, Baillon-Bruck-Reich'78
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Our results (Liu-Ryu-Yin’17)

proof simplification

new rate of convergence: ||z — 2" < ||v|| + e+ O(\/klﬁ)

for conic programs, a workflow using three simultaneous DRS:
1) original DRS

2) same DRS with ¢ =0

3) same DRS with b=0

most pathological cases are identified
for unbounded problem 2a), compute an improving direction
for infeasible problem 3a), compute a strict separating hyperplane

for all infeasible problems, minimally alter b to restore strong feasibility
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Decision flow

Thm 6
Alg 2

Thm 7
| —— Alg 2
Infeasible
T
Thm 2
—— Alg1
Feasible
Thm 13
Alg 1
Thm 11,12

(a) There is
a primal-dual
solution pair
with d* = p*

(b) There
is a primal
solution but no
dual solution
or d* < p*
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(c) p* is finite
but there is
no solution

Lo

Thm 10
Alg 3

(d) Unbounded
(p* = —o0) with
an improving
direction

() Unbounded
(p* = —o0)
without an
improving

direction




Theorems

Identifications are described in a series of theorems in the form

Run DRS (one of three). Iflimy, 2" — 2"t = v ..., |
k+1 _ ZkH B

2% ..., or

IE ., then the problem is in case ... and ...

example: Theorem 7. Run Alg2. Let z* — 2*** — v. Problem is 3a) if
and only if v # 0. If v # 0, we have the strict separating hyperplane:
{z:v"z = ("x0)/2}.

example: Theorem 10: If feasible, run Alg3. Let 2* — 2**! — d. Problem
is 2a) if and only if d # 0. If d # 0, then it is an improving direction.
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Weakly infeasible SDP set (Liu-Pataki’17)

m =10 m =20
Clean Messy Clean Messy
SeDuMi 0 0 1 0
SDPT3 0 0 0 0
Mosek 0 0 11 0
PP®+SeDuMi 100 0 100 0

percentage of success detection on clean and messy examples in Liu-Pataki'l7

13PreProcessing by Permenter-Parilo’14
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Weakly infeasible SDP set (Liu-Pataki’17)

m = 10 m = 20
Clean Messy Clean Messy
Proposed 100 21 100 99

(stopping: ||2'¢7||2 > 800)
our percentage is way much better!
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Strongly infeasible SDP set (Liu-Pataki’l7)

m = 10 m = 20

Clean Messy Clean Messy

Proposed 100 100 100 100

(stopping: ||2°¢* — 2411 || < 1073)
our percentage is way much better!



Other approaches

= homogeneous self-dual embedding'*:
= is a reformulation that is always feasible and can produce PD solutions
= can use facial reductions to identify “b" “c”
= facial reduction’®:
= generates bigger but less pathological problems
= can theoretically identify all cases
= no efficient numerical implementation yet
= reduction is not cheap, also introduces new computational issues
= generate cones that are intersections of original cones with linear
subspaces, making IPM and DRS difficult to apply

14Ye’11, Luo-Sturm-Zhang'00, Skajaa'Ye'l2, etc.
15Methods: Borwein, Muramatsu, Pataki, Waki, Wolkowicz; numerical approaches:
Lourenco-Muramatsu-Tsuchiya’l5, Permenter-Friberg-Andersen’15
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Related work

Bauschke, Combettes, Hare, Luke, Moursi, and others recently did

= DRS for feasibility between two convex sets by

= Range of DRS and generalized solutions to 0 € A + B where A, B are

maximally monotone

= Also, Moursi's thesis on DRS in the possibly inconsistent case: Static
properties and dynamic behaviour

29 /30



summary:
= DRS iterates provide useful information even when they diverge
= easy to code it for conic programs

not covered:

= general convex problem f(z) + g(z)
= analysis of f(z"T1/2) 4 g(z*+1)

= adaptation to ADMM
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