Douglas-Rachford Splitting for Infeasible, Unbounded, and Pathological Problems

Yanli Liu, Ernest Ryu, Wotao Yin
UCLA Math

US-Mexico Workshop Optimization and its Applications - Jan 8-12, 2018

Background

What is＂splitting＂？

－Sun－Tzu：＂远交近攻＂，＂各个击破＂（400 BC）
－Caesar：＂divide－n－conquer＂（100－44 BC）
－Principle of computing：reduce a problem to simpler subproblems
－Example：find $x \in C_{1} \cap C_{2} \longrightarrow$ project to C_{1} and C_{2} alternatively

Basic principles of splitting

split:

- x / y directions
- linear from nonlinear
- smooth from nonsmooth
- spectral from spatial
- convection from diffusion
- composite operators
- $(I-\lambda(A+B))^{-1}$ to $(I-\lambda A)^{-1}$ and $(I-\lambda B)^{-1}$

Also

- domain decomposition
- block-coordinate descent
- column generation, Bender's decomposition, etc.

Operator splitting pipeline

1. Formulate

$$
0 \in A(x)+B(x)
$$

where A and B are operators, possibly set-valued
2. operator splitting: get a fixed-point operator T :

$$
z^{k+1} \leftarrow T z^{k}
$$

Applying T reduces to computing A and B successively
3. Correctness and convergence:

- fixed-point $z^{*}=T z^{*}$ recovers a solution x^{*}
- T is contractive or, more weakly, averaged

Example: constrained minimization

- C is a convex set. f is a differentiable convex function.

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} f(x) \\
& \text { subject to } x \in C
\end{aligned}
$$

- equivalent inclusion problem:

$$
0 \in N_{C}(x)+\nabla f(x)
$$

N_{C} is the normal cone

- projected gradient method:

$$
x^{k+1} \leftarrow \underbrace{\operatorname{proj}_{C} \circ(I-\gamma \nabla f)}_{T} x^{k}
$$

Convergence

Contractive operator

- definition: T is contractive if, for some $L \in[0,1)$,

$$
\|T x-T y\| \leq L\|x-y\|, \quad \forall x, y
$$

Between $L=1$ and $L<1$

- $L<1 \Rightarrow$ geometric convergence
- $L=1 \Rightarrow$ iterates are bounded, but may diverge
- Some algorithms have $L=1$ and still converge:
- Alternative projection (von Neumann)
- Gradient descent
- Proximal-point algorithm
- Operator splitting algorithms

Averaged operator

- residual operator: $R:=I-T$. Hence, $R x^{*}=0 \Leftrightarrow x^{*}=T x^{*}$
- averaged operator: from some $\eta>0$,

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}-\eta\|R x-R y\|^{2}, \quad \forall x, y
$$

- interpretation: set y as a fixed point, then distance to y improve by the amount of fixed-point residual
- property ${ }^{1}$: if T has a fixed point, then $x^{k+1} \leftarrow T x^{k}$ converges weakly to a fixed point

[^0]
Why called "averaged"?

lemma: For $\alpha \in(0,1), T$ is α-averaged if, and only if, there exists a nonexpansive (1-Lipschitz) map T^{\prime} so that

$$
T=(1-\alpha) I+\alpha T^{\prime}
$$

Composition of averaged operators

Useful theorem:

$$
\begin{gathered}
T_{1}, T_{2} \text { nonexpansive } \Rightarrow T_{1} \circ T_{2} \text { nonexpansive } \\
T_{1}, T_{2} \text { averaged } \Rightarrow T_{1} \circ T_{2} \text { averaged }
\end{gathered}
$$

(though the averagedness constants get worse.)

How to get an averaged-operator composition?

Forward-backward splitting

- derive:

$$
\begin{aligned}
0 \in A x+B x & \Longleftrightarrow x-B x \in x+A x \\
& \Longleftrightarrow(I-B) x \in(I+A) x \\
& \Longleftrightarrow \underbrace{(I+A)^{-1}}_{\text {operator } T_{\mathrm{FBS}}} \underbrace{(I-B)}_{\text {backward forward }} x=x
\end{aligned}
$$

- Although $(I+A)$ may be set-valued, $(I+A)^{-1}$ is single-valued!
- forward-backward splitting (FBS) operator (Mercier'79): for $\gamma>0$

$$
T_{\mathrm{FBS}}:=(I+\gamma A)^{-1} \circ(I-\gamma B)
$$

- key properties:
- if A is maximally monotone ${ }^{2}$, then $(I+\gamma A)^{-1}$ is $\frac{1}{2}$-averaged
- if B is β-cocoercive ${ }^{3}$ and $\gamma \in(0,2 \beta)$, then $(I-\gamma B)$ is averaged
- conclusion: T_{FBS} is averaged, thus if a fixed-point exists,

$$
x^{k+1} \leftarrow T_{\mathrm{FBS}}\left(x^{k}\right)
$$

converges

$$
\begin{aligned}
& { }^{2}\langle A x-A y, x-y\rangle \geq 0, \forall x, y \\
& { }^{3}\langle B x-B y, x-y\rangle \geq \beta\|B x-B y\|^{2}, \quad \forall x, y
\end{aligned}
$$

Major operator splitting schemes

$$
0 \in A x+B x
$$

- forward-backward (Mercier'79) for
(maximally monotone) + (cocoercive)
- Douglas-Rachford (Lion-Mercier'79) for
(maximally monotone) + (maximally monotone)
- forward-backward-forward (Tseng'00) for (maximally monotone) + (Lipschitz \& monotone)
- three-operator (Davis-Yin'15) for
(maximally monotone) + (maximally monotone) + (cocoercive)
- use non-Euclidean metric (Condat-Vu'13) for (maximally monotone $\circ A$) A is bounded linear operator

DRS for optimization

$\underset{x}{\operatorname{minimize}} f(x)+g(x)$

- f, g are proper closed convex, may be non-differentiable
- DRS iteration: $z^{k+1}=T_{\mathrm{DRS}}\left(z^{k}\right) \Longleftrightarrow$

$$
\begin{aligned}
x^{k+1 / 2} & =\operatorname{prox}_{\gamma f}\left(z^{k}\right) \\
x^{k+1} & =\operatorname{prox}_{\gamma g}\left(2 x^{k+1 / 2}-z^{k}\right) \\
z^{k+1} & =z^{k}+\left(x^{k+1}-x^{k+1 / 2}\right)
\end{aligned}
$$

- $z^{k} \rightarrow z^{*}$ and $x^{k}, x^{k+1 / 2} \rightarrow x^{*}$ if
- primal dual solutions exist, and
- $-\infty<p^{*}=d^{*}<\infty$.
- otherwise, $\left\|z^{k}\right\| \rightarrow \infty$.

New results

Overview

- pathological conic programs, even small ones, can cripple existing solvers
- proposed: use DRS
- to identify infeasible, unbounded, pathological problems
- to compute "certificates" if there is one
- to "restore feasibility"
- under the hood: understanding divergent DRS iterates

Linear programming

- standard-form:

$$
p^{\star}=\min c^{T} x \quad \text { subject to } \underbrace{A x=b}_{x \in \mathcal{L}}, \underbrace{x \geq 0}_{x \in \mathbb{R}^{+}}
$$

- every LP is in exactly one of the 3 cases:

1) p^{\star} finite $\Leftrightarrow \exists$ primal solution $\Leftrightarrow \exists$ primal-dual solution pair
2) $p^{\star}=-\infty$: problem is feasible, unbounded $\Leftrightarrow \exists$ improving direction ${ }^{4}$
3) $p^{\star}=+\infty$: problem is infeasible $\Leftrightarrow \operatorname{dist}\left(L, \mathbb{R}^{+}\right)>0 \Leftrightarrow \exists$ strict separating hyperplane ${ }^{5}$

- cases (2) (3) arise, e.g., during branch-n-bound
- existing solvers are reliable

[^1]
Conic programming

- standard-form: K is a closed convex cone

$$
p^{\star}=\min c^{T} x \quad \text { subject to } \underbrace{A x=b}_{x \in \mathcal{L}}, x \in K
$$

- every problem is in one of the $\mathbf{7}$ cases:

1) p^{\star} finite: 1a) has PD sol pair, 1b) has P sol only, 1c) no P sol
2) $p^{\star}=-\infty$: 2a) has improving direction, 2 b) no improving direction
3) $p^{\star}=+\infty$: 3a) $\operatorname{dist}(\mathcal{L}, K)>0 \Leftrightarrow$ has strict separating hyperplane 3b) $\operatorname{dist}(\mathcal{L}, K)=0 \Leftrightarrow$ no strict separating hyperplane
" all "b" "c" cases are pathological

- even nearly pathological problems can fail existing solvers

Example 1

- 3-variable problem:

$$
\operatorname{minimize} x_{1} \quad \text { subject to } x_{2}=1, \underbrace{2 x_{2} x_{3} \geq x_{1}^{2}, x_{2}, x_{3} \geq 0}_{\text {rotated second-order cone }}
$$

- belongs to case $\mathbf{2 b}$):
- feasible
- $p^{\star}=-\infty$, by letting $x_{3} \rightarrow \infty$ and $x_{1} \rightarrow-\infty$
- no improving direction ${ }^{6}$
- existing solvers ${ }^{7}$:
- SDPT3: "Failed", p^{\star} no reported
- SeDuMi: "Inaccurate/Solved", $p^{\star}=-175514$
- Mosek: "Inaccurate/Unbounded", $p^{\star}=-\infty$

[^2]
Example 2

- 3-variable problem:

$$
\text { minimize } 0 \text { subject to } \underbrace{\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] x=\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{x \in \mathcal{L}}, \underbrace{x_{3} \geq \sqrt{x_{1}^{2}+x_{2}^{2}}}_{x \in K}
$$

- belongs to case 3b):
- infeasible ${ }^{8}$
- $\operatorname{dist}(\mathcal{L}, K)=0{ }^{9}$
- no strict separating hyperplane
- existing solvers ${ }^{10}$:
- SDPT3: "Infeasible", $p^{\star}=\infty$
- SeDuMi: "Solved", $p^{\star}=0$
- Mosek: "Failed", p^{\star} not reported

[^3]
Conic DRS

$$
\begin{aligned}
& \text { minimize } c^{T} x \quad \text { subject to } A x=b, x \in K \\
\Leftrightarrow & \text { minimize } \underbrace{\left(c^{T} x+\delta_{A \cdot=b}(x)\right)}_{f(x)}+\underbrace{\delta_{K}(x)}_{g(x)}
\end{aligned}
$$

- cone K is nonempty closed convex ${ }^{11}$, matrix A has full row rank
- each iteration: projection onto $A \cdot=b$, then projection onto K
- per-iteration cost: $O\left(n^{2}+\operatorname{cost}\left(\mathbf{p r o j}_{K}\right)\right)$ with prefactorized $A A^{T}$
- prior work: Wen-Goldfarb-Yin'09 for SDP
- we know: if not case 1a), DRS diverges; but how?

What happens during divergence?

- iteration: $z^{k+1}=T\left(z^{k}\right)$, where T is averaged
- general theorem ${ }^{12}: z^{k}-z^{k+1} \rightarrow v=\operatorname{Proj}_{\overline{\operatorname{ran}(I-T)}}(\mathbf{0})$
- v is "the best approximation to a fixed point of T "

[^4]
Our results (Liu-Ryu-Yin'17)

- proof simplification
- new rate of convergence: $\left\|z^{k}-z^{k+1}\right\| \leq\|v\|+\epsilon+O\left(\frac{1}{\sqrt{k+1}}\right)$
- for conic programs, a workflow using three simultaneous DRS:

1) original DRS
2) same DRS with $c=\mathbf{0}$
3) same DRS with $b=\mathbf{0}$

- most pathological cases are identified
- for unbounded problem 2a), compute an improving direction
- for infeasible problem 3a), compute a strict separating hyperplane
- for all infeasible problems, minimally alter b to restore strong feasibility

Decision flow

(e) Unbounded ($p^{\star}=-\infty$) without an improving direction

Theorems

- Identifications are described in a series of theorems in the form Run DRS (one of three). If $\lim _{k} z^{k}-z^{k+1}=v \ldots,\left\|z^{k}\right\| \ldots$, or $\left\|z^{k+1}-z^{k}\right\| \ldots$, then the problem is in case \ldots and \ldots
- example: Theorem 7. Run Alg2. Let $z^{k}-z^{k+1} \rightarrow v$. Problem is 3a) if and only if $v \neq \mathbf{0}$. If $v \neq \mathbf{0}$, we have the strict separating hyperplane:

$$
\left\{x: v^{T} x=\left(v^{T} x_{0}\right) / 2\right\}
$$

- example: Theorem 10: If feasible, run Alg 3 . Let $z^{k}-z^{k+1} \rightarrow d$. Problem is 2a) if and only if $d \neq \mathbf{0}$. If $d \neq \mathbf{0}$, then it is an improving direction.

Weakly infeasible SDP set (Liu-Pataki'17)

	$m=10$		$m=20$	
	Clean	Messy	Clean	Messy
SeDuMi	0	0	1	0
SDPT3	0	0	0	0
Mosek	0	0	11	0
PP $^{13}+$ SeDuMi	100	0	100	0

percentage of success detection on clean and messy examples in Liu-Pataki'17
${ }^{13}$ PreProcessing by Permenter-Parilo' 14

Weakly infeasible SDP set (Liu-Pataki'17)

	$m=10$		$m=20$	
	Clean	Messy	Clean	Messy
Proposed	100	21	100	99

$$
\begin{gathered}
\text { (stopping: }\left\|z^{1 e 7}\right\|_{2} \geq 800 \text {) } \\
\text { our percentage is way much better! }
\end{gathered}
$$

Strongly infeasible SDP set (Liu-Pataki'17)

	$m=10$		$m=20$	
	Clean	Messy	Clean	Messy
Proposed	100	100	100	100

(stopping: $\left\|z^{5 e 4}-z^{5 e 4+1}\right\|_{2} \leq 10^{-3}$) our percentage is way much better!

Other approaches

- homogeneous self-dual embedding ${ }^{14}$:
- is a reformulation that is always feasible and can produce PD solutions
- can use facial reductions to identify "b" "c"
- facial reduction ${ }^{15}$:
- generates bigger but less pathological problems
- can theoretically identify all cases
- no efficient numerical implementation yet
- reduction is not cheap, also introduces new computational issues
- generate cones that are intersections of original cones with linear subspaces, making IPM and DRS difficult to apply

[^5]
Related work

Bauschke, Combettes, Hare, Luke, Moursi, and others recently did

- DRS for feasibility between two convex sets by
- Range of DRS and generalized solutions to $0 \in A+B$ where A, B are maximally monotone
- Also, Moursi's thesis on DRS in the possibly inconsistent case: Static properties and dynamic behaviour

summary:

- DRS iterates provide useful information even when they diverge
- easy to code it for conic programs
not covered:
- general convex problem $f(x)+g(x)$
- analysis of $f\left(x^{k+1 / 2}\right)+g\left(x^{k+1}\right)$
- adaptation to ADMM
acknowledgements: NSF
report: https://arxiv.org/abs/1706.02374

[^0]: ${ }^{1}$ Krasnosel'skiï' 57 , Mann'56

[^1]: ${ }^{4} u$ is an improving direction if $c^{T} u<0$ and $x+\alpha u$ is feasible for all feasible x and $\alpha>0$.
 ${ }^{5}\left\{x: h^{T} x=\beta\right\}$ strictly separates two sets L and K if $h^{T} x<\beta<h^{T} y$ for all $x \in \mathcal{L}, y \in K$.

[^2]: ${ }^{6}$ reason: any improving direction u has form $\left(u_{1}, 0, u_{3}\right)$, but by the cone constraint $2 u_{2} u_{3}=0 \geq u_{1}^{2}$, so $u_{1}=0$, which implies $c^{T} u_{1}=0$ (not improving).
 ${ }^{7}$ using their default settings

[^3]: ${ }^{8} x \in \mathcal{L}$ imply $x=[1,-\alpha, \alpha]^{T}, \alpha \in \mathbb{R}$, which always violates the second-order cone constraint.
 ${ }^{9} \operatorname{dist}(\mathcal{L}, K) \leq\left\|[1,-\alpha, \alpha]-\left[1,-\alpha,\left(\alpha^{2}+1\right)^{1 / 2}\right]\right\|_{2} \rightarrow \infty$ as $\alpha \rightarrow \infty$.
 ${ }^{10}$ using their default settings

[^4]: ${ }^{12}$ Pazy'71, Baillon-Bruck-Reich'78

[^5]: ${ }^{14}$ Ye'11, Luo-Sturm-Zhang'00, Skajaa'Ye'12, etc.
 ${ }^{15}$ Methods: Borwein, Muramatsu, Pataki, Waki, Wolkowicz; numerical approaches:
 Lourenco-Muramatsu-Tsuchiya'15, Permenter-Friberg-Andersen'15

