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Background



What is “splitting”?

• Sun-Tzu: (400 BC)

• Caesar: “divide-n-conquer” (100–44 BC)

• Principle of computing: reduce a problem to simpler subproblems

• Example: find x ∈ C1 ∩ C2 −→ project to C1 and C2 alternatively
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Basic principles of splitting

split:

• x/y directions

• linear from nonlinear

• smooth from nonsmooth

• spectral from spatial

• convection from diffusion

• composite operators

• (I − λ(A+B))−1 to (I − λA)−1 and (I − λB)−1

Also

• domain decomposition

• block-coordinate descent

• column generation, Bender’s decomposition, etc.
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Operator splitting pipeline

1. Formulate
0 ∈ A(x) +B(x)

where A and B are operators, possibly set-valued

2. operator splitting: get a fixed-point operator T :

zk+1 ← Tzk

Applying T reduces to computing A and B successively

3. Correctness and convergence:
• fixed-point z∗ = Tz∗ recovers a solution x∗

• T is contractive or, more weakly, averaged
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Example: constrained minimization

• C is a convex set. f is a differentiable convex function.

minimize
x

f(x)

subject to x ∈ C

• equivalent inclusion problem:

0 ∈ NC(x) +∇f(x)

NC is the normal cone

• projected gradient method:

xk+1 ← projC ◦ (I − γ∇f)︸ ︷︷ ︸
T

xk
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Convergence



Contractive operator

• definition: T is contractive if, for some L ∈ [0, 1),

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y

1L
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Between L = 1 and L < 1

• L < 1 ⇒ geometric convergence

• L = 1 ⇒ iterates are bounded, but may diverge

• Some algorithms have L = 1 and still converge:
• Alternative projection (von Neumann)
• Gradient descent
• Proximal-point algorithm
• Operator splitting algorithms
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Averaged operator

• residual operator: R := I − T . Hence, Rx∗ = 0 ⇔ x∗ = Tx∗

• averaged operator: from some η > 0,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − η‖Rx−Ry‖2, ∀x, y

• interpretation: set y as a fixed point, then distance to y improve by the
amount of fixed-point residual

• property1: if T has a fixed point, then xk+1 ← Txk converges weakly to a
fixed point

1Krasnosel’skĭi’57, Mann’56
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Why called “averaged”?

lemma: For α ∈ (0, 1), T is α-averaged if, and only if, there exists a nonexpansive
(1-Lipschitz) map T ′ so that

T = (1− α)I + αT ′.
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Composition of averaged operators

Useful theorem:

T1, T2 nonexpansive ⇒ T1 ◦ T2 nonexpansive

T1, T2 averaged ⇒ T1 ◦ T2 averaged

(though the averagedness constants get worse.)
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How to get an averaged-operator composition?



Forward-backward splitting

• derive:

0 ∈ Ax+Bx⇐⇒ x−Bx ∈ x+Ax

⇐⇒ (I −B)x ∈ (I +A)x

⇐⇒ (I +A)−1︸ ︷︷ ︸
backward

(I −B)︸ ︷︷ ︸
forward︸ ︷︷ ︸

operator TFBS

x = x

• Although (I +A) may be set-valued, (I +A)−1 is single-valued!
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• forward-backward splitting (FBS) operator (Mercier’79): for γ > 0

TFBS := (I + γA)−1 ◦ (I − γB)

• key properties:
• if A is maximally monotone2, then (I + γA)−1 is 1

2 -averaged

• if B is β-cocoercive3 and γ ∈ (0, 2β), then (I − γB) is averaged

• conclusion: TFBS is averaged, thus if a fixed-point exists,

xk+1 ← TFBS(xk)

converges

2〈Ax− Ay, x− y〉 ≥ 0, ∀x, y
3〈Bx− By, x− y〉 ≥ β‖Bx− By‖2, ∀x, y
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Major operator splitting schemes

0 ∈ Ax+Bx

• forward-backward (Mercier’79) for
(maximally monotone) + (cocoercive)

• Douglas-Rachford (Lion-Mercier’79) for
(maximally monotone) + (maximally monotone)

• forward-backward-forward (Tseng’00) for
(maximally monotone) + (Lipschitz & monotone)

• three-operator (Davis-Yin’15) for
(maximally monotone) + (maximally monotone) + (cocoercive)

• use non-Euclidean metric (Condat-Vu’13) for (maximally monotone ◦A)
A is bounded linear operator
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DRS for optimization

minimize
x

f(x) + g(x)

• f, g are proper closed convex, may be non-differentiable

• DRS iteration: zk+1 = TDRS(zk) ⇐⇒

xk+1/2 = proxγf (zk)

xk+1 = proxγg(2x
k+1/2 − zk)

zk+1 = zk + (xk+1 − xk+1/2)

• zk → z∗ and xk, xk+1/2 → x∗ if
• primal dual solutions exist, and
• −∞ < p∗ = d∗ <∞.

• otherwise, ‖zk‖ → ∞.
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New results



Overview

• pathological conic programs, even small ones, can cripple existing solvers

• proposed: use DRS
• to identify infeasible, unbounded, pathological problems

• to compute “certificates” if there is one

• to “restore feasibility”

• under the hood: understanding divergent DRS iterates
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Linear programming

• standard-form:

p? = min cTx subject to Ax = b︸ ︷︷ ︸
x∈L

, x ≥ 0︸ ︷︷ ︸
x∈R+

• every LP is in exactly one of the 3 cases:
1) p? finite ⇔ ∃ primal solution ⇔ ∃ primal-dual solution pair

2) p? = −∞: problem is feasible, unbounded ⇔ ∃ improving direction4

3) p? = +∞: problem is infeasible ⇔ dist(L,R+) > 0 ⇔ ∃ strict
separating hyperplane5

• cases (2) (3) arise, e.g., during branch-n-bound

• existing solvers are reliable

4
u is an improving direction if cT u < 0 and x + αu is feasible for all feasible x and α > 0.

5{x : hT x = β} strictly separates two sets L and K if hT x < β < hT y for all x ∈ L, y ∈ K.
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Conic programming

• standard-form: K is a closed convex cone

p? = min cTx subject to Ax = b︸ ︷︷ ︸
x∈L

, x ∈ K

• every problem is in one of the 7 cases:
1) p? finite: 1a) has PD sol pair, 1b) has P sol only, 1c) no P sol

2) p? = −∞: 2a) has improving direction, 2b) no improving direction

3) p? = +∞: 3a) dist(L,K) > 0⇔ has strict separating hyperplane
3b) dist(L,K) = 0⇔ no strict separating hyperplane

• all “b” “c” cases are pathological

• even nearly pathological problems can fail existing solvers
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Example 1

• 3-variable problem:

minimize x1 subject to x2 = 1, 2x2x3 ≥ x2
1, x2, x3 ≥ 0︸ ︷︷ ︸

rotated second-order cone

.

• belongs to case 2b):
• feasible
• p? = −∞, by letting x3 →∞ and x1 → −∞
• no improving direction6

• existing solvers7:
• SDPT3: “Failed”, p? no reported
• SeDuMi: “Inaccurate/Solved”, p? = −175514
• Mosek: “Inaccurate/Unbounded”, p? = −∞

6reason: any improving direction u has form (u1, 0, u3), but by the cone constraint 2u2u3 = 0 ≥ u2
1, so

u1 = 0, which implies cT u1 = 0 (not improving).
7using their default settings
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Example 2

• 3-variable problem:

minimize 0 subject to
[

0 1 1
1 0 0

]
x =

[
0
1

]
︸ ︷︷ ︸

x∈L

, x3 ≥
√
x2

1 + x2
2︸ ︷︷ ︸

x∈K

.

• belongs to case 3b):
• infeasible8

• dist(L,K) = 0 9

• no strict separating hyperplane

• existing solvers10:
• SDPT3: “Infeasible”, p? =∞
• SeDuMi: “Solved”, p? = 0
• Mosek: “Failed”, p? not reported

8
x ∈ L imply x = [1,−α, α]T , α ∈ R, which always violates the second-order cone constraint.

9dist(L, K) ≤ ‖[1,−α, α]− [1,−α, (α2 + 1)1/2]‖2 →∞ as α→∞.
10using their default settings
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Conic DRS

minimize cTx subject to Ax = b, x ∈ K

⇔ minimize
(
cTx+ δA·=b(x)

)︸ ︷︷ ︸
f(x)

+ δK(x)︸ ︷︷ ︸
g(x)

• cone K is nonempty closed convex11, matrix A has full row rank

• each iteration: projection onto A· = b, then projection onto K

• per-iteration cost: O(n2 + cost(projK)) with prefactorized AAT

• prior work: Wen-Goldfarb-Yin’09 for SDP

• we know: if not case 1a), DRS diverges; but how?

11not necessarily self-dual
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What happens during divergence?

• iteration: zk+1 = T (zk), where T is averaged

• general theorem12: zk − zk+1 → v = Projran(I−T )(0)

• v is “the best approximation to a fixed point of T”

12Pazy’71, Baillon-Bruck-Reich’78
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Our results (Liu-Ryu-Yin’17)

• proof simplification

• new rate of convergence: ‖zk − zk+1‖ ≤ ‖v‖+ ε+O( 1√
k+1 )

• for conic programs, a workflow using three simultaneous DRS:
1) original DRS
2) same DRS with c = 0
3) same DRS with b = 0

• most pathological cases are identified

• for unbounded problem 2a), compute an improving direction

• for infeasible problem 3a), compute a strict separating hyperplane

• for all infeasible problems, minimally alter b to restore strong feasibility
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Decision flow
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Theorems

• Identifications are described in a series of theorems in the form
Run DRS (one of three). If limk z

k − zk+1 = v ..., ‖zk‖ ..., or
‖zk+1 − zk‖ ..., then the problem is in case ... and ...

• example: Theorem 7. Run Alg2. Let zk − zk+1 → v. Problem is 3a) if
and only if v 6= 0. If v 6= 0, we have the strict separating hyperplane:

{x : vTx = (vTx0)/2}.

• example: Theorem 10: If feasible, run Alg3. Let zk − zk+1 → d. Problem
is 2a) if and only if d 6= 0. If d 6= 0, then it is an improving direction.
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Weakly infeasible SDP set (Liu-Pataki’17)

m = 10 m = 20
Clean Messy Clean Messy

SeDuMi 0 0 1 0
SDPT3 0 0 0 0
Mosek 0 0 11 0
PP13+SeDuMi 100 0 100 0

percentage of success detection on clean and messy examples in Liu-Pataki’17

13PreProcessing by Permenter-Parilo’14
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Weakly infeasible SDP set (Liu-Pataki’17)

m = 10 m = 20
Clean Messy Clean Messy

Proposed 100 21 100 99

(stopping: ‖z1e7‖2 ≥ 800)
our percentage is way much better!
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Strongly infeasible SDP set (Liu-Pataki’17)

m = 10 m = 20
Clean Messy Clean Messy

Proposed 100 100 100 100

(stopping: ‖z5e4 − z5e4+1‖2 ≤ 10−3)
our percentage is way much better!
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Other approaches

• homogeneous self-dual embedding14:
• is a reformulation that is always feasible and can produce PD solutions
• can use facial reductions to identify “b” “c”

• facial reduction15:
• generates bigger but less pathological problems
• can theoretically identify all cases
• no efficient numerical implementation yet

• reduction is not cheap, also introduces new computational issues
• generate cones that are intersections of original cones with linear

subspaces, making IPM and DRS difficult to apply

14Ye’11, Luo-Sturm-Zhang’00, Skajaa’Ye’12, etc.
15Methods: Borwein, Muramatsu, Pataki, Waki, Wolkowicz; numerical approaches:

Lourenco-Muramatsu-Tsuchiya’15, Permenter-Friberg-Andersen’15
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Related work

Bauschke, Combettes, Hare, Luke, Moursi, and others recently did

• DRS for feasibility between two convex sets by

• Range of DRS and generalized solutions to 0 ∈ A+B where A,B are
maximally monotone

• Also, Moursi’s thesis on DRS in the possibly inconsistent case: Static
properties and dynamic behaviour
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summary:

• DRS iterates provide useful information even when they diverge

• easy to code it for conic programs

not covered:

• general convex problem f(x) + g(x)

• analysis of f(xk+1/2) + g(xk+1)

• adaptation to ADMM
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