Douglas-Rachford Splitting for Infeasible, Unbounded, and Pathological Problems

Yanli Liu, Ernest Ryu, Wotao Yin

UCLA Math

US-Mexico Workshop Optimization and its Applications — Jan 8-12, 2018

Background

What is "splitting"?

- Sun-Tzu: "远交近攻", "各个击破" (400 BC)
- Caesar: "divide-n-conquer" (100-44 BC)
- Principle of computing: reduce a problem to simpler subproblems
- Example: find $x \in C_1 \cap C_2 \longrightarrow$ project to C_1 and C_2 alternatively

Basic principles of splitting

split:

- x/y directions
- linear from nonlinear
- smooth from nonsmooth
- spectral from spatial
- convection from diffusion
- composite operators

•
$$(I - \lambda(A + B))^{-1}$$
 to $(I - \lambda A)^{-1}$ and $(I - \lambda B)^{-1}$

Also

- domain decomposition
- block-coordinate descent
- column generation, Bender's decomposition, etc.

Operator splitting pipeline

1. Formulate

$$0 \in A(x) + B(x)$$

where A and B are operators, possibly set-valued

2. operator splitting: get a fixed-point operator T:

$$z^{k+1} \leftarrow T z^k$$

Applying T reduces to computing A and B successively

- 3. Correctness and convergence:
 - fixed-point $z^* = Tz^*$ recovers a solution x^*
 - T is contractive or, more weakly, averaged

Example: constrained minimization

• C is a convex set. f is a differentiable convex function.

 $\begin{array}{l} \underset{x}{\text{minimize }} f(x) \\ \text{subject to } x \in C \end{array}$

• equivalent inclusion problem:

$$0 \in N_C(x) + \nabla f(x)$$

 N_C is the normal cone

projected gradient method:

$$x^{k+1} \leftarrow \underbrace{\operatorname{proj}_C \circ (I - \gamma \nabla f)}_T x^k$$

Convergence

Contractive operator

- definition: T is contractive if, for some $L\in[0,1),$

 $||Tx - Ty|| \le L||x - y||, \quad \forall x, y$

Between L = 1 and L < 1

- $L < 1 \ \Rightarrow$ geometric convergence
- $L=1 \ \Rightarrow$ iterates are bounded, but may diverge
- Some algorithms have L = 1 and still converge:
 - Alternative projection (von Neumann)
 - Gradient descent
 - Proximal-point algorithm
 - Operator splitting algorithms

Averaged operator

- residual operator: R := I T. Hence, $Rx^* = 0 \Leftrightarrow x^* = Tx^*$
- averaged operator: from some $\eta > 0$,

$$||Tx - Ty||^2 \le ||x - y||^2 - \eta ||Rx - Ry||^2, \quad \forall x, y$$

- interpretation: set y as a fixed point, then distance to y improve by the amount of fixed-point residual
- **property**¹: if T has a fixed point, then $x^{k+1} \leftarrow Tx^k$ converges weakly to a fixed point

¹Krasnosel'skii'57, Mann'56

Why called "averaged"?

lemma: For $\alpha \in (0,1)$, T is α -averaged if, and only if, there exists a nonexpansive (1-Lipschitz) map T' so that

$$T = (1 - \alpha)I + \alpha T'.$$

Composition of averaged operators

Useful theorem:

 T_1, T_2 nonexpansive $\Rightarrow T_1 \circ T_2$ nonexpansive

 $T_1, T_2 \text{ averaged} \Rightarrow T_1 \circ T_2 \text{ averaged}$

(though the averagedness constants get worse.)

How to get an averaged-operator composition?

Forward-backward splitting

derive:

$$0 \in Ax + Bx \iff x - Bx \in x + Ax$$
$$\iff (I - B)x \in (I + A)x$$
$$\iff \underbrace{(I + A)^{-1}(I - B)}_{\text{backward forward}} x = x$$
$$\underbrace{(I + A)^{-1}(I - B)}_{\text{operator } T_{\text{FBS}}} x$$

- Although (I + A) may be set-valued, $(I + A)^{-1}$ is single-valued!

• forward-backward splitting (FBS) operator (Mercier'79): for $\gamma > 0$

$$T_{\rm FBS} := (I + \gamma A)^{-1} \circ (I - \gamma B)$$

- key properties:
 - if A is maximally monotone², then $(I + \gamma A)^{-1}$ is $\frac{1}{2}$ -averaged
 - if B is β -cocoercive³ and $\gamma \in (0, 2\beta)$, then $(I \gamma B)$ is averaged
- conclusion: $T_{\rm FBS}$ is averaged, thus if a fixed-point exists,

$$x^{k+1} \leftarrow T_{\text{FBS}}(x^k)$$

converges

$$\begin{aligned} & {}^{2}\langle Ax - Ay, x - y \rangle \geq 0, \ \forall x, y \\ & {}^{3}\langle Bx - By, x - y \rangle \geq \beta \|Bx - By\|^{2}, \ \forall x, y \end{aligned}$$

Major operator splitting schemes

 $0\in Ax+Bx$

- forward-backward (Mercier'79) for (maximally monotone) + (coccoercive)
- Douglas-Rachford (Lion-Mercier'79) for (maximally monotone) + (maximally monotone)
- forward-backward-forward (Tseng'00) for (maximally monotone) + (Lipschitz & monotone)
- three-operator (Davis-Yin'15) for (maximally monotone) + (maximally monotone) + (coccoercive)
- use non-Euclidean metric (Condat-Vu'13) for (maximally monotone $\circ A$) A is bounded linear operator

DRS for optimization

$$\min_{x} f(x) + g(x)$$

- f, g are proper closed convex, may be non-differentiable
- DRS iteration: $z^{k+1} = T_{DRS}(z^k) \iff$

$$\begin{aligned} x^{k+1/2} &= \mathbf{prox}_{\gamma f}(z^k) \\ x^{k+1} &= \mathbf{prox}_{\gamma g}(2x^{k+1/2} - z^k) \\ z^{k+1} &= z^k + (x^{k+1} - x^{k+1/2}) \end{aligned}$$

- $z^k \rightarrow z^*$ and $x^k, x^{k+1/2} \rightarrow x^*$ if

- primal dual solutions exist, and
- $-\infty < p^* = d^* < \infty$.
- otherwise, $\|z^k\| \to \infty$.

New results

Overview

- pathological conic programs, even small ones, can cripple existing solvers
- proposed: use DRS
 - to identify infeasible, unbounded, pathological problems
 - to compute "certificates" if there is one
 - to "restore feasibility"
- under the hood: understanding divergent DRS iterates

Linear programming

standard-form:

$$p^* = \min c^T x$$
 subject to $\underbrace{Ax = b}_{x \in \mathcal{L}}, \ \underbrace{x \ge 0}_{x \in \mathbb{R}^+}$

every LP is in exactly one of the 3 cases:

1) p^* finite $\Leftrightarrow \exists$ primal solution $\Leftrightarrow \exists$ primal-dual solution pair

2) $p^* = -\infty$: problem is feasible, unbounded $\Leftrightarrow \exists$ improving direction⁴

- p^{*} = +∞: problem is infeasible ⇔ dist(L, ℝ⁺) > 0 ⇔ ∃ strict separating hyperplane⁵
- cases (2) (3) arise, e.g., during branch-n-bound
- existing solvers are reliable

⁴u is an *improving direction* if $c^T u < 0$ and $x + \alpha u$ is feasible for all feasible x and $\alpha > 0$.

^a is an improving encentral in C and C and L and K if $h^T x < \beta < h^T y$ for all $x \in \mathcal{L}, y \in K$.

Conic programming

• standard-form: K is a closed convex cone

$$p^* = \min c^T x$$
 subject to $\underbrace{Ax = b}_{x \in \mathcal{L}}, x \in K$

• every problem is in one of the 7 cases:

1) p^* finite: 1a) has PD sol pair, 1b) has P sol only, 1c) no P sol

2) $p^* = -\infty$: 2a) has improving direction, 2b) no improving direction

3) $p^* = +\infty$: 3a) dist(\mathcal{L}, K) > 0 \Leftrightarrow has strict separating hyperplane 3b) dist(\mathcal{L}, K) = 0 \Leftrightarrow no strict separating hyperplane

- all "b" "c" cases are pathological
- even nearly pathological problems can fail existing solvers

Example 1

• 3-variable problem:

minimize
$$x_1$$
 subject to $x_2 = 1$, $\underbrace{2x_2x_3 \ge x_1^2, x_2, x_3 \ge 0}_{\text{rotated second-order cone}}$.

- belongs to case 2b):
 - feasible
 - $p^{\star} = -\infty$, by letting $x_3 \to \infty$ and $x_1 \to -\infty$
 - no improving direction⁶
- existing solvers⁷:
 - SDPT3: "Failed", p^{\star} no reported
 - SeDuMi: "Inaccurate/Solved", $p^{\star} = -175514$
 - Mosek: "Inaccurate/Unbounded", $p^{\star}=-\infty$

⁷using their default settings

⁶reason: any improving direction u has form $(u_1, 0, u_3)$, but by the cone constraint $2u_2u_3 = 0 \ge u_1^2$, so $u_1 = 0$, which implies $c^T u_1 = 0$ (not improving).

Example 2

• 3-variable problem:

minimize 0 subject to
$$\underbrace{\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}_{x \in \mathcal{L}}}_{x \in \mathcal{L}} x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \underbrace{x_3 \ge \sqrt{x_1^2 + x_2^2}}_{x \in K} x = \frac{1}{2}$$

- belongs to case 3b):
 - infeasible⁸
 - dist $(\mathcal{L}, K) = 0^9$
 - no strict separating hyperplane
- existing solvers¹⁰:
 - SDPT3: "Infeasible", $p^{\star} = \infty$
 - SeDuMi: "Solved", $p^{\star} = 0$
 - Mosek: "Failed", p^{\star} not reported

 ${}^{9}\mathrm{dist}(\mathcal{L},K) \leq \|[1,-\alpha,\alpha]-[1,-\alpha,(\alpha^{2}+1)^{1/2}]\|_{2} \rightarrow \infty \text{ as } \alpha \rightarrow \infty.$

¹⁰using their default settings

 $^{^8}x \in \mathcal{L}$ imply $x = [1, -\alpha, \alpha]^T$, $\alpha \in \mathbb{R}$, which always violates the second-order cone constraint.

Conic DRS

minimize
$$c^T x$$
 subject to $Ax = b, x \in K$
 \Leftrightarrow minimize $\underbrace{\left(c^T x + \delta_{A \cdot = b}(x)\right)}_{f(x)} + \underbrace{\delta_K(x)}_{g(x)}$

- cone K is nonempty closed convex¹¹, matrix A has full row rank
- each iteration: projection onto $A \cdot = b$, then projection onto K
- per-iteration cost: $O(n^2 + cost(\mathbf{proj}_K))$ with prefactorized AA^T
- prior work: Wen-Goldfarb-Yin'09 for SDP
- we know: if not case 1a), DRS diverges; but how?

¹¹not necessarily self-dual

What happens during divergence?

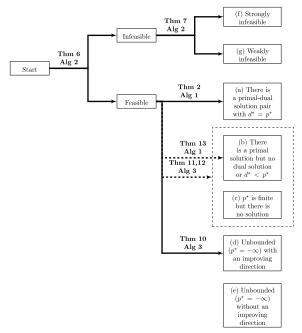
- iteration: $z^{k+1} = T(z^k)$, where T is averaged
- general theorem¹²: $z^k z^{k+1} \rightarrow v = \operatorname{Proj}_{\overline{\operatorname{ran}(I-T)}}(\mathbf{0})$
- v is "the best approximation to a fixed point of T"

¹²Pazy'71, Baillon-Bruck-Reich'78

Our results (Liu-Ryu-Yin'17)

- proof simplification
- new rate of convergence: $||z^k z^{k+1}|| \le ||v|| + \epsilon + O(\frac{1}{\sqrt{k+1}})$
- for conic programs, a workflow using three simultaneous DRS:
 1) original DRS
 - 2) same DRS with c = 0
 - 3) same DRS with b = 0
- most pathological cases are identified
- for unbounded problem 2a), compute an improving direction
- for infeasible problem 3a), compute a strict separating hyperplane
- for all infeasible problems, minimally alter b to restore strong feasibility

Decision flow



Theorems

- Identifications are described in a series of theorems in the form Run DRS (one of three). If $\lim_k z^k z^{k+1} = v \dots$, $||z^k|| \dots$, or $||z^{k+1} z^k|| \dots$, then the problem is in case \dots and \dots
- example: Theorem 7. Run Alg2. Let z^k z^{k+1} → v. Problem is 3a) if and only if v ≠ 0. If v ≠ 0, we have the strict separating hyperplane:

$$\{x: v^T x = (v^T x_0)/2\}.$$

example: Theorem 10: If feasible, run Alg3. Let z^k - z^{k+1} → d. Problem is 2a) if and only if d ≠ 0. If d ≠ 0, then it is an improving direction.

Weakly infeasible SDP set (Liu-Pataki'17)

	m = 10		m = 20	
	Clean	Messy	Clean	Messy
SeDuMi	0	0	1	0
SDPT3	0	0	0	0
Mosek	0	0	11	0
$PP^{13}+SeDuMi$	100	0	100	0

percentage of success detection on clean and messy examples in Liu-Pataki'17

¹³PreProcessing by Permenter-Parilo'14

Weakly infeasible SDP set (Liu-Pataki'17)

	m = 10		m = 20	
	Clean	Messy	Clean	Messy
Proposed	100	21	100	99

(stopping: $\|z^{1e7}\|_2 \ge 800$) our percentage is way much better!

Strongly infeasible SDP set (Liu-Pataki'17)

	m = 10		m = 20	
	Clean	Messy	Clean	Messy
Proposed	100	100	100	100

(stopping:
$$\|z^{5e4} - z^{5e4+1}\|_2 \le 10^{-3}$$
) our percentage is way much better!

Other approaches

- homogeneous self-dual embedding¹⁴:
 - is a reformulation that is always feasible and can produce PD solutions
 - can use facial reductions to identify "b" "c"
- facial reduction¹⁵:
 - generates bigger but less pathological problems
 - can theoretically identify all cases
 - no efficient numerical implementation yet
 - reduction is not cheap, also introduces new computational issues
 - generate cones that are intersections of original cones with linear subspaces, making IPM and DRS difficult to apply

¹⁴Ye'11, Luo-Sturm-Zhang'00, Skajaa'Ye'12, etc.

¹⁵Methods: Borwein, Muramatsu, Pataki, Waki, Wolkowicz; numerical approaches: Lourenco-Muramatsu-Tsuchiya'15, Permenter-Friberg-Andersen'15

Related work

Bauschke, Combettes, Hare, Luke, Moursi, and others recently did

- DRS for feasibility between two convex sets by
- Range of DRS and generalized solutions to $0 \in A+B$ where A,B are maximally monotone
- Also, Moursi's thesis on DRS in the possibly inconsistent case: Static properties and dynamic behaviour

summary:

- DRS iterates provide useful information even when they diverge
- easy to code it for conic programs

not covered:

- general convex problem f(x) + g(x)
- analysis of $f(\boldsymbol{x}^{k+1/2}) + g(\boldsymbol{x}^{k+1})$
- adaptation to ADMM

acknowledgements: NSF

report: https://arxiv.org/abs/1706.02374