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The Markov Decision/Game Process

Markov decision processes (MDPs) provide a mathematical
framework for modeling sequential decision-making in situations
where outcomes are partly random and partly under the control
of a decision maker.

Markov game processes (MGPs) provide a mathematical
framework for modeling sequential decision-making of
two-person turn-based zero-sum game.

MDGPs are useful for studying a wide range of
optimization/game problems solved via dynamic programming,
where it was known at least as early as the 1950s (cf. Shapley
1953, Bellman 1957).

Modern applications include dynamic planning under uncertainty,
reinforcement learning, social networking, and almost all other
stochastic dynamic/sequential decision/game problems in
Mathematical, Physical, Management and Social Sciences.
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The Markov Decision Process/Game continued

At each time step, the process is in some state i = 1, ...,m, and
the decision maker chooses an action j ∈ Ai that is available in
state i , and giving the decision maker an immediate
corresponding cost cj .

The process responds at the next time step by randomly moving
into a new state i ′. The probability that the process enters i ′ is
influenced by the chosen action in state i . Specifically, it is given
by the state transition distribution probability pj ∈ Rm.

But given state/action j , the distribution is conditionally
independent of all previous states and actions; in other words,
the state transitions of an MDP possess the Markov property.
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MDP Stationary Policy and Cost-to-Go Value

A stationary policy for the decision maker is a function
π = {π1, π2, · · · , πm} that specifies an action in each state,
πi ∈ Ai , that the decision maker will always choose; which also
lead to a cost-to-go value for each state

The MDP is to find a stationary policy to minimize/maximize
the expected discounted sum over the infinite horizon with a
discount factor 0 ≤ γ < 1.

If the states are partitioned into two sets, one is to minimize and
the other is to maximize the discounted sum, then the process
becomes a two-person turn-based zero-sum stochastic game.

Typically, discount factor γ = 1
1+ρ

where ρ is the interest rate,
where we assume it is uniform among all actions.
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The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, one entry
for each state i , of a given policy.

The MDP problem entails choosing the optimal value vector y∗ such
that it is the fixed point:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i .

In the Game setting, the fixed point becomes:

y ∗
i = min{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I−,

and
y ∗
i = max{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i ∈ I+.
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The Linear Programming Form of the MDP

The fixed-point vector can be formulated as

maximizey
∑m

i=1 yi

subject to y1 ≤ cj + γpT
j y, ∀j ∈ A1

. . . . . . . . .
yi ≤ cj + γpT

j y, ∀j ∈ Ai

. . . . . . . . .
ym ≤ cj + γpT

j y, ∀j ∈ Am,

where Ai represents all actions available in state i , and pj is the state
transition probabilities to all states when action j is taken.

This is the Standard Dual LP form.
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The Primal LP Form of the MDP

minimizex
∑n

j=1 xj

subject to
∑n

j=1(eij − γpij)xj = 1, ∀i ,
xj ≥ 0, ∀j .

where eij = 1 when j ∈ Ai and 0 otherwise.

Primal variable xj represents the expected jth action flow or
frequency, that is, the expected present value of the number of times
action j is chosen. The cost-to-go values are the “shadow Prices” of
the LP problem.

When discount factor γ becomes γj , then the MDP has a
non-uniform discount factors.
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Algorithmic Events of the MDP Methods

Shapley (1953) and Bellman (1957) developed a method called
the Value-Iteration (VI) method to approximate the optimal
state cost-to-go values and an approximate optimal policy.

Another best known method is due to Howard (1960) and is
known as the Policy-Iteration (PI) method, which generate an
optimal policy in finite number of iterations in a distributed and
decentralized way, where two key procedures are the policy
evaluation and the policy improvement.

de Ghellinck (1960), D’Epenoux (1960) and Manne (1960)
showed that the MDP has an LP representation, so that it can
be solved by the simplex method of Dantzig (1947) in finite
number of steps, and the Ellipsoid method of Kachiyan (1979) in
polynomial time.
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evaluation and the policy improvement.

de Ghellinck (1960), D’Epenoux (1960) and Manne (1960)
showed that the MDP has an LP representation, so that it can
be solved by the simplex method of Dantzig (1947) in finite
number of steps, and the Ellipsoid method of Kachiyan (1979) in
polynomial time.
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Open Question on the Complexity of the Policy

Iteration Method

In practice, the policy-iteration method, including the simple
policy-iteration or Simplex method, has been remarkably
successful and shown to be most effective and widely used.

In the past 50 years, many efforts have been made to resolve the
worst-case complexity issue of the policy-iteration method, and
to answer the question: are they also efficient in Theory?
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Complexity Theorem for MDP with Discount

The classic simplex method (Dantzig pivoting rule)
and the policy iteration method, starting from any
policy, terminate in

m(n −m)

1− γ
· log

(
m2

1− γ

)
iterations (Y MOR10).

The policy-iteration method actually terminates

n

1− γ
· log

(
m

1− γ

)
,

iterations with at most O(m2n) operations per
iteration (Hansen/Miltersen/Zwick ACM12).
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High Level Ideas of the Proof

Create a combinatorial event: a (non-optimal) action will never
enter the (intermediate) policy again.

The event will happen in at most a certain polynomial number
of iterations.

More precisely, after m
1−γ

· log
(

m2

1−γ

)
iterations, a new

non-optimal action would be implicitly eliminated from
appearance in any future policies generated by the simplex or
policy-iteration method.

The event then repeats for another non-optimal state-action,
and there are no more than (n −m) non-optimal actions to
eliminate.
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The Turn-Based Two-Person Zero-Sum Game

Again, the states are partitioned into two sets where one set is
to maximize and the other is to minimize.

It does not admit a convex programming formulation, and it is
unknown if it can be solved in polynomial time in general.

Strategy-Iteration Method: One player continues policy
iterations from the policy where the other player chooses the
best-response action in every one of his or her state set.

Hansen/Miltersen/Zwick ACM12 proved that the strategy
iteration method also terminates

n

1− γ
· log

(
m

1− γ

)
iterations – the first strongly polynomial time algorithm when
the discount factor is fixed.
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Deterministic MDP with Discount

Every probability distribution contains exactly one 1 and 0
everywhere else, where the primal LP problem resembles the
generalized cycle flow problem.

Theorem: The simplex method for deterministic MDP with a
uniform discount factor, regardless the factor value, terminates
in O(m3n2 log2m) iterations (Post/Y MOR2016).

Theorem: The simplex method for deterministic MDP with
non-uniform discount factors, regardless factor values,
terminates in O(m5n3 log2 m) iterations (Post/Y MOR2016).

Hansen/Miltersen/Zwick 15 were able to reduce a factor m from
the bound.
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The Value-Iteration Method (VI)

Let y0 ∈ Rm represent the initial cost-to-go values of the m states.

The VI for MDP:

y k+1
i = min{cj + γpT

j y
k , ∀j ∈ Ai}, ∀i .

The VI for MGP

y k+1
i = min{cj + γpT

j y
k , ∀j ∈ Ai}, ∀i ∈ I−,

and
y k+1
i = max{cj + γpT

j y
k , ∀j ∈ Ai}, ∀i ∈ I+.

The values inside the parenthesis are the so-called Q-values.
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Sample Value-Iteration

Rather than compute each quantity pT
j y

k exactly, we
approximate it by sampling, that is, we construct a sparser
sample distribution p̂j for the evaluation. (Thus, the method
does not need to know pj exactly).

Even we know pj exactly, it may be too dense so that the
computation of pT

j y
k takes O(m) up to operations.

We analyze this performance using Hoeffdings inequality and
classic results on contraction properties of value iteration.
Moreover, we improve the final result using Variance Reduction
and Monotone Iteration.

Variance Reduction enables us to update the Q-values so that
the needed number of samples is decreased from iteration to
iteration.
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Sample Value-Iteration Results

Two results are developed (Sidford, Wang, Wu and Y [2017]):

Knowing pj :

O

(
(mn +

n

(1− γ)3
) log(

1

ϵ
) log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

Pure Sampling:

O

(
n

(1− γ)4ϵ2
log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

Sample lower bound: O
(

n
(1−γ)3ϵ2

)
.
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Pure Sampling:

O

(
n

(1− γ)4ϵ2
log(

1

δ
)

)
to compute an ϵ-optimal policy with probability at least 1− δ.

Sample lower bound: O
(

n
(1−γ)3ϵ2

)
.
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More Results and Extensions

Renewed exciting research work on the simplex method, e.g.,
Kitahara and Mizuno 2012, Feinberg/Huang 213,
Lee/Epelman/Romeijn/Smith 2013, Scherrer 2014,
Fearnley/Savani 2014, Adler/Papadimitriou/Rubinstein 2014,
etc.

Lin, Sidford, Wang, Wu and Y 2018 on approximate PI method
to achieve the optimal sample complexity.

Lin, Sidford, Wang, Wu and Y 2018 on approximate PI method
for solving Ergodic MDP where the dependence on γ is removed.

All results are extended to the discounted Markov Game Process.
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Remarks and Open Problems

Dynamic sampling over actions in each iteration to deal with a
large number of actions in each state?

Dimension reduction to reduce the number of states?

Is there a simplex-type method that is (strongly) polynomial for
the deterministic MGP (independent of γ)?

Is there an algorithm whose running time is PTAS for the
general MGP?

Is there a strongly polynomial-time algorithm for MDP regardless
the discount factor?

Is there a strongly polynomial-time algorithm for LP?
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Introduction to DRO

We start from considering a stochastic optimization problem as
follows:

maximizex∈X EFξ
[h(x, ξ)] (1)

where x is the decision variable with feasible region X , ξ represents
random variables satisfying joint distribution Fξ.

Pros: In many cases, the expected value is a good measure of
performance

Cons: One has to know the exact distribution of ξ to perform
the stochastic optimization. Deviant from the assumed
distribution may result in sub-optimal solutions. Even know the
distribution, the solution/decision is generically risky.
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Learning with Noises

Goodfellow et al. [2014]
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Robust Optimization

In order to overcome the lack of knowledge on the distribution,
people proposed the following (static) robust optimization approach:

maximizex∈X minξ∈Ξ h(x, ξ) (2)

where Ξ is the support of ξ.

Pros: Robust to any distribution; only the support of the
parameters are needed.

Cons: Too conservative. The decision that maximizes the
worst-case pay-off may perform badly in usual cases; e.g.,
Ben-Tal and Nemirovski [1998, 2000], etc.
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Motivation for a Middle Ground

In practice, although the exact distribution of the random
variables may not be known, people usually know certain
observed samples or training data and other statistical
information.

Thus we could choose an intermediate approach between
stochastic optimization, which has no robustness in the error of
distribution; and the robust optimization, which admits vast
unrealistic single-point distribution on the support set of random
variables.
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Distributionally Robust Optimization

A solution to the above-mentioned question is to take the following
Distributionally Robust Optimization/Learning (DRO) model:

maximizex∈X minFξ∈D EFξ
[h(x, ξ)] (3)

In DRO, we consider a set of distributions D and choose one to
maximize the expected value for any given x ∈ X .

When choosing D, we need to consider the following:

Tractability

Practical (Statistical) Meanings

Performance (the potential loss comparing to the benchmark
cases)
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Sample History of DRO

First introduced by Scarf [1958] in the context of inventory
control problem with a single random demand variable.

Distribution set based on moments: Dupacova [1987], Prekopa
[1995], Bertsimas and Popescu [2005], Delage and Y
[2009,2010], etc

Distribution set based on Likelihood/Divergences: Nilim and El
Ghaoui [2005], Iyanger [2005], Wang, Glynn and Y [2012], etc

Distribution set based on Wasserstein ambiguity set: Mohajerin
Esfahani and Kuhn [2015], Blanchet et al. [2016], Duchi et al.
[2016,17], Gao et al. [2017]

Axiomatic motivation for DRO: Delage et al. [2017]; Ambiguous
Joint Chance Constraints Under Mean and Dispersion
Information: Hanasusanto et al. [2017]
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DRO with Moment Bounds

Define

D =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


That is, the distribution set is defined based on the support, first and
second order moments constraints.

Theorem
Under mild technical conditions, the DRO model can be solved to any
precision ϵ in time polynomial in log (1/ϵ) and the sizes of x and ξ

Delage and Y [2010]
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Confidence Region on Fξ

Does the construction of D make a statistical sense?

Theorem
Consider

D(γ1, γ2) =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


where µ0 and Σ0 are point estimates from the empirical data (of size
m) and Ξ lies in a ball of radius R such that ||ξ||2 ≤ R a.s..

Then for γ1 = O(R
2

m
log (4/δ)) and γ2 = O( R2

√
m

√
log (4/δ)),

P(Fξ ∈ D(γ1, γ2)) ≥ 1− δ
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DRO with Likelihood Bounds

Define the distribution set by the constraint on the likelihood ratio.
With observed Data: ξ1, ξ2, ...ξN , we define

DN =

{
Fξ

∣∣∣∣ P(ξ ∈ Ξ) = 1
L(ξ, Fξ) ≥ γ

}
where γ adjusts the level of robustness and N represents the sample
size.

For example, assume the support of the uncertainty is finite

ξ1, ξ2, ...ξn

and we observed mi samples on ξi . Then, Fξ has a finite discrete
distribution p1, ..., pn and

L(ξ, Fξ) =
n∑

i=1

mi log pi .
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Theory on Likelihood Bounds

The model is a convex optimization problem, and connects to many
statistical theories:

Statistical Divergence theory: provide a bound on KL divergence

Bayesian Statistics with the threshold γ estimated by samples:
confidence level on the true distribution

Non-parametric Empirical Likelihood theory: inference based on
empirical likelihood by Owen

Asymptotic Theory of the likelihood region

Possible extensions to deal with Continuous Case

Wang, Glynn and Y [2012,2016]
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DRO using Wasserstein Ambiguity Set
By the Kantorovich-Rubinstein theorem, the Wasserstein distance
between two distributions can be expressed as the minimum cost of
moving one to the other, which is a semi-infinite transportation LP.

Theorem
When using the Wasserstein ambiguity set

DN := {Fξ | P(ξ ∈ Ξ) = 1 & d(Fξ, F̂N) ≤ εN},

where d(F1, F2) is the Wasserstein distance function and N is the
sample size, the DRO model satisfies the following properties:

Finite sample guarantee : the correctness probability P̄N is high

Asymptotic guarantee : P̄∞(limN→∞ x̂εN = x∗) = 1

Tractability : DRO is in the same complexity class as SAA

Mohajerin Esfahani & Kuhn [15, 17], Blanchet, Kang, Murthy [16], Duchi and Namkoong [16]
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DRO for Logistic Regression

Let {(ξ̂i , λ̂i)}Ni=1 be a feature-label training set i.i.d. from P , and
consider applying logistic regression :

min
x

1

N

N∑
i=1

ℓ(x , ξ̂i , λ̂i) where ℓ(x , ξ, λ) = ln(1 + exp(−λxT ξ))

DRO suggests solving

min
x

sup
F∈DN

EF [ℓ(x , ξi , λi)]

with the Wasserstein ambiguity set.
When labels are considered to be error free, DRO with DN

reduces to regularized logistic regression:

min
x

1

N

N∑
i=1

ℓ(x , ξ̂i , λ̂i) + ε∥x∥∗

Shafieezadeh Abadeh, Mohajerin Esfahani, & Kuhn, NIPS, [2015]
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Result of the DRO Learning

Sinha, Namkoong and Duchi [2017]
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Medical Decision: CT Imaging of Sheep Thorax

Liu et al. [2017]
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Result of the DRO Medical Decision Making

Liu et al. [2017]
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Summary of DRO under Moment, Likelihood or

Wasserstein Ambiguity Set

The DRO models yield a solution with a guaranteed confidence
level to the possible distributions. Specifically, the confidence
region of the distributions can be constructed upon the historical
data and sample distributions.

The DRO models are tractable, and sometimes maintain the
same computational complexity as the stochastic optimization
models with known distribution.

This approach can be applied to a wide range of problems,
including inventory problems (e.g., newsvendor problem),
portfolio selection problems, image reconstruction, machine
learning, etc., with reported superior numerical results
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