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1. Definitions

Given scalars y1, . . . , yn ∈ IR, define their max-k-sum as

Mk(y) := max
|K|=k

∑
i∈K

yi =
k∑
j=1

y[j]

and their min-k-sum as

mk(y) := min
|K|=k

∑
i∈K

yi =
n∑

j=n−k+1

y[j],

where y[1], . . . , y[n] denote the yi’s in nonincreasing order.

These arise in

• constraints in scenario-based conditional value at risk computation
(giving a convex problem; restricting k out of n gives a MIP),

• penalties for peak demand in electricity modelling,

• and are related to Owl norms used in regularization in machine learning problems.

Given functions f1, . . . , fn on IRd, define

F k(t) := Mk(f1(t), . . . , fn(t)) and

fk(t) := mk(f1(t), . . . , fn(t)).





2. Two Questions

a) How can we define

• smooth approximations to F k and fk,

maintaining certain properties of the unsmoothed functions?

b) How can we define (original or smoothed) max-k-sums [min-k-sums] if

• the yi’s lie in a vector space ordered by a convex cone,

again preserving properties of the real case?

Note that F k (fk) is the composition of Mk (mk) with the map f from t to (f1(t), . . . , fn(t)),
so most of the time we address only the latter functions.

Desirable Properties

• 0-consistency: M 0(y) = m0(y) = 0;

• n-consistency: Mn(y) = mn(y) =
∑

i yi;

• sign-reversal: mk(y) = −Mk(−y);

• summability: Mk(y) +mn−k(y) =
∑

i yi;

• translation invariance: Mk(y + η1) = Mk(y) + kη, mk(y + η1) = mk(y) + kη.

• scale invariance: for α > 0, Mk(αy) = αMk(y), mk(αy) = αmk(y).

• convexity: if f1, . . . , fn are convex, so is F k; if they are concave, so is fk.



3. Smoothing via Randomization in the Domain

A classical technique is to approximate a nonsmooth function h via a convolution or as an
expectation:

h̃(t) := Esh(t− s)

=

∫
h(t− s)φ(s)ds,

where φ is the probability density function of a localized random variable s ∈ <d.

However, this shrinks the domain dom h := {t : h(t) <∞}, inappropriate in some cases,
and requires a computationally burdensome d-dimensional integration.



4. A Modification

Instead, we randomize in the range of the functions: Let ξ1, . . . , ξn be iid random variables
distributed like the (continuous) random variable Ξ and set

M̄k(y) := Eξ1,...,ξn max
|K|=k

∑
i∈K

(yi − ξi) + kEΞ

m̄k(y) := Eξ1,...,ξn min
|K|=k

∑
i∈K

(yi − ξi) + kEΞ

and then F̄ k(t) := M̄k(f(t)) and f̄k(t) := m̄k(f(t)). These functions inherit the
smoothness of the fi’s. Moreover, they inherit the domains of the nonsmooth functions.
Further, they satisfy 0- and n-consistency, summability, translation invariance, and convexity,
and the approximation bounds

Mk(y) ≤ M̄k(y) ≤Mk(y) + M̄k(0) ≤Mk(y) + min(kM̄ 1(0),−(n− k)m̄1(0))

and
mk(y) ≥ m̄k(y) ≥ mk(y) + m̄k(0) ≥ mk(y)−min((n− k)M̄ 1(0),−km̄1(0)).

They do not satisfy sign reversal or scale invariance, but

m̄k(y; Ξ) = −M̄k((−y;−Ξ)

and
M̄k(αy;αΞ) = αM̄k(y; Ξ),

and similarly for m̄k, for positive α.



5. Evaluation

To enable fairly efficient evaluation, we choose Gumbel random variables:
P (Ξ > x) = exp(− exp(x)), EΞ = −γ.
Recall that z[k] denotes the kth largest component of a vector z ∈ <n. We are interested in
qk := E((y − ξ)[k]).

qk = · · · =
∑
|K|<k

(−1)k−|K|−1
(
n− | K | −1

k− | K | −1

)
ln
∑
h/∈K

exp(yh) + γ.

From this, we obtain

Theorem 1

M̄k(y) =
∑
|K|<k

(−1)k−|K|−1
(
n− | K | −2

k− | K | −1

)
ln
∑
h/∈K

exp(yh).

ut
(Here

(
0
0

)
:=
(−1

0

)
:= 1, and otherwise

(
p
q

)
:= 0 if p < q.)

We have reduced the work from an n-dimensional integration to a sum over O((n)k−1) terms.

Note that almost all the terms disappear for k = n, and we get M̄n(y) = Mn(y) as expected.



6. Examples

k = 1: Here only K = ∅ contributes to the sum, so we obtain

M̄ 1(y) = ln

(∑
h

exp(yh)

)
.

Such functions have been used as potential functions in theoretical computer science, starting
with Shahrokhi-Matula and Grigoriadis-Khachiyan, and are discussed by Tunçel and Nemirovski in the
context of barrier functions.

They also appear in the economic literature on consumer choice, dating back to the 1960s
(e.g., Luce and Suppes).

This function is sometimes called the soft maximum of the yj’s. This term is also used for the
weight vector (

exp(yi)∑
h exp(yh)

)
.

Note that this is the gradient of M̄ 1 and thus the gradient of F̄ 1 is the weighted combination
of those of the fj’s using these weights for y = f(t).



k = 2: Here K can be the empty set or any singleton, and we find

M̄ 2(y) = −(n− 2) ln

(∑
h

exp(yh)

)
+
∑
i

ln

∑
h6=i

exp(yh)


= ln

∑
h6=2

exp(y[h])

+ ln

∑
h6=1

exp(y[h])

+

∑
i>2

ln

(
1−

exp(y[i])∑
h exp(yh)

)
.

Bounds

Theorem 2
Mk(y) ≤ M̄k(y) ≤Mk(y) + k lnn.

If we want a closer (but “rougher”) approximation, we can scale the Gumbel
random variables by α < 1, or equivalently, scale the vector y by α−1, apply the
formulae above, and then scale the result by α.

If the yi’s differ by orders of magnitude, the above expressions need to be carefully
evaluated, but at the same time, we may be able to ignore many of the terms.



7. Formulation via (Continuous) Optimization Problems

We note that M 1(y) can be obtained as the optimal value of

P (M 1) : min{x : x ≥ yi for all i}

and
D(M 1) : max{

∑
i

uiyi :
∑
i

ui = 1, ui ≥ 0 for all i};

either the smallest upper bound on the yi’s or their largest convex combination.

These are probably the simplest and most intuitive dual linear programming problems of all!

Analogously, Mk(y) is the optimal value of

D(Mk) : max{
∑
i

uiyi :
∑
i

ui = k, 0 ≤ ui ≤ 1 for all i},

with feasible region U := Uk, whose dual is

P (Mk) : min{kx+
∑
i

zi : x+ zi ≥ yi, zi ≥ 0, for all i}.

(Note that there is a slight abuse of notation: for k = 1, these are not the
same problems as above, but can be seen to be equivalent.)

We can similarly obtain m1(y) and mk(y).



8. Smoothing via Perturbation (à la Nesterov)

We define M̂k(y) to be the optimal value of

D̂(Mk) : max{
∑
i

uiyi − g∗(u) : u ∈ U},

where g∗ := g∗k is a strongly convex function on U := Uk satisfying certain properties,
+∞ off {u :

∑
i ui = k}, with minimum 0 and maximum ∆ on U . We define m̂k(y), F̂ k(t), and f̂k(t)

analogously.

We then have 0- and n-consistency, sign reversal, translation invariance, and summability
as long as g∗n−k(u) = g∗k(1− u) for u ∈ Un−k. Moreover, M̂k is Lipschitz continuously differentiable.
We also have scale invariance in the form M̂k(αy, αg∗) = αMk(y, g∗),
the convexity property for F̂ k and f̂k, and the bounds

Mk(y)−∆ ≤ M̂k(y) ≤Mk(y), mk(y) ≤ m̂k(y) ≤ mk(y) + ∆.

The dual of D̂(Mk) is

P̂ (Mk) : min{kx+
∑
i

zi + g(w) : x+ zi ≥ yi − wi, zi ≥ 0, for all i (and
∑
i

wi = 0)},

where g is the convex conjugate of g∗.



9. Examples

Quadratic function

Let

g∗(u) := g∗k(u) :=
β

2
(‖u‖2)2 −

β(k)2

2n
.

Then we can show that D̂(Mk) is solved by

ui = mid(0, yi/β − λ, 1) for all i,

for some λ, and we can solve the problem in O(n lnn) time by sorting and a binary search.

Single-sided entropic function

Next we let
g∗(u) := g∗k(u) :=

∑
i

ui lnui + k ln
(n
k

)
for nonnegative ui’s summing to k. Now we can find the optimal u from

ui = min(exp(yi − λ), 1) for all i,

for some λ, so the problem can again be solved in O(n lnn) time by sorting and a binary search.
Interestingly, M̂ 1(y) = M̄ 1(y)− lnn, but there is no such relation for k > 1, and the M̂k’s are
much easier to evaluate than the M̄k’s.



10. Max-k-Sums in General Spaces

Now suppose y1, . . . , yn lie in a finite-dimensional real vector space E ordered by a
closed convex pointed cone K with nonempty interior. Let E∗ denote the dual space,
with dual cone K∗ := {u ∈ E∗ : 〈u, x〉 ≥ 0 for all x ∈ K}. Then

x � z, x, z ∈ E means x− z ∈ K, u �∗ v, u, v ∈ E∗ means u− v ∈ K∗.

We also write z � x and v �∗ u with the obvious definitions.

We would like to define the max-k-sum and the min-k-sum of the yi’s in E, and
smooth approximations to them, to conform with their definitions in IR. We write ((yi)) for
(y1, . . . , yn) ∈ En for ease of notation.

Our prime examples for E and K are:

• IR and IR+;

• IRp and IRp
+;

• the space of real (complex) symmetric (Hermitian) d× d matrices,
and the cone of positive semidefinite matrices; and

• IR1+p and the second-order cone {(ξ;x) ∈ IR1+p : ξ ≥ ‖x‖2}.

Some results below hold just for symmetric cones — all those above are symmetric.



11. “Smoothing via Randomization”

This makes no sense, since we don’t yet know how to define the max-k-sum to add
randomization to!

But we can use the formulae we derived for the case of reals if exp and ln
are defined. And they are for symmetric cones!

For example, for symmetric matrices, if A = V DV T is the eigenvalue decomposition of A,
then exp(A) = V exp(D)V T , and if A is positive definite, ln(A) = V ln(D)V T .
Here exp and ln are defined for diagonal matrices by applying the scalar version to
each diagonal entry.

We can show that
ln
(∑

exp(yi)
)
� yj

for each j (but not a similar result for k = 2).

These formulae satisfy translation invariance for ((yi + ηe)), where e is the
unit element in the symmetric cone.



12. Definition via Optimization Formulations

If we directly translate P (Mk) to this setting, we find the objective function is not a scalar,
so we choose v ∈ int(K∗) and then define

P (Mk((yi)) : min{k〈v, x〉+
∑
i

〈v, zi〉 : x+ zi � yi, zi � 0, for all i}

and
D(Mk((yi))) : max{

∑
i

〈ui, yi〉 :
∑
i

ui = kv, 0 �∗ ui �∗ v for all i}.

with feasible region U := Uk in E∗n.

We again choose a suitable strongly convex g∗ on U , with convex conjugate g, and then define

P̂ (Mk((yi))) : min{k〈v, x〉+
∑
i

〈v, zi〉+ g((wi)) : x+ zi � yi − wi, zi � 0, for all i}

and
D̂(Mk((yi))) : max{

∑
i

〈ui, yi〉 − g∗((ui)) :
∑
i

ui = kv, 0 �∗ ui �∗ v for all i}.

Our conditions on g∗ imply that we can add the constraint
∑

iwi = 0 without loss of generality.



Of course, the values of all these problems are scalars, and so will not provide the definitions we need.
We therefore set

Mk((yi)) := {kx+
∑
i

zi : (x, (zi)) ∈ Argmin(P (Mk((yi))))}

and analogously mk((yi)) using Argmax.

(Here Argmin and Argmax denote the sets of all optimal solutions to the problem given.)

For the perturbed problems, we add the extra constraint
∑

iwi = 0 to remove the ambiguity from x,
and define

M̂k((yi)) := {kx+
∑
i

zi : (x, (zi), (wi)) ∈ Argmin(P̂ (Mk((yi)))),
∑
i

wi = 0}

and analogously m̂k((yi)).



13. Properties

These functions satisfy:

• 0- and n-consistency, in the sense that

M 0((yi)) = {0}, Mn((yi)) = {
∑
i

yi},

etc.;

• sign-reversal;

• summability, in the sense that
Mk((yi)) = {

∑
i

yi} −mn−k((yi)),

and if g∗n−k((ui)) := g∗k((v − ui)), similarly for M̂k and m̂n−k;

• translation invariance for any η ∈ E;

• positive scaling invariance in the natural sense; and

• dominance: for any K of cardinality k and any y ∈Mk((yi)),

y �
∑
i∈K

yi;

• respect of product structure: if K is a product of cones (and g is separable),
then Mk((yi)) (and M̂k((yi))) are products of the Mk’s (and M̂k’s) for the
constituent cones.



Computation

To calculate Mk((yi)) or M̂k((yi)) requires the solution of a
linear or convex conic programming problem.

One case is easier: if the cone is symmetric and n = 2, k = 1, we have

M 1(y1, y2) = {(y1 + y2)/2 + abs((y1 − y2)/2)},
where abs is defined using the eigenvalue decomposition like exp and ln.

Remarks

• Simple arguments show that Mk((yi)) may not be a singleton, and may depend on v;

• An alternative way to define M 1((yi)) is as the limit (if it exists)

lim
α↓0

α ln

(∑
i

exp(yi/α)

)
.

This does not agree with the definition above.



14. Conclusions

The simple max-k-sum can be smoothed either by randomization or by
perturbing an optimization formulation of the function.

The latter approach suggests a way to generalize the function to the case of general cones.

Final remark: Contrary to God, Kronecker, and Backus, k need not be an integer in the second approach,
and the same properties hold!

All the best, Don!
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