Motivation	Proposed Algorithm	Theoretical Results		
	A Trust Funnel A Constrained Optin	lgorithm for None nization with $\mathcal{O}(\epsilon^{-1})$	convex Equality ^{-3/2}) Complexity	
	Mohammad	Ireza Samadi , Lehigh	University	
		joint work with		
	Frank I Daniel P. Ro	E. Curtis, Lehigh Univ bbinson, Johns Hopkin	versity s University	

U.S.–Mexico Workshop OPTIMIZATION AND ITS APPLICATIONS Huatulco, Mexico

January 8, 2018

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

Motivation	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

Motivation		Theoretical Results	
Introductio	on		

Consider nonconvex equality constrained optimization problems of the form

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$.

where $f : \mathbb{R}^n \to \mathbb{R}$ and $c : \mathbb{R}^n \to \mathbb{R}^m$ are twice continuously differentiable.

- ▶ We are interested in algorithm worst-case iteration / evaluation complexity.
- Constraints are not necessarily linear!

Algorithms for equality constrained (nonconvex) optimization

Sequential Quadratic Programming (SQP) / Newton's method

Trust Funnel; Gould & Toint (2010)

Short-Step ARC; Cartis, Gould, & Toint (2013)

Algorithms for equality constrained (nonconvex) optimization

Sequential Quadratic Programming (SQP) / Newton's method

► Global convergence: globally convergent (trust region/line search)

Trust Funnel; Gould & Toint (2010)

▶ Global convergence: globally convergent

Short-Step ARC; Cartis, Gould, & Toint (2013)

▶ Global convergence: globally convergent

Algorithms for equality constrained (nonconvex) optimization

Sequential Quadratic Programming (SQP) / Newton's method

- ► Global convergence: globally convergent (trust region/line search)
- ▶ Worst-case complexity: No proved bound

Trust Funnel; Gould & Toint (2010)

- ► Global convergence: globally convergent
- ▶ Worst-case complexity: No proved bound

Short-Step ARC; Cartis, Gould, & Toint (2013)

- ▶ Global convergence: globally convergent
- Worst-case complexity: $\mathcal{O}(\epsilon^{-3/2})$

Motivation		Theoretical Results	
Short-Step	ARC		

Motivation		Theoretical Results	
Short-Ster	o ARC		

Motivation		Theoretical Results	
Short-Sten	ARC		

Motivation		Theoretical Results	
Main Cone	erns		

- ▶ Completely ignores the objective function during the first phase
- ▶ Question: Can we do better?

Motivation		Theoretical Results	
Main Conc	erns		

- Completely ignores the objective function during the first phase
- ▶ Question: Can we do better?
- ► Yes!(?)
- ▶ First, rather than two-phase approach that ignores objective in phase 1, wrap in a **trust funnel** framework that observes objective in both phases.
- ▶ Second, consider TRACE method for unconstrained nonconvex optimization
 - F. E. Curtis, D. P. Robinson, MS, "A trust region algorithm with a worst-case iteration complexity of O(ε^{-3/2}) for nonconvex optimization," Mathematical Programming, 162, 2017.

	Proposed Algorithm	Theoretical Results	
o			
Outline			

Proposed Algorithm

Theoretical Results

Numerical Results

	Proposed Algorithm	Theoretical Results	
SOP "core	e"		

• Given x_k , find s_k as a solution of

$$\min_{s \in \mathbb{R}^n} f_k + g_k^T s + \frac{1}{2} s^T H_k s$$

s.t. $c_k + J_k s = 0$

Issues:

- H_k might not be positive definite over $\text{Null}(J_k)$.
- ▶ Trust region!. . . but constraints might be incompatible.

	Proposed Algorithm	Theoretical Results	
Step decor	nposition		

	Proposed Algorithm	Theoretical Results	
Step decor	nposition		

	Proposed Algorithm	Theoretical Results	
C+]			
-step deco	mposition		

	Proposed Algorithm	Theoretical Results	
m , c	11 •		
Trust fun:	nel basics		

Step decomposition approach:

▶ First, compute a *normal step* toward minimizing constraint violation

$$v(x) = \frac{1}{2} \|c(x)\|^2 \Rightarrow \begin{cases} \min_{s^n \in \mathbb{R}^n} m_k^v(s^n) \\ \text{s.t.} \|s^n\| \le \delta_k^v \end{cases}$$

- Second, compute multipliers y_k (or take from previous iteration).
- ▶ Third, compute a *tangential step* toward optimality:

$$\min_{s^t \in \mathbb{R}^n} m_k^f(s_k^n + s^t) \quad \text{s.t. } J_k s^t = 0, \quad \|s_k^n + s^t\| \le \delta_k^f.$$

	Proposed Algorithm	Theoretical Results	
Main idea			

Two-phase method combining trust funnel and TRACE.

- ▶ Trust funnel for globalization
- ▶ TRACE for good complexity bounds

Phase 1 towards feasibility, two types of iterations:

- ▶ F-ITERATIONS improve objective and reduce constraint violation.
- ▶ V-ITERATIONS reduce constraint violation.

Our algorithm vs. basic trust funnel

- ▶ modified F-ITERATION conditions and a different funnel updating procedure
- \blacktriangleright uses trace ideas (for radius updates) instead of tradition trust region
- \blacktriangleright after getting approximately feasible, switches to "phase 2".

	Proposed Algorithm	Theoretical Results	
Our algori	ithm-Illustration		

	Proposed Algorithm	Theoretical Results	
Our algorithm-Illustration			

	Proposed Algorithm	Theoretical Results	
Our algori	ithm-Illustration		

	Proposed Algorithm	Theoretical Results	
Our algori	thm-Illustration		

	Proposed Algorithm	Theoretical Results	
Our algorit	thm-Illustration		

	Proposed Algorithm	Theoretical Results	
Our algorithm-Illustration			

	Proposed Algorithm	Theoretical Results	
Our algorit	hm-Illustration		

	Theoretical Results	
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

	Theoretical Results	
D 1 4		
Phase 1		

Recall that $\nabla v(x) = J(x)^T c(x)$ and define the iteration index set

$$\mathcal{I} := \{ k \in \mathbb{N} : \|J_k^T c_k\| > \epsilon_v \}.$$

Theorem

For any $\epsilon_v \in (0,\infty)$, the cardinality of \mathcal{I} is at most $K(\epsilon_v) \in \mathcal{O}(\epsilon_v^{-3/2})$:

- $\mathcal{O}(\epsilon_v^{-3/2})$ successful steps and
- ▶ finite contraction and expansion steps between successful steps.

Corollary

If $\{J_k\}$ have full row rank with singular values bounded below by $\xi \in (0,\infty)$, then

$$\mathcal{I}_c := \{k \in \mathbb{N} : \|c_k\| > \epsilon_v / \xi\}$$

has cardinality $\mathcal{O}(\epsilon_v^{-3/2})$.

	Theoretical Results	
Phase 2		

Options for phase 2:

- trust funnel method (no complexity guarantees) or
- ▶ "target-following" approach similar to Short-Step ARC to minimize

$$\Phi(x,t) = \|c(x)\|^2 + |f(x) - t|^2.$$

Theorem For $\epsilon_f \in (0, \epsilon_v^{1/3}]$, the number of iterations until

$$||g_k + J_k^T y|| \le \epsilon_f ||(y_k, 1)|| \text{ or } ||J_k^T c_k|| \le \epsilon_f ||c_k||$$

is $\mathcal{O}(\epsilon_f^{-3/2}\epsilon_v^{-1/2}).$

Same complexity as Short-Step ARC:

- If $\epsilon_f = \epsilon_v^{2/3}$, then overall $\mathcal{O}(\epsilon_v^{-3/2})$
- If $\epsilon_f = \epsilon_v$, then overall $\mathcal{O}(\epsilon_v^{-2})$

	Theoretical Results	Numerical Results	
0.11			
Outline			

Proposed Algorithm

Theoretical Results

Numerical Results

		Theoretical Results	Numerical Results	
Implemen	itation			

MATLAB implementation:

▶ Phase 1: our algorithm vs. one doing V-ITERATION only

▶ Phase 2: trust funnel method [Curtis, Gould, Robinson, & Toint (2016)] Termination conditions:

▶ Phase 1:

$$\|c_k\|_{\infty} \le 10^{-6} \max\{\|c_0\|_{\infty}, 1\} \text{ or } \begin{cases} \|J_k^T c_k\|_{\infty} \le 10^{-6} \max\{\|J_0^T c_0\|_{\infty}, 1\}\\ \text{and } \|c_k\|_{\infty} > 10^{-3} \max\{\|c_0\|_{\infty}, 1\} \end{cases}$$

▶ Phase 2

$$||g_k + J_k^T y_k||_{\infty} \le 10^{-6} \max\{||g_0 + J_0^T y_0||_{\infty}, 1\}.$$

	Theoretical Results	Numerical Results	
			
Test set			

Equality constrained problems (190) from CUTEst test set:

78	constant (or null) objective
60	time limit
13	feasible initial point
3	infeasible phase 1
2	function evaluation error
1	small stepsizes (less than 10^{-40})

Remaining set consists of 33 problems.

						TF					TF-V-ONLY		
		ĺ			Phase 1		Pha	se 2		Phase	1	Pha	se 2
Problem	n	m	#V	#F	f	$ g + J^T y $	#V	#F	#V	f	$ g + J^T y $	#V	#F
BT1	2	1	4	0	-8.02e-01	+4.79e-01	0	139	4	-8.00e-01	+7.04e-01	7	136
BT10	2	2	10	0	-1.00e+00	+5.39e-04	1	0	10	-1.00e+00	+6.74e-05	1	0
BT11	5	3	6	1	+8.25e-01	+4.84e-03	2	0	1	+4.55e+04	+2.57e+04	16	36
BT12	5	3	12	1	+6.19e+00	+1.18e-05	0	0	16	+3.34e+01	+4.15e+00	4	8
BT2	3	1	22	8	+1.45e+03	+3.30e+02	3	12	21	+6.14e+04	+1.82e+04	0	40
BT3	5	3	1	0	+4.09e+00	+6.43e+02	1	0	1	+1.01e+05	+8.89e+02	0	1
BT4	3	2	1	0	-1.86e+01	+1.00e+01	20	12	1	-1.86e+01	+1.00e+01	20	12
BT5	3	2	15	2	+9.62e+02	+2.80e+00	14	2	8	+9.62e+02	+3.83e-01	3	1
BT6	5	2	11	45	+2.77e-01	+4.64e-02	1	0	14	+5.81e+02	+4.50e+02	5	59
BT7	5	3	15	6	+1.31e+01	+5.57e+00	5	1	12	+1.81e+01	+1.02e+01	19	28
BT8	5	2	50	26	+1.00e+00	+7.64e-04	1	1	10	+2.00e+00	+2.00e+00	1	97
BT9	4	2	11	1	-1.00e+00	+8.56e-05	1	0	10	-9.69e-01	+2.26e-01	5	1
BYRDSPHR	3	2	29	2	-4.68e+00	+1.28e-05	0	0	19	-5.00e-01	+1.00e+00	16	5
CHAIN	800	401	9	0	+5.12e+00	+2.35e-04	3	20	9	+5.12e+00	+2.35e-04	3	20
FLT	2	2	15	4	+2.68e+10	+3.28e+05	0	13	19	+2.68e+10	+3.28e+05	0	17
GENHS28	10	8	1	0	+9.27e-01	+5.88e+01	0	0	1	+2.46e+03	+9.95e+01	0	1
HS100LNP	7	2	16	2	+6.89e+02	+1.74e+01	4	1	5	+7.08e+02	+1.93e+01	14	3
HS111LNP	10	3	9	1	-4.78e+01	+4.91e-06	2	0	10	-4.62e+01	+7.49e-01	10	1
HS27	3	1	2	0	+8.77e+01	+2.03e+02	3	5	1	+2.54e+01	+1.41e+02	11	34
HS39	4	2	11	1	-1.00e+00	+8.56e-05	1	0	10	-9.69e-01	+2.26e-01	5	1
HS40	4	3	4	0	-2.50e-01	+1.95e-06	0	0	3	-2.49e-01	+3.35e-02	2	1
HS42	4	2	4	1	+1.39e+01	+3.94e-04	1	0	1	+1.50e+01	+2.00e+00	3	1
HS52	5	3	1	0	+5.33e+00	+1.54e+02	1	0	1	+8.07e+03	+4.09e+02	0	1
HS6	2	1	1	0	+4.84e+00	+1.56e+00	32	136	1	+4.84e+00	+1.56e+00	32	136
HS7	2	1	7	1	-2.35e-01	+1.18e+00	7	2	8	+3.79e-01	+1.07e+00	5	2
HS77	5	2	13	30	+2.42e-01	+1.26e-02	0	0	17	+5.52e+02	+4.54e+02	3	11
HS78	5	3	6	0	-2.92e+00	+3.65e-04	1	0	10	-1.79e+00	+1.77e+00	2	30
HS79	5	3	13	21	+7.88e-02	+5.51e-02	0	2	10	+9.70e+01	+1.21e+02	0	24
MARATOS	2	1	4	0	-1.00e+00	+8.59e-05	1	0	3	-9.96e-01	+9.02e-02	2	1
MSS3	2070	1981	12	0	-4.99e+01	+2.51e-01	50	0	12	-4.99e+01	+2.51e-01	50	0
MWRIGHT	5	3	17	6	+2.31e+01	+5.78e-05	1	0	7	+5.07e+01	+1.04e+01	12	20
ORTHREGB	27	6	10	15	+7.02e-05	+4.23e-04	0	6	10	+2.73e+00	+1.60e+00	0	10
SPIN20P	102	100	57	18	+2.04e-08	+2.74e-04	0	1	time	+1.67e+01	+3.03e-01	time	time

						Theoretica				Numerica	al Results		
		. <u> </u>				TE					TE V ow v		
						11					IF-V-UNLY		
1	1				Phase 1		Phas	se 2		Phase	1	Pha	se 2
Problem	n	m	#V	#F	Phase 1 f	$ g + J^T y $	Pha: #V	se 2 #F	#V	Phase f	$\ g + J^T y\ $	Pha: #V	se 2 #F
Problem BT11	n 5	m 3	#V 6	#F 1	Phase 1 f +8.25e-01	$ g + J^T y $ +4.84e-03	Pha: #V 2	se 2 #F 0	#V 1	Phase f +4.55e+04	$ \ g + J^T y\ $ +2.57e+04	Pha: #V 16	se 2 #F 36

Our algorithm, at the end of phase 1

- ▶ for 26 problems, reaches a smaller function value
- ▶ for 6 problems, reaches the same function value

Total number of iterations of our algorithm

- ▶ for 18 problems is smaller
- ▶ for 8 problems is equal

	Theoretical Results	Summary
0.01		
Outline		

Proposed Algorithm

Theoretical Results

Numerical Results

	Theoretical Results	Summary
C		
Summary		

- ▶ Proposed an algorithm for equality constrained optimization
- Trust funnel algorithm with improved complexity properties
- Promising performance in practice based on our preliminary numerical experiment
- ▶ A step toward practical algorithms with good iteration complexity

F. E. Curtis, D. P. Robinson, and M. Samadi. Complexity Analysis of a Trust Funnel Algorithm for Equality Constrained Optimization. Technical Report 16T-013, COR@L Laboratory, Department of ISE, Lehigh University, 2016.