Benefiting from Negative Curvature

Daniel P. Robinson
Johns Hopkins University
Department of Applied Mathematics and Statistics

> Collaborator:
> Frank E. Curtis (Lehigh University)

US and Mexico Workshop on Optimization and Its Applications
Huatulco, Mexico
January 8, 2018

Outline

(1) Motivation
(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments
(3) Stochastic Setting

Outline

(1) Motivation

2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments
(3) Stochastic Setting

Problem of interest: deterministic setting

```
minimize f(x)
    x\in\mp@subsup{\mathbb{R}}{}{n}
```

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ assumed to be twice-continuously differentiable.
- L will denote the Lipschitz constant for ∇f
- σ will denote the Lipschitz constant for $\nabla^{2} f$
- f may be nonconvex
- Notation:

$$
\begin{aligned}
g(x) & :=\nabla f(x) \\
H(x) & :=\nabla^{2} f(x)
\end{aligned}
$$

Much work has been done on convergence two second-order points:

- D. Goldfarb (1979) [6]
- prove convergence result to second-order optimal points (unconstrained)
- curvilinear search using descent direction and negative curvature direction
- D. Goldfarb, C. Mu, J. Wright, and C. Zhou (2017) [7]
- consider equality constrained problems
- prove convergence result to second-order optimal points
- extend curvilinear search for unconstrained
- F. Facchinei and S. Lucidi (1998) [3]
- consider inequality constrained problems
- exact penalty function, directions of negative curvature, and line search
- P. Gill, V. Kungurtsev, and D. Robinson (2017) [4, 5]
- consider inequality constrained problems
- convergence to second-order optimal points under weak assumptions
- J. Moré and D. Sorensen (1979), A. Forsgren, P. Gill, and W. Murray (1995), and many more ...

None consistently perform better by using directions of negative curvature!

Others hope to avoid saddle-points:

- J. Lee, M. Simchowich, M. Jordan, and B. Recht (2016) [8]
- Gradient descent converges to local minimizer almost surely.
- Uses random initialization.
- Y. Dauphin et al. (2016) [2]
- Present a saddle-free Newton method (it is a modified-Newton method)
- Goal is to escape saddle points (move away when close)

These (and others) try to avoid the ill-effects of negative curvature.

Purpose of this research:

- Design a method that consistently performs better by using directions of negative curvature.
- Do not try to avoid negative curvature. Use it!

Outline

(1) Motivation

(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

(3) Stochastic Setting

Outline

(1) Motivation

(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

(3) Stochastic Setting

Overview:

- Compute descent direction $\left(s_{k}\right)$ and negative curvature direction $\left(d_{k}\right)$.
- Predict which step will make more progress in reducing the objective f.
- If predicted decrease is not realized, adjust parameters.
- Iterate until an approximate second-order solution is obtained.

Requirements on the descent direction s_{k}
Compute s_{k} to satisfy

$$
-g\left(x_{k}\right)^{T} s_{k} \geq \delta\left\|s_{k}\right\|_{2}\left\|g\left(x_{k}\right)\right\|_{2} \quad(\text { some } \delta \in(0,1])
$$

Examples:

- $s_{k}=-g\left(x_{k}\right)$
- $B_{k} s_{k}=-g_{k}$ with B_{k} appropriately chosen

Requirements on the negative curvature direction d_{k}

Compute d_{k} to satisfy

$$
\begin{aligned}
d_{k}^{T} H\left(x_{k}\right) d_{k} & \leq \gamma \lambda_{k}\left\|d_{k}\right\|_{2}^{2}<0 \quad(\text { some } \gamma \in(0,1]) \\
g\left(x_{k}\right)^{T} d_{k} & \leq 0
\end{aligned}
$$

Examples:

- $d_{k}= \pm v_{k}$ with $\left(\lambda_{k}, v_{k}\right)$ being the left-most eigenpair of $H\left(x_{k}\right)$
- d_{k} a sufficiently accurate estimate of $\pm v_{k}$

How to use s_{k} and d_{k} ?

- Use both in a curvilinear linesearch?
- Often taints good descent directions by "poorly scaled" directions of negative curvature.
- No consistent performance gains!
- Start using d_{k} only once $\left\|g\left(x_{k}\right)\right\|$ is "small"?
- No consistent performance gains!
- Misses areas of the space in which great decrease in f is possible.
- Use s_{k} when $\left\|g\left(x_{k}\right)\right\|$ is big relative to $\left|\left(\lambda_{k}\right)_{-}\right|$. Otherwise, use d_{k} ?
- Better, but still inconsistent performance gains!

We propose to use upper-bounding models. It works!

Predicted decrease along descent direction s_{k}
If $L_{k} \geq L$, then

$$
f\left(x_{k}+\alpha s_{k}\right) \leq f\left(x_{k}\right)-m_{s, k}(\alpha) \quad(\text { for all } \alpha)
$$

with

$$
m_{s, k}(\alpha):=-\alpha g\left(x_{k}\right)^{T} s_{k}-\frac{1}{2} L_{k} \alpha^{2}\left\|s_{k}\right\|_{2}^{2}
$$

and define the quantity

$$
\alpha_{k}:=\frac{-g\left(x_{k}\right)^{T} s_{k}}{L_{k}\left\|s_{k}\right\|_{2}^{2}}=\underset{\alpha \geq 0}{\operatorname{argmax}} m_{s, k}(\alpha)
$$

Comments

- $m_{s, k}\left(\alpha_{k}\right)$ is the best predicted decrease along s_{k}
- If $s_{k}=-g\left(x_{k}\right)$, then $\alpha_{k}=1 / L_{k}$

Predicted decrease along the negative curvature direction d_{k}
If $\sigma_{k} \geq \sigma$, then

$$
f\left(x_{k}+\beta d_{k}\right) \leq f\left(x_{k}\right)-m_{d, k}(\beta) \quad(\text { for all } \beta)
$$

with

$$
m_{d, k}(\beta):=-\beta g\left(x_{k}\right)^{T} d_{k}-\frac{1}{2} \beta^{2} d_{k}^{T} H\left(x_{k}\right) d_{k}-\frac{\sigma_{k}}{6} \beta^{3}\left\|d_{k}\right\|_{2}^{3}
$$

and define, with $c_{k}:=d_{k}^{T} H\left(x_{k}\right) d_{k}$, the quantity

$$
\beta_{k}:=\frac{\left(-c_{k}+\sqrt{c_{k}^{2}-2 \sigma_{k}\left\|d_{k}\right\|_{2}^{3} g\left(x_{k}\right)^{T} d_{k}}\right)}{\sigma_{k}\left\|d_{k}\right\|_{2}^{3}}=\underset{\beta \geq 0}{\operatorname{argmax}} m_{d, k}(\beta)
$$

Comments

- $m_{d, k}\left(\beta_{k}\right)$ is the best predicted decrease along d_{k}

Choose the step that predicts the largest decrease in f.

- If $m_{s, k}\left(\alpha_{k}\right) \geq m_{d, k}\left(\beta_{k}\right)$, then Try the step s_{k}
- If $m_{d, k}\left(\beta_{k}\right)>m_{s, k}\left(\alpha_{k}\right)$, then Try the step d_{k}

Question: Why "Try" instead of "Use"?
Answer: We do not know if $L_{k} \geq L$ and $\sigma_{k} \geq \sigma$

- If $L_{k}<L$, then it could be the case that

$$
f\left(x_{k}+\alpha_{k} s_{k}\right)>f\left(x_{k}\right)-m_{s, k}\left(\alpha_{k}\right)
$$

- If $\sigma_{k}<\sigma$, then it could be the case that

$$
f\left(x_{k}+\beta_{k} d_{k}\right)>f\left(x_{k}\right)-m_{d, k}\left(\beta_{k}\right)
$$

Dynamic Step-Size Algorithm

1: for $k \in \mathbb{N}$ do

2: \quad compute s_{k} and d_{k} satisfying the required step conditions
3: loop
4:
compute $\alpha_{k}=\operatorname{argmax} m_{s, k}(\alpha)$ and $\beta_{k}=\operatorname{argmax} m_{d, k}(\beta)$
5:
6:
7:
8:
9:
if $m_{s, k}\left(\alpha_{k}\right) \geq m_{d, k}\left(\beta_{k}\right)$ then if $f\left(x_{k}+\alpha_{k} s_{k}\right) \leq f\left(x_{k}\right)-m_{s, k}\left(\alpha_{k}\right)$ then set $x_{k+1} \leftarrow x_{k}+\alpha_{k} s_{k}$ and then exit loop else set $L_{k} \leftarrow \rho L_{k}$

$$
\text { set } x_{k+1} \leftarrow x_{k}+\beta_{k} d_{k} \text { and then exit loop }
$$

else

$$
\text { if } f\left(x_{k}+\beta_{k} d_{k}\right) \leq f\left(x_{k}\right)-m_{d, k}\left(\beta_{k}\right) \text { then }
$$

else

15: $\quad \operatorname{set}\left(L_{k+1}, \sigma_{k+1}\right) \in\left(L_{\min }, L_{k}\right] \times\left(\sigma_{\min }, \sigma_{k}\right]$

Outline

(1) Motivation

(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments
(3) Stochastic Setting

Key decrease inequality: For all $k \in \mathbb{N}$ it holds that

$$
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \max \left\{\frac{\delta^{2}}{2 L_{k}}\left\|g\left(x_{k}\right)\right\|_{2}^{2}, \frac{2 \gamma^{3}}{3 \sigma_{k}^{2}}\left|\left(\lambda_{k}\right)_{-}\right|^{3}\right\} .
$$

Comments:

- First term in the max holds when $x_{k+1}=x_{k}+\alpha_{k} s_{k}$.
- Second term in the max holds when $x_{k+1}=x_{k}+\beta_{k} d_{k}$.
- The above max holds because we choose whether to try s_{k} or d_{k} based on

$$
m_{s, k}\left(\alpha_{k}\right) \geq m_{d, k}\left(\beta_{k}\right)
$$

- Can prove that $\left\{L_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ remain uniformly bounded.

Theorem (Limit points satisfy second-order necessary conditions)

The computed iterates satisfy

$$
\lim _{k \rightarrow \infty}\left\|g\left(x_{k}\right)\right\|_{2}=0 \text { and } \liminf _{k \rightarrow \infty} \lambda_{k} \geq 0
$$

Theorem (Complexity result)

The number of iterations, function, and derivative (i.e., gradient and Hessian) evaluations required until some iteration $k \in \mathbb{N}$ is reached with

$$
\left\|g\left(x_{k}\right)\right\|_{2} \leq \epsilon_{g} \text { and }\left|\left(\lambda_{k}\right)_{-}\right| \leq \epsilon_{H}
$$

is at most

$$
\mathcal{O}\left(\max \left\{\epsilon_{g}^{-2}, \epsilon_{H}^{-3}\right\}\right)
$$

Outline

(1) Motivation

(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments
(3) Stochastic Setting

Refined parameter increase strategy

$$
\begin{aligned}
& \hat{L}_{k} \leftarrow L_{k}+\frac{2\left(f\left(x_{k}+\alpha_{k} s_{k}\right)-f\left(x_{k}\right)+m_{s, k}\left(\alpha_{k}\right)\right)}{\alpha_{k}^{2}\left\|s_{k}\right\|^{2}} \\
& \hat{\sigma}_{k} \leftarrow \sigma_{k}+\frac{6\left(f\left(x_{k}+\beta_{k} d_{k}\right)-f\left(x_{k}\right)+m_{d, k}\left(\beta_{k}\right)\right)}{\beta_{k}^{3}\left\|d_{k}\right\|^{3}}
\end{aligned}
$$

then, with $\rho \leftarrow 2$, use the update

$$
\begin{aligned}
& L_{k} \leftarrow \max \left\{\rho L_{k}, \min \left\{10^{3} L_{k}, \hat{L}_{k}\right\}\right\} \\
& \sigma_{k} \leftarrow \max \left\{\rho \sigma_{k}, \min \left\{10^{3} \sigma_{k}, \hat{\sigma}_{k}\right\}\right\}
\end{aligned}
$$

Refined parameter decrease strategy

$$
\begin{aligned}
& L_{k+1} \leftarrow \max \left\{10^{-3}, 10^{-3} L_{k}, \hat{L}_{k}\right\} \text { and } \sigma_{k+1} \leftarrow \sigma_{k} \text { when } x_{k+1} \leftarrow x_{k}+\alpha_{k} s_{k} \\
& \sigma_{k+1} \leftarrow \max \left\{10^{-3}, 10^{-3} \sigma_{k}, \hat{\sigma}_{k}\right\} \text { and } L_{k+1} \leftarrow L_{k} \text { when } x_{k+1} \leftarrow x_{k}+\beta_{k} d_{k}
\end{aligned}
$$

Termination condition

$$
\left\|g\left(x_{k}\right)\right\| \leq 10^{-5} \max \left\{1,\left\|g\left(x_{0}\right)\right\|\right\} \text { and }\left|\left(\lambda_{k}\right)_{-}\right| \leq 10^{-5} \max \left\{1,\left|\left(\lambda_{0}\right)_{-}\right|\right\}
$$

Measures of interest

- Final objective value:

$$
\frac{f_{\text {final }}\left(s_{k}\right)-f_{\text {final }}\left(s_{k}, d_{k}\right)}{\max \left\{\left|f_{\text {final }}\left(s_{k}\right)\right|,\left|f_{\text {final }}\left(s_{k}, d_{k}\right)\right|, 1\right\}} \in[-1,1]
$$

- Required number of iterations:

$$
\frac{\# i t s\left(s_{k}\right)-\# i t s\left(s_{k}, d_{k}\right)}{\max \left\{\# i t s\left(s_{k}\right), \# i t s\left(s_{k}, d_{k}\right), 1\right\}} \in[-1,1]
$$

- Required number of function evaluations:

$$
\frac{\# \operatorname{fevals}\left(s_{k}\right)-\# \text { fevals }\left(s_{k}, d_{k}\right)}{\max \left\{\# \operatorname{fevals}\left(s_{k}\right), \# \operatorname{fevals}\left(s_{k}, d_{k}\right), 1\right\}} \in[-1,1]
$$

Steepest descent: $s_{k}=-g\left(x_{k}\right)$ and $d_{k}= \pm v_{k}$

(a) Final objective value.

(b) Required number of iterations.

Figure: Only problems for which at least one negative curvature direction is used and the difference in final f-values is larger than 10^{-5} in absolute value are presented.

Shifted Newton: $B_{k}=H\left(x_{k}\right)+\delta_{k} I, B_{k} s_{k}=-g\left(x_{k}\right)$, and $d_{k}= \pm v_{k}$

Figure: Only problems for which at least one negative curvature direction is used and the difference in final f-values is larger than 10^{-5} in absolute value are presented.

Outline

(1) Motivation

(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments
(3) Stochastic Setting

Comments:

- If L and σ are known, do not need to ever update L_{k} and σ_{k}, in theory. In practice, still allow increase and decrease for efficiency.
- Currently, one function evaluation each trial step. If evaluating f is very cheap, could consider evaluating both trial steps during each iteration.
- Relevance to strict saddle points
- We do not make any non-degenerate assumption.
- Our convergence result holds regardless of the types of saddle points.
- When the strict saddle point property holds, our theory implies that
* Any limit point of the sequence $\left\{x_{k}\right\}$ is a minimizer of f.
* Iterates eventually enter a region that only contains minimizers.
- We get a stronger convergence theory (cf. Paternain, Mokhtari, and Ribeiro (2017)) because we incorporate directions of negative curvature.
- The complexity result for our method is not "optimal" based on a traditional complexity perspective.
- F. Curtis and I have been intrigued by alternate complexity perspectives:
- Typically, results are for general problems and based on worst case.
- From some perspective, the algorithm I presented today is "optimal".
- See his talk later this afternoon!

Outline

(1) Motivation

(2) Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments
(3) Stochastic Setting

Summary

- Apply same ideas as in the deterministic case, but in the mini-batch case.
- Add a negative curvature direction $d_{k}= \pm v_{k}$ with the sign chosen randomly. Can be thought of as a "smart noise" approach.
- Small gain in performance relative to similar algorithm without d_{k}.
- See our paper [1] for additional details.

References I

[1] F. E. Curtis and D. P. Robinson, Exploiting negative curvature directions in stochastic optimization, in http://arxiv.org/abs/1703.00412, Submitted to Mathematical Programming (Special Issue on Nonconvex Optimization for Statistical Learning), 2017.
[2] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Curran Associates, Inc., 2014, pp. 2933-2941.
[3] F. Facchinei and S. LUcidi, Convergence to second order stationary points in inequality constrained optimization, Mathematics of Operations Research, 23 (1998), pp. 746-766.

References II

[4] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A stabilized sqp method: global convergence, IMA Journal of Numerical Analysis, 37 (2017), pp. 407-443.
[5] _ A stabilized sqp method: superlinear convergence, Mathematical Programming, 163 (2017), pp. 369-410.
[6] D. Goldfarb, Curvilinear path steplength algorithms for minimization which use directions of negative curvature, Mathematical programming, 18 (1980), pp. 31-40.
[7] D. Goldfarb, C. Mu, J. Wright, and C. Zhou, Using negative curvature in solving nonlinear programs, arXiv preprint arXiv:1706.00896, (2017).

References III

[8] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, Gradient descent only converges to minimizers, in Conference on Learning Theory, 2016, pp. 1246-1257.

