Benefiting from Negative Curvature

Daniel P. Robinson Johns Hopkins University Department of Applied Mathematics and Statistics

> Collaborator: Frank E. Curtis (Lehigh University)

US and Mexico Workshop on Optimization and Its Applications Huatulco, Mexico January 8, 2018

Motivation

2 Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

Problem of interest: deterministic setting

 $\underset{x \in \mathbb{R}^n}{\text{minimize }} f(x)$

- $f : \mathbb{R}^n \to \mathbb{R}$ assumed to be twice-continuously differentiable.
- L will denote the Lipschitz constant for ∇f
- σ will denote the Lipschitz constant for $\nabla^2 f$
- f may be nonconvex
- Notation:

$$g(x) := \nabla f(x)$$
$$H(x) := \nabla^2 f(x)$$

Motivation

Much work has been done on convergence two second-order points:

- D. Goldfarb (1979) [6]
 - prove convergence result to second-order optimal points (unconstrained)
 - curvilinear search using descent direction and negative curvature direction
- D. Goldfarb, C. Mu, J. Wright, and C. Zhou (2017) [7]
 - consider equality constrained problems
 - prove convergence result to second-order optimal points
 - extend curvilinear search for unconstrained
- F. Facchinei and S. Lucidi (1998) [3]
 - consider inequality constrained problems
 - exact penalty function, directions of negative curvature, and line search
- P. Gill, V. Kungurtsev, and D. Robinson (2017) [4, 5]
 - consider inequality constrained problems
 - convergence to second-order optimal points under weak assumptions
- J. Moré and D. Sorensen (1979), A. Forsgren, P. Gill, and W. Murray (1995), and many more ...

None consistently perform better by using directions of negative curvature!

Others hope to avoid saddle-points:

- J. Lee, M. Simchowich, M. Jordan, and B. Recht (2016) [8]
 - Gradient descent converges to local minimizer almost surely.
 - Uses random initialization.
- Y. Dauphin et al. (2016) [2]
 - Present a saddle-free Newton method (it is a modified-Newton method)
 - Goal is to escape saddle points (move away when close)

These (and others) try to avoid the ill-effects of negative curvature.

Purpose of this research:

- Design a method that consistently performs better by using directions of negative curvature.
- Do not try to avoid negative curvature. Use it!

2 Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

Overview:

- Compute descent direction (s_k) and negative curvature direction (d_k) .
- Predict which step will make more progress in reducing the objective *f*.
- If predicted decrease is not realized, adjust parameters.
- Iterate until an approximate second-order solution is obtained.

Requirements on the descent direction s_k

Compute s_k to satisfy

$$-g(x_k)^T s_k \ge \delta \|s_k\|_2 \|g(x_k)\|_2 \qquad (\text{some } \delta \in (0,1])$$

Examples:

- $s_k = -g(x_k)$
- $B_k s_k = -g_k$ with B_k appropriately chosen

Requirements on the negative curvature direction d_k

Compute d_k to satisfy

$$d_k^T H(x_k) d_k \le \gamma \lambda_k ||d_k||_2^2 < 0 \quad (\text{some } \gamma \in (0, 1])$$
$$g(x_k)^T d_k \le 0$$

Examples:

- $d_k = \pm v_k$ with (λ_k, v_k) being the left-most eigenpair of $H(x_k)$
- d_k a sufficiently accurate estimate of $\pm v_k$

How to use s_k and d_k ?

- Use both in a curvilinear linesearch?
 - Often taints good descent directions by "poorly scaled" directions of negative curvature.
 - No consistent performance gains!
- Start using d_k only once $||g(x_k)||$ is "small"?
 - No consistent performance gains!
 - Misses areas of the space in which great decrease in f is possible.
- Use s_k when $||g(x_k)||$ is big relative to $|(\lambda_k)_-|$. Otherwise, use d_k ?
 - Better, but still inconsistent performance gains!

We propose to use upper-bounding models. It works!

Predicted decrease along descent direction s_k

If $L_k \ge L$, then

$$f(x_k + \alpha s_k) \le f(x_k) - m_{s,k}(\alpha)$$
 (for all α)

with

$$m_{s,k}(\alpha) := -\alpha g(x_k)^T s_k - \frac{1}{2} L_k \alpha^2 ||s_k||_2^2$$

and define the quantity

$$\alpha_k := \frac{-g(x_k)^T s_k}{L_k \|s_k\|_2^2} = \underset{\alpha \ge 0}{\operatorname{argmax}} \ m_{s,k}(\alpha)$$

Comments

• $m_{s,k}(\alpha_k)$ is the best predicted decrease along s_k

• If
$$s_k = -g(x_k)$$
, then $\alpha_k = 1/L_k$

Predicted decrease along the negative curvature direction d_k If $\sigma_k \ge \sigma$, then

$$f(x_k + \beta d_k) \le f(x_k) - m_{d,k}(\beta)$$
 (for all β)

with

$$m_{d,k}(\beta) := -\beta g(x_k)^T d_k - \frac{1}{2}\beta^2 d_k^T H(x_k) d_k - \frac{\sigma_k}{6}\beta^3 ||d_k||_2^2$$

and define, with $c_k := d_k^T H(x_k) d_k$, the quantity

$$\beta_k := \frac{\left(-c_k + \sqrt{c_k^2 - 2\sigma_k \|d_k\|_2^3 g(x_k)^T d_k}\right)}{\sigma_k \|d_k\|_2^3} = \underset{\beta \ge 0}{\operatorname{argmax}} \ m_{d,k}(\beta)$$

Comments

•
$$m_{d,k}(\beta_k)$$
 is the best predicted decrease along d_k

Choose the step that predicts the largest decrease in f.

- If $m_{s,k}(\alpha_k) \ge m_{d,k}(\beta_k)$, then Try the step s_k
- If $m_{d,k}(\beta_k) > m_{s,k}(\alpha_k)$, then Try the step d_k

Question: Why "Try" instead of "Use"? Answer: We do not know if $L_k \ge L$ and $\sigma_k \ge \sigma$

- If $L_k < L$, then it could be the case that

$$f(x_k + \alpha_k s_k) > f(x_k) - m_{s,k}(\alpha_k)$$

- If $\sigma_k < \sigma$, then it could be the case that

$$f(x_k + \beta_k d_k) > f(x_k) - m_{d,k}(\beta_k)$$

Dynamic Step-Size Algorithm

1: for $k \in \mathbb{N}$ do compute s_k and d_k satisfying the required step conditions 2: 3: loop compute $\alpha_k = \operatorname{argmax} m_{s,k}(\alpha)$ and $\beta_k = \operatorname{argmax} m_{d,k}(\beta)$ 4: $\alpha > 0$ $\beta > 0$ if $m_{s,k}(\alpha_k) \geq m_{d,k}(\beta_k)$ then 5: if $f(x_k + \alpha_k s_k) \leq f(x_k) - m_{s,k}(\alpha_k)$ then 6: set $x_{k+1} \leftarrow x_k + \alpha_k s_k$ and then exit loop 7: else 8: $[\rho \in (1,\infty)]$ 9: set $L_{k} \leftarrow \rho L_{k}$ else 10: if $f(x_k + \beta_k d_k) \leq f(x_k) - m_{d,k}(\beta_k)$ then 11: set $x_{k+1} \leftarrow x_k + \beta_k d_k$ and then exit loop 12: 13: else 14: set $\sigma_k \leftarrow \rho \sigma_k$ set $(L_{k+1}, \sigma_{k+1}) \in (L_{\min}, L_k] \times (\sigma_{\min}, \sigma_k]$ 15:

Motivation

2

Deterministic Setting

• The Method

Convergence Results

- Numerical Results
- Comments

Key decrease inequality: For all $k \in \mathbb{N}$ it holds that

$$f(x_k) - f(x_{k+1}) \ge \max\left\{\frac{\delta^2}{2L_k} \|g(x_k)\|_2^2, \frac{2\gamma^3}{3\sigma_k^2} |(\lambda_k)_-|^3\right\}.$$

Comments:

- First term in the max holds when $x_{k+1} = x_k + \alpha_k s_k$.
- Second term in the max holds when $x_{k+1} = x_k + \beta_k d_k$.
- The above max holds because we choose whether to try s_k or d_k based on

$$m_{s,k}(\alpha_k) \ge m_{d,k}(\beta_k)$$

• Can prove that $\{L_k\}$ and $\{\sigma_k\}$ remain uniformly bounded.

Theorem (Limit points satisfy second-order necessary conditions) The computed iterates satisfy

$$\lim_{k\to\infty} \|g(x_k)\|_2 = 0 \text{ and } \liminf_{k\to\infty} \lambda_k \ge 0$$

Theorem (Complexity result)

The number of iterations, function, and derivative (i.e., gradient and Hessian) evaluations required until some iteration $k \in \mathbb{N}$ is reached with

$$||g(x_k)||_2 \leq \epsilon_g \text{ and } |(\lambda_k)_-| \leq \epsilon_H$$

is at most

$$\mathcal{O}(\max\{\epsilon_g^{-2}, \epsilon_H^{-3}\})$$

1 Motivation

Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

Numerical Results

Refined parameter increase strategy

$$\hat{L}_k \leftarrow L_k + \frac{2\left(f(x_k + \alpha_k s_k) - f(x_k) + m_{s,k}(\alpha_k)\right)}{\alpha_k^2 \|s_k\|^2}$$
$$\hat{\sigma}_k \leftarrow \sigma_k + \frac{6\left(f(x_k + \beta_k d_k) - f(x_k) + m_{d,k}(\beta_k)\right)}{\beta_k^3 \|d_k\|^3}$$

then, with $\rho \leftarrow 2$, use the update

$$L_k \leftarrow \max\{\rho L_k, \min\{10^3 L_k, \hat{L}_k\}\}\$$

$$\sigma_k \leftarrow \max\{\rho \sigma_k, \min\{10^3 \sigma_k, \hat{\sigma}_k\}\}\$$

Refined parameter decrease strategy

$$L_{k+1} \leftarrow \max\{10^{-3}, 10^{-3}L_k, \hat{L}_k\}$$
 and $\sigma_{k+1} \leftarrow \sigma_k$ when $x_{k+1} \leftarrow x_k + \alpha_k s_k$
 $\sigma_{k+1} \leftarrow \max\{10^{-3}, 10^{-3}\sigma_k, \hat{\sigma}_k\}$ and $L_{k+1} \leftarrow L_k$ when $x_{k+1} \leftarrow x_k + \beta_k d_k$

Termination condition

 $||g(x_k)|| \le 10^{-5} \max\{1, ||g(x_0)||\}$ and $|(\lambda_k)_-| \le 10^{-5} \max\{1, |(\lambda_0)_-|\}.$

Measures of interest

• Final objective value:

$$\frac{f_{\text{final}}(s_k) - f_{\text{final}}(s_k, d_k)}{\max\{|f_{\text{final}}(s_k)|, |f_{\text{final}}(s_k, d_k)|, 1\}} \in [-1, 1]$$

• Required number of iterations:

$$\frac{\#its(s_k) - \#its(s_k, d_k)}{\max\{\#its(s_k), \#its(s_k, d_k), 1\}} \in [-1, 1]$$

• Required number of function evaluations:

$$\frac{\#fevals(s_k) - \#fevals(s_k, d_k)}{\max\{\#fevals(s_k), \#fevals(s_k, d_k), 1\}} \in [-1, 1]$$

Deterministic Setting

Numerical Results

Steepest descent: $s_k = -g(x_k)$ and $d_k = \pm v_k$

(a) Final objective value.

(b) Required number of iterations.

Figure: Only problems for which at least one negative curvature direction is used and the difference in final f-values is larger than 10^{-5} in absolute value are presented.

Numerical Results

Shifted Newton: $B_k = H(x_k) + \delta_k I$, $B_k s_k = -g(x_k)$, and $d_k = \pm v_k$

(a) Final objective value.

(b) Required number of iterations.

Figure: Only problems for which at least one negative curvature direction is used and the difference in final *f*-values is larger than 10^{-5} in absolute value are presented.

Deterministic Setting

- The Method
- Convergence Results
- Numerical Results

• Comments

Comments:

- If L and σ are known, do not need to ever update L_k and σ_k , in theory. In practice, still allow increase and decrease for efficiency.
- Currently, one function evaluation each trial step. If evaluating *f* is very cheap, could consider evaluating both trial steps during each iteration.
- Relevance to strict saddle points
 - We do not make any non-degenerate assumption.
 - Our convergence result holds regardless of the types of saddle points.
 - When the strict saddle point property holds, our theory implies that
 - * Any limit point of the sequence $\{x_k\}$ is a minimizer of f.
 - * Iterates eventually enter a region that only contains minimizers.
 - We get a stronger convergence theory (cf. Paternain, Mokhtari, and Ribeiro (2017)) because we incorporate directions of negative curvature.
- The complexity result for our method is not "optimal" based on a traditional complexity perspective.
- F. Curtis and I have been intrigued by alternate complexity perspectives:
 - Typically, results are for general problems and based on worst case.
 - From some perspective, the algorithm I presented today is "optimal".
 - See his talk later this afternoon!

1 Motivation

Deterministic Setting

- The Method
- Convergence Results
- Numerical Results
- Comments

Summary

- Apply same ideas as in the deterministic case, but in the mini-batch case.
- Add a negative curvature direction $d_k = \pm v_k$ with the sign chosen randomly. Can be thought of as a "smart noise" approach.
- Small gain in performance relative to similar algorithm without d_k .
- See our paper [1] for additional details.

References I

- F. E. CURTIS AND D. P. ROBINSON, <u>Exploiting negative curvature</u> directions in stochastic optimization, in http://arxiv.org/abs/1703.00412, Submitted to Mathematical Programming (Special Issue on Nonconvex Optimization for Statistical Learning), 2017.
- Y. N. DAUPHIN, R. PASCANU, C. GULCEHRE, K. CHO, S. GANGULI, AND Y. BENGIO, <u>Identifying and attacking the saddle point problem in</u> <u>high-dimensional non-convex optimization</u>, in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Curran Associates, Inc., 2014, pp. 2933–2941.
- [3] F. FACCHINEI AND S. LUCIDI, <u>Convergence to second order stationary</u> <u>points in inequality constrained optimization</u>, Mathematics of Operations Research, 23 (1998), pp. 746–766.

- [4] P. E. GILL, V. KUNGURTSEV, AND D. P. ROBINSON, <u>A stabilized sqp</u> method: global convergence, IMA Journal of Numerical Analysis, 37 (2017), pp. 407–443.
- [5] <u>A stabilized sqp method: superlinear convergence</u>, Mathematical Programming, 163 (2017), pp. 369–410.
- [6] D. GOLDFARB, <u>Curvilinear path steplength algorithms for minimization</u> which use directions of negative curvature, Mathematical programming, 18 (1980), pp. 31–40.
- [7] D. GOLDFARB, C. MU, J. WRIGHT, AND C. ZHOU, <u>Using negative</u> <u>curvature in solving nonlinear programs</u>, arXiv preprint arXiv:1706.00896, (2017).

References III

[8] J. D. LEE, M. SIMCHOWITZ, M. I. JORDAN, AND B. RECHT, <u>Gradient</u> <u>descent only converges to minimizers</u>, in Conference on Learning Theory, 2016, pp. 1246–1257.