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Motivation

Problem of interest: deterministic setting

mi}rclei%}lize f(x)
o f:R" — R assumed to be twice-continuously differentiable.
o L will denote the Lipschitz constant for Vf
e ¢ will denote the Lipschitz constant for Vf
@ f may be nonconvex

@ Notation:
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Motivation

Much work has been done on convergence two second-order points:
e D. Goldfarb (1979) [6]

- prove convergence result to second-order optimal points (unconstrained)
- curvilinear search using descent direction and negative curvature direction

o D. Goldfarb, C. Mu, J. Wright, and C. Zhou (2017) [7]

- consider equality constrained problems
- prove convergence result to second-order optimal points
- extend curvilinear search for unconstrained

@ F. Facchinei and S. Lucidi (1998) [3]

- consider inequality constrained problems
- exact penalty function, directions of negative curvature, and line search

e P. Gill, V. Kungurtsev, and D. Robinson (2017) [4, 5]

- consider inequality constrained problems
- convergence to second-order optimal points under weak assumptions

@ J. Moré and D. Sorensen (1979), A. Forsgren, P. Gill, and W. Murray
(1995), and many more ...

perform
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Motivation

Others hope to avoid saddle-points:
@ J. Lee, M. Simchowich, M. Jordan, and B. Recht (2016) [8]

- Gradient descent converges to local minimizer almost surely.
- Uses random initialization.

@ Y. Dauphin et al. (2016) [2]

- Present a saddle-free Newton method (it is a modified-Newton method)
- Goal is to escape saddle points (move away when close)
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Motivation

Purpose of this research:

@ Design a method that consistently performs better by using directions of
negative curvature.

@ Do not try to avoid negative curvature. Use it!
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Deterministic Setting The Method

Overview:
@ Compute descent direction (si) and negative curvature direction (dy).
@ Predict which step will make more progress in reducing the objective f.
o If predicted decrease is not realized, adjust parameters.

o Iterate until an approximate second-order solution is obtained.
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Deterministic Setting The Method

Requirements on the descent direction sy

Compute sy, to satisfy

—g(x) sk > Sllsill2llgCx)]l2 (some & € (0, 1])

Examples:
o s = —g(xx)
@ Bysy = —gr with By appropriately chosen

Requirements on the negative curvature direction d
Compute d to satisfy
d{H(x)dr < yMil|di])3 <0 (some vy € (0,1])
g(u)"di <0

Examples:
o di = +v with (g, vy) being the left-most eigenpair of H (xy)
@ d a sufficiently accurate estimate of vy
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Deterministic Setting The Method

How to use s; and d;?
@ Use both in a curvilinear linesearch?

- Often taints good descent directions by "poorly scaled" directions of
negative curvature.
- No consistent performance gains!

e Start using dj only once ||g(xx)|| is “small"?

- No consistent performance gains!
- Misses areas of the space in which great decrease in f is possible.

@ Use s; when ||g(xz)|| is big relative to |(A\g)—|. Otherwise, use dj?
- Better, but still inconsistent performance gains!

We propose to use upper-bounding models. It works!
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Deterministic Setting The Method

Predicted decrease along descent direction s
If L, > L, then

e + ase) < floxx) — mgp(cv) (for all )

with
my () == —ag(x) sk — ALea”|sil3
and define the quantity
_ T
oy = g(xik);k = argmax m (o)
Lylsll3 a>0
Comments

o my (o) is the best predicted decrease along sk
o If sy = —g(xy), then o = 1/Ly
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Deterministic Setting The Method

Predicted decrease along the negative curvature direction dy
If o > o, then

fxx + Bdr) < f(xx) — mar(B) (for all B)

with
ma(B) = —Be(x) di — 387d{H(x)di — %67 ||dill3
and define, with ¢; := d,{H (xx)dy, the quantity

(—e+ /2 —20uldelBg ()

Br = 5 = argmax mg i (5)
oxlldkll> B3>0

Comments

® mgi(Sr) is the best predicted decrease along dj
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Deterministic Setting The Method

Choose the step that predicts the largest decrease in f.
o If mg (o) > mgai(Sr), then Try the step sk
o If mg(5r) > my (i), then Try the step di

Question: Why “Try" instead of “Use"?
Answer: We donotknow if Ly > Land oy > o

- If L < L, then it could be the case that

S o+ oas) > f (o) — mgp ()

- If o4 < o, then it could be the case that

[k + Bdy) > f(xx) — max(Bk)
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Deterministic Setting The Method

Dynamic Step-Size Algorithm

1: for k € Ndo

2: compute s and dy satisfying the required step conditions

3: loop

4: compute o = argmax m; () and Gy = argmax mg ()
a>0 B>0

5 if ms7k(ak) > md,k(ﬁk) then

6: if f (o + agse) < fxx) — msﬁk(ak) then

78 set xgt1 ¢ X + oSk and then exit loop

8 else

9 set Ly < pLg [p € (1,00)]

10: else

11: if f (oo + Bidi) < f(xx) — mai(By) then

12: set Xx+1 < Xx + Brdy and then exit loop

13: else

14: set o <— pok

15: set (Lk+1,0k+1) € (LminaLk] X (Umin,Uk]
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Deterministic Setting Convergence Results

Key decrease inequality: For all k£ € N it holds that

2
F(5) — ) = max {ijug< o 2 |<Ak>_r3}

k

Comments:
@ First term in the max holds when x;41 = xx + osk.
@ Second term in the max holds when x4 = x; + SBrdg.

@ The above max holds because we choose whether to try s; or di based on

my k(o) > mq i(Br)

@ Can prove that {L;} and {0y} remain uniformly bounded.
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Deterministic Setting Convergence Results

Theorem (Limit points satisfy second-order necessary conditions)

The computed iterates satisfy

lim ||g(xk)|]2 =0 and liminf); >0
k—00 k—00

Theorem (Complexity result)

The number of iterations, function, and derivative (i.e., gradient and Hessian)
evaluations required until some iteration k € N is reached with

lg(xk)|l2 < € and |(M)—| < en

is at most

(’)(max{e;z, e}
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Deterministic Setting Numerical Results

Refined parameter increase strategy

2(f (o + cusi) —f (%) + my(aw))

ik — L+

o Isll?
. 6(f (xk + Bedr) — f (xi) + ma i (Bx))
o Rl

then, with p <— 2, use the update

Ly + max{pL;, min{10°Ly, L;}}

oy + max{poy, min{10°cy, 6} }

Refined parameter decrease strategy

Lyt <+ max{10*3, 1073Lk,ltk} and oy < ox when xpiq < xx + oSk

Ok+1 < max{10_3, 10_3Uk,ffk} and Lyy; < Ly when xp < X + Srdi

v
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Deterministic Setting Numerical Results
Termination condition

lg(rio) | < 107> max{1, [lg(xo)||} and |(M)—| < 107> max{1,|(ho)[}-

Measures of interest
e Final objective value:

Sfina1 (k) — fina1 (Sk, di)
max{|finai ()|, [fina1 (Sk, di )|, 1}

@ Required number of iterations:

#its(sg) — #its(sk, di)

e[-1,1]

e |—1,1
max{#its(si), #its(sg, di), 1} =1 1]
@ Required number of function evaluations:
Hfevals(sy) — #fevals(si, di) e [-1,1]

max{#fevals(sy), #fevals(sk, di), 1}
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Numerical Results

Deterministic Setting

—g(x) and dy = vy

Sk

Steepest descent
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(b) Required number of iterations.

(a) Final objective value.

Figure: Only problems for which at least one negative curvature direction is used and

the difference in final f-values is larger than 107> in absolute value are presented.
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Numerical Results

Deterministic Setting

—g(xk), and dk = :|:Vk

H(xk) aF (Skl, Bksk

B, =

Shifted Newton
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(b) Required number of iterations.

(a) Final objective value.

Figure: Only problems for which at least one negative curvature direction is used and

the difference in final f-values is larger than 10~ in absolute value are presented.
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Deterministic Setting Comments

Comments:

o If L and ¢ are known, do not need to ever update L; and oy, in theory. In
practice, still allow increase and decrease for efficiency.
o Currently, one function evaluation each trial step. If evaluating f is very
cheap, could consider evaluating both trial steps during each iteration.
@ Relevance to strict saddle points
- We do not make any non-degenerate assumption.
- Our convergence result holds regardless of the types of saddle points.
- When the strict saddle point property holds, our theory implies that
* Any limit point of the sequence {x} is a minimizer of f.
* Tterates eventually enter a region that only contains minimizers.
- We get a stronger convergence theory (cf.
) because we incorporate directions of negative curvature.
@ The complexity result for our method is not “optimal” based on a
traditional complexity perspective.
o F. Curtis and I have been intrigued by alternate complexity perspectives:
- Typically, results are for general problems and based on worst case.
- From some perspective, the algorithm I presented today is “optimal".
- See his talk later this afternoon!
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Stochastic Setting

Summary
@ Apply same ideas as in the deterministic case, but in the mini-batch case.

@ Add a negative curvature direction d;, = +v; with the sign chosen
randomly. Can be thought of as a “smart noise" approach.

@ Small gain in performance relative to similar algorithm without d.

@ See our paper [1] for additional details.
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Stochastic Setting
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Stochastic Setting
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