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Motivation

Problem of interest: deterministic setting

minimize
x∈Rn

f (x)

f : Rn → R assumed to be twice-continuously differentiable.

L will denote the Lipschitz constant for∇f

σ will denote the Lipschitz constant for∇2f

f may be nonconvex

Notation:

g(x) := ∇f (x)

H(x) := ∇2f (x)
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Motivation

Much work has been done on convergence two second-order points:
D. Goldfarb (1979) [6]

- prove convergence result to second-order optimal points (unconstrained)
- curvilinear search using descent direction and negative curvature direction

D. Goldfarb, C. Mu, J. Wright, and C. Zhou (2017) [7]
- consider equality constrained problems
- prove convergence result to second-order optimal points
- extend curvilinear search for unconstrained

F. Facchinei and S. Lucidi (1998) [3]
- consider inequality constrained problems
- exact penalty function, directions of negative curvature, and line search

P. Gill, V. Kungurtsev, and D. Robinson (2017) [4, 5]
- consider inequality constrained problems
- convergence to second-order optimal points under weak assumptions

J. Moré and D. Sorensen (1979), A. Forsgren, P. Gill, and W. Murray
(1995), and many more . . .

None consistently perform better by using directions of negative curvature!
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Motivation

Others hope to avoid saddle-points:
J. Lee, M. Simchowich, M. Jordan, and B. Recht (2016) [8]

- Gradient descent converges to local minimizer almost surely.
- Uses random initialization.

Y. Dauphin et al. (2016) [2]
- Present a saddle-free Newton method (it is a modified-Newton method)
- Goal is to escape saddle points (move away when close)

These (and others) try to avoid the ill-effects of negative curvature.
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Motivation

Purpose of this research:

Design a method that consistently performs better by using directions of
negative curvature.

Do not try to avoid negative curvature. Use it!
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Deterministic Setting The Method

Overview:

Compute descent direction (sk) and negative curvature direction (dk).

Predict which step will make more progress in reducing the objective f .

If predicted decrease is not realized, adjust parameters.

Iterate until an approximate second-order solution is obtained.

Negative Curvature US-Mexico-2018 10 / 31



Deterministic Setting The Method

Requirements on the descent direction sk

Compute sk to satisfy

−g(xk)
Tsk ≥ δ‖sk‖2‖g(xk)‖2

(
some δ ∈ (0, 1]

)
Examples:

sk = −g(xk)

Bksk = −gk with Bk appropriately chosen

Requirements on the negative curvature direction dk

Compute dk to satisfy

dT
k H(xk)dk ≤ γλk‖dk‖2

2 < 0
(
some γ ∈ (0, 1]

)
g(xk)

Tdk ≤ 0

Examples:
dk = ±vk with (λk, vk) being the left-most eigenpair of H(xk)

dk a sufficiently accurate estimate of ±vk
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Deterministic Setting The Method

How to use sk and dk?
Use both in a curvilinear linesearch?

- Often taints good descent directions by "poorly scaled" directions of
negative curvature.

- No consistent performance gains!
Start using dk only once ‖g(xk)‖ is “small"?

- No consistent performance gains!
- Misses areas of the space in which great decrease in f is possible.

Use sk when ‖g(xk)‖ is big relative to |(λk)−|. Otherwise, use dk?
- Better, but still inconsistent performance gains!

We propose to use upper-bounding models. It works!
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Deterministic Setting The Method

Predicted decrease along descent direction sk

If Lk ≥ L, then

f (xk + αsk) ≤ f (xk)− ms,k(α)
(
for all α

)
with

ms,k(α) := −αg(xk)
Tsk − 1

2 Lkα
2‖sk‖2

2

and define the quantity

αk :=
−g(xk)

Tsk

Lk‖sk‖2
2

= argmax
α≥0

ms,k(α)

Comments

ms,k(αk) is the best predicted decrease along sk

If sk = −g(xk), then αk = 1/Lk
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Deterministic Setting The Method

Predicted decrease along the negative curvature direction dk

If σk ≥ σ, then

f (xk + βdk) ≤ f (xk)− md,k(β)
(
for all β

)
with

md,k(β) := −βg(xk)
Tdk − 1

2β
2dT

k H(xk)dk − σk
6 β

3‖dk‖3
2

and define, with ck := dT
k H(xk)dk, the quantity

βk :=

(
−ck +

√
c2

k − 2σk‖dk‖3
2g(xk)Tdk

)
σk‖dk‖3

2
= argmax

β≥0
md,k(β)

Comments

md,k(βk) is the best predicted decrease along dk
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Deterministic Setting The Method

Choose the step that predicts the largest decrease in f .

If ms,k(αk) ≥ md,k(βk), then Try the step sk

If md,k(βk) > ms,k(αk), then Try the step dk

Question: Why “Try" instead of “Use"?
Answer: We do not know if Lk ≥ L and σk ≥ σ

- If Lk < L, then it could be the case that

f (xk + αksk) > f (xk)− ms,k(αk)

- If σk < σ, then it could be the case that

f (xk + βkdk) > f (xk)− md,k(βk)
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Deterministic Setting The Method

Dynamic Step-Size Algorithm
1: for k ∈ N do
2: compute sk and dk satisfying the required step conditions
3: loop
4: compute αk = argmax

α≥0
ms,k(α) and βk = argmax

β≥0
md,k(β)

5: if ms,k(αk) ≥ md,k(βk) then
6: if f (xk + αksk) ≤ f (xk)− ms,k(αk) then
7: set xk+1 ← xk + αksk and then exit loop
8: else
9: set Lk ← ρLk [ρ ∈ (1,∞)]

10: else
11: if f (xk + βkdk) ≤ f (xk)− md,k(βk) then
12: set xk+1 ← xk + βkdk and then exit loop
13: else
14: set σk ← ρσk

15: set (Lk+1, σk+1) ∈ (Lmin,Lk]× (σmin, σk]
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Deterministic Setting Convergence Results

Key decrease inequality: For all k ∈ N it holds that

f (xk)− f (xk+1) ≥ max
{
δ2

2Lk
‖g(xk)‖2

2,
2γ3

3σ2
k
|(λk)−|3

}
.

Comments:

First term in the max holds when xk+1 = xk + αksk.

Second term in the max holds when xk+1 = xk + βkdk.

The above max holds because we choose whether to try sk or dk based on

ms,k(αk) ≥ md,k(βk)

Can prove that {Lk} and {σk} remain uniformly bounded.
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Deterministic Setting Convergence Results

Theorem (Limit points satisfy second-order necessary conditions)
The computed iterates satisfy

lim
k→∞

‖g(xk)‖2 = 0 and lim inf
k→∞

λk ≥ 0

Theorem (Complexity result)
The number of iterations, function, and derivative (i.e., gradient and Hessian)
evaluations required until some iteration k ∈ N is reached with

‖g(xk)‖2 ≤ εg and |(λk)−| ≤ εH

is at most
O(max{ε−2

g , ε−3
H })
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Deterministic Setting Numerical Results

Refined parameter increase strategy

L̂k ← Lk +
2
(
f (xk + αksk)− f (xk) + ms,k(αk)

)
α2

k‖sk‖2

σ̂k ← σk +
6
(
f (xk + βkdk)− f (xk) + md,k(βk)

)
β3

k‖dk‖3

then, with ρ← 2, use the update

Lk ← max{ρLk,min{103Lk, L̂k}}
σk ← max{ρσk,min{103σk, σ̂k}}

Refined parameter decrease strategy

Lk+1 ← max{10−3, 10−3Lk, L̂k} and σk+1 ← σk when xk+1 ← xk + αksk

σk+1 ← max{10−3, 10−3σk, σ̂k} and Lk+1 ← Lk when xk+1 ← xk + βkdk

Negative Curvature US-Mexico-2018 21 / 31



Deterministic Setting Numerical Results

Termination condition

‖g(xk)‖ ≤ 10−5 max{1, ‖g(x0)‖} and |(λk)−| ≤ 10−5 max{1, |(λ0)−|}.

Measures of interest
Final objective value:

ffinal(sk)− ffinal(sk, dk)

max{|ffinal(sk)|, |ffinal(sk, dk)|, 1}
∈ [−1, 1]

Required number of iterations:

#its(sk)−#its(sk, dk)

max{#its(sk),#its(sk, dk), 1}
∈ [−1, 1]

Required number of function evaluations:

#fevals(sk)−#fevals(sk, dk)

max{#fevals(sk),#fevals(sk, dk), 1}
∈ [−1, 1]

Negative Curvature US-Mexico-2018 22 / 31



Deterministic Setting Numerical Results

Steepest descent: sk = −g(xk) and dk = ±vk
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(a) Final objective value.
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(b) Required number of iterations.

Figure: Only problems for which at least one negative curvature direction is used and
the difference in final f -values is larger than 10−5 in absolute value are presented.
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Deterministic Setting Numerical Results

Shifted Newton: Bk = H(xk) + δkI, Bksk = −g(xk), and dk = ±vk
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(a) Final objective value.
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(b) Required number of iterations.

Figure: Only problems for which at least one negative curvature direction is used and
the difference in final f -values is larger than 10−5 in absolute value are presented.
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Deterministic Setting Comments

Comments:
If L and σ are known, do not need to ever update Lk and σk, in theory. In
practice, still allow increase and decrease for efficiency.
Currently, one function evaluation each trial step. If evaluating f is very
cheap, could consider evaluating both trial steps during each iteration.
Relevance to strict saddle points

- We do not make any non-degenerate assumption.
- Our convergence result holds regardless of the types of saddle points.
- When the strict saddle point property holds, our theory implies that

* Any limit point of the sequence {xk} is a minimizer of f .
* Iterates eventually enter a region that only contains minimizers.

- We get a stronger convergence theory (cf. Paternain, Mokhtari, and
Ribeiro (2017)) because we incorporate directions of negative curvature.

The complexity result for our method is not “optimal" based on a
traditional complexity perspective.
F. Curtis and I have been intrigued by alternate complexity perspectives:

- Typically, results are for general problems and based on worst case.
- From some perspective, the algorithm I presented today is “optimal".
- See his talk later this afternoon!
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Stochastic Setting

Summary

Apply same ideas as in the deterministic case, but in the mini-batch case.

Add a negative curvature direction dk = ±vk with the sign chosen
randomly. Can be thought of as a “smart noise" approach.

Small gain in performance relative to similar algorithm without dk.

See our paper [1] for additional details.
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Stochastic Setting
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