Investigation of Crouzeix's Conjecture via Nonsmooth Optimization

Michael L. Overton
Courant Institute of Mathematical Sciences
New York University

Joint work with
Anne Greenbaum, University of Washington and Adrian Lewis, Cornell

Workshop in Honor of Don Goldfarb
Huatulco, Jan 2018

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio

Crouzeix's Conjecture

The Field of Values

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

For $A \in \mathbb{C}^{n \times n}$, the field of values (or numerical range) of A is

$$
W(A)=\left\{v^{*} A v: v \in \mathbb{C}^{n},\|v\|_{2}=1\right\} \subset \mathbb{C} .
$$

The Field of Values

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

For $A \in \mathbb{C}^{n \times n}$, the field of values (or numerical range) of A is

$$
W(A)=\left\{v^{*} A v: v \in \mathbb{C}^{n},\|v\|_{2}=1\right\} \subset \mathbb{C} .
$$

Clearly

$$
W(A) \supseteq \sigma(A)
$$

where σ denotes spectrum.

The Field of Values

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

For $A \in \mathbb{C}^{n \times n}$, the field of values (or numerical range) of A is

$$
W(A)=\left\{v^{*} A v: v \in \mathbb{C}^{n},\|v\|_{2}=1\right\} \subset \mathbb{C} .
$$

Clearly

$$
W(A) \supseteq \sigma(A)
$$

where σ denotes spectrum.
If $A A^{*}=A^{*} A$, then

$$
W(A)=\operatorname{conv} \sigma(A) .
$$

The Field of Values

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

For $A \in \mathbb{C}^{n \times n}$, the field of values (or numerical range) of A is

$$
W(A)=\left\{v^{*} A v: v \in \mathbb{C}^{n},\|v\|_{2}=1\right\} \subset \mathbb{C} .
$$

Clearly

$$
W(A) \supseteq \sigma(A)
$$

where σ denotes spectrum.
If $A A^{*}=A^{*} A$, then

$$
W(A)=\operatorname{conv} \sigma(A) .
$$

Toeplitz-Haussdorf Theorem: $W(A)$ is convex for all $A \in \mathbb{C}^{n \times n}$.

Examples

Examples

Let

$$
\begin{aligned}
J & =\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right]: \\
B & =\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right]: \quad W(B) \text { is a disk of radius } 0.5 \\
& W(B) \text { "elliptical disk" }
\end{aligned}
$$

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

Concluding Remarks

Examples

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

Let

$$
\begin{aligned}
J & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]: W(J) \text { is a disk of radius } 0.5 \\
B & =\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right]: W(B) \text { is an "elliptical disk" } \\
D & =\left[\begin{array}{cc}
5+i & 0 \\
0 & 5-i
\end{array}\right]: \quad W(D) \text { is a line segment }
\end{aligned}
$$

Examples

Crouzeix's

Conjecture
The Field of Values

Examples

Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
Concluding Remarks

Let

$$
\begin{gathered}
J=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]: W(J) \text { is a disk of radius } 0.5 \\
B=\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right]: W(B) \text { is an "elliptical disk" } \\
D=\left[\begin{array}{cc}
5+i & 0 \\
0 & 5-i
\end{array}\right]: W(D) \text { is a line segment } \\
A=\operatorname{diag}(J, B, D): \quad W(A)=\operatorname{conv}(W(J), W(B), W(D))
\end{gathered}
$$

Example, continued

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Field of Values of $\mathrm{A}=\operatorname{diag}(\mathrm{J}, \mathrm{B}, \mathrm{D})$: J is Jordan block, B full, D diagonal

Crouzeix's Conjecture

Let $p=p(\zeta)$ be a polynomial and let A be a square matrix.

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

Crouzeix's Conjecture

Let $p=p(\zeta)$ be a polynomial and let A be a square matrix.
Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization ofthe Crouzeix RatioNonsmooth Analysisof the CrouzeixRatio
M. Crouzeix conjectured in "Bounds for analytical functions of matrices", Int. Eq. Oper. Theory 48 (2004), that for all p and A,

$$
\|p(A)\|_{2} \leq 2\|p\|_{W(A)}
$$

Crouzeix's Conjecture

Let $p=p(\zeta)$ be a polynomial and let A be a square matrix.

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued

Crouzeix's
 Conjecture

Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio
M. Crouzeix conjectured in "Bounds for analytical functions of matrices", Int. Eq. Oper. Theory 48 (2004), that for all p and A,

$$
\|p(A)\|_{2} \leq 2\|p\|_{W(A)} .
$$

The left-hand side is the 2-norm (spectral norm, maximum singular value) of the matrix $p(A)$.

Crouzeix's Conjecture

Let $p=p(\zeta)$ be a polynomial and let A be a square matrix.

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued

Crouzeix's
 Conjecture

Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks
M. Crouzeix conjectured in "Bounds for analytical functions of matrices", Int. Eq. Oper. Theory 48 (2004), that for all p and A,

$$
\|p(A)\|_{2} \leq 2\|p\|_{W(A)} .
$$

The left-hand side is the 2-norm (spectral norm, maximum singular value) of the matrix $p(A)$.
The norm on the right-hand side is the maximum of $|p(\zeta)|$ over $\zeta \in W(A)$. By the maximum modulus principle, this must be attained on bd $W(A)$, the boundary of $W(A)$.

Crouzeix's Conjecture

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued

Crouzeix's
 Conjecture

Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Let $p=p(\zeta)$ be a polynomial and let A be a square matrix.
M. Crouzeix conjectured in "Bounds for analytical functions of matrices", Int. Eq. Oper. Theory 48 (2004), that for all p and A,

$$
\|p(A)\|_{2} \leq 2\|p\|_{W(A)}
$$

The left-hand side is the 2-norm (spectral norm, maximum singular value) of the matrix $p(A)$.
The norm on the right-hand side is the maximum of $|p(\zeta)|$ over $\zeta \in W(A)$. By the maximum modulus principle, this must be attained on bd $W(A)$, the boundary of $W(A)$.
If $p=\chi(A)$, the characteristic polynomial (or minimal polynomial) of A, then $\|p(A)\|_{2}=0$ by Cayley-Hamilton, but $\|p\|_{W(A)}=0$ only if $A=\lambda I$ for $\lambda \in \mathbb{C}$, so that $W(A)=\{\lambda\}$.

Crouzeix's Conjecture

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued

Crouzeix's
 Conjecture

Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix
Ratio
Concluding Remarks

Let $p=p(\zeta)$ be a polynomial and let A be a square matrix.
M. Crouzeix conjectured in "Bounds for analytical functions of matrices", Int. Eq. Oper. Theory 48 (2004), that for all p and A,

$$
\|p(A)\|_{2} \leq 2\|p\|_{W(A)}
$$

The left-hand side is the 2-norm (spectral norm, maximum singular value) of the matrix $p(A)$.
The norm on the right-hand side is the maximum of $|p(\zeta)|$ over $\zeta \in W(A)$. By the maximum modulus principle, this must be attained on bd $W(A)$, the boundary of $W(A)$.
If $p=\chi(A)$, the characteristic polynomial (or minimal polynomial) of A, then $\|p(A)\|_{2}=0$ by Cayley-Hamilton, but $\|p\|_{W(A)}=0$ only if $A=\lambda I$ for $\lambda \in \mathbb{C}$, so that $W(A)=\{\lambda\}$. If $p(\zeta)=\zeta$ and A is a 2×2 Jordan block with 0 on the diagonal, then $\|p(A)\|_{2}=1$ and $W(A)$ is a disk centered at 0 with radius 0.5 , so the left and right-hand sides are equal.

Crouzeix and Palencia's Theorems

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

Crouzeix's theorem (2008)
$\|p(A)\|_{2} \leq 11.08\|p\|_{W(A)}$
i.e., the conjecture is true if we replace 2 by 11.08 .

Crouzeix and Palencia's Theorems

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

Crouzeix's theorem (2008)

$$
\|p(A)\|_{2} \leq 11.08\|p\|_{W(A)}
$$

i.e., the conjecture is true if we replace 2 by 11.08 .

Palencia's theorem (2016)

$$
\|p(A)\|_{2} \leq(1+\sqrt{2})\|p\|_{W(A)}
$$

i.e., the conjecture is true if we replace 2 by $1+\sqrt{2}$

Published in SIMAX, May 2017, with Crouzeix.

Special Cases

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk

Special Cases

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)
Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio
Concluding Remarks

Special Cases

The conjecture is known to hold for certain restricted classes of

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems

Special Cases

Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)

- $W(A)=\overline{\mathcal{D}}$:
- if $\|B\| \leq 1$, then $\|p(B)\| \leq \sup _{\zeta \in \mathcal{D}}|p(\zeta)|$ (von Neumann, 1951)
- if $r(A) \leq 1$, then $A=T B T^{-1}$ with $\|B\| \leq 1$ and $\|T\|\left\|T^{-1}\right\| \leq 2$
(Okubo and Ando, 1975), so $\|p(A)\| \leq 2\|p(B)\|$

Special Cases

Crouzeix's Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems

Special Cases

Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)
■ $W(A)=\overline{\mathcal{D}}$:

- if $\|B\| \leq 1$, then $\|p(B)\| \leq \sup _{\zeta \in \mathcal{D}}|p(\zeta)|$ (von Neumann, 1951)
- if $r(A) \leq 1$, then $A=T B T^{-1}$ with $\|B\| \leq 1$ and $\|T\|\left\|T^{-1}\right\| \leq 2$
(Okubo and Ando, 1975), so $\|p(A)\| \leq 2\|p(B)\|$
- $n=2$ (Crouzeix, 2004), and, more generally, the minimum polynomial of A has degree 2 (follows from Tso and $\mathrm{Wu}, 1999$)

Special Cases

Crouzeix's Conjecture

The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems

Special Cases

Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)
■ $W(A)=\overline{\mathcal{D}}$:

- if $\|B\| \leq 1$, then $\|p(B)\| \leq \sup _{\zeta \in \mathcal{D}}|p(\zeta)|$ (von Neumann, 1951)
- if $r(A) \leq 1$, then $A=T B T^{-1}$ with $\|B\| \leq 1$ and $\|T\|\left\|T^{-1}\right\| \leq 2$
(Okubo and Ando, 1975), so $\|p(A)\| \leq 2\|p(B)\|$
- $n=2$ (Crouzeix, 2004), and, more generally, the minimum polynomial of A has degree 2 (follows from Tso and $\mathrm{Wu}, 1999$) $n=3$ and $A^{3}=0$ (Crouzeix, 2013)

Special Cases

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems

Special Cases

Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)
■ $W(A)=\overline{\mathcal{D}}$:

- if $\|B\| \leq 1$, then $\|p(B)\| \leq \sup _{\zeta \in \mathcal{D}}|p(\zeta)|$ (von Neumann, 1951)
- if $r(A) \leq 1$, then $A=T B T^{-1}$ with $\|B\| \leq 1$ and $\|T\|\left\|T^{-1}\right\| \leq 2$
(Okubo and Ando, 1975), so $\|p(A)\| \leq 2\|p(B)\|$
- $n=2$ (Crouzeix, 2004), and, more generally, the minimum polynomial of A has degree 2 (follows from Tso and $\mathrm{Wu}, 1999$)
- $n=3$ and $A^{3}=0$ (Crouzeix, 2013)
- A is an upper Jordan block with a perturbation in the bottom left corner (Choi and Greenbaum, 2012) or any diagonal scaling of such A (Choi, 2013)

Special Cases

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems

Special Cases

Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)

- $W(A)=\overline{\mathcal{D}}$:
- if $\|B\| \leq 1$, then $\|p(B)\| \leq \sup _{\zeta \in \mathcal{D}}|p(\zeta)|$ (von Neumann, 1951)
- if $r(A) \leq 1$, then $A=T B T^{-1}$ with $\|B\| \leq 1$ and $\|T\|\left\|T^{-1}\right\| \leq 2$
(Okubo and Ando, 1975), so $\|p(A)\| \leq 2\|p(B)\|$
■ $n=2$ (Crouzeix, 2004), and, more generally, the minimum polynomial of A has degree 2 (follows from Tso and $\mathrm{Wu}, 1999$)
- $n=3$ and $A^{3}=0$ (Crouzeix, 2013)
- A is an upper Jordan block with a perturbation in the bottom left corner (Choi and Greenbaum, 2012) or any diagonal scaling of such A (Choi, 2013)
■ $A=T D T^{-1}$ with D diagonal and $\|T\|\left\|T^{-1}\right\| \leq 2$ (easy)

Special Cases

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems

Special Cases

Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio

The conjecture is known to hold for certain restricted classes of polynomials $p \in P^{m}$ or matrices $A \in \mathbb{C}^{n \times n}$.
Let $r(A)=\max _{\zeta \in W(A)}|\zeta|$ (numerical radius) and $\mathcal{D}=$ open unit disk
■ $p(\zeta)=\zeta^{m}$:
$\left\|A^{m}\right\| \leq 2 r\left(A^{m}\right) \leq 2 r(A)^{m}=2 \max _{\zeta \in W(A)}\left|\zeta^{m}\right|$
(power inequality, Berger 1965, Pearcy 1966)
■ $W(A)=\overline{\mathcal{D}}$:

- if $\|B\| \leq 1$, then $\|p(B)\| \leq \sup _{\zeta \in \mathcal{D}}|p(\zeta)|$ (von Neumann, 1951)
- if $r(A) \leq 1$, then $A=T B T^{-1}$ with $\|B\| \leq 1$ and $\|T\|\left\|T^{-1}\right\| \leq 2$
(Okubo and Ando, 1975), so $\|p(A)\| \leq 2\|p(B)\|$
■ $n=2$ (Crouzeix, 2004), and, more generally, the minimum polynomial of A has degree 2 (follows from Tso and $\mathrm{Wu}, 1999$)
- $n=3$ and $A^{3}=0$ (Crouzeix, 2013)
- A is an upper Jordan block with a perturbation in the bottom left corner (Choi and Greenbaum, 2012) or any diagonal scaling of such A (Choi, 2013)
■ $A=T D T^{-1}$ with D diagonal and $\|T\|\left\|T^{-1}\right\| \leq 2$ (easy)
- $A A^{*}=A^{*} A$ (then the constant 2 can be improved to 1).

Computing the Field of Values

The extreme points of a convex set are those that cannot be expressed as a convex combination of two other points in the set.

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

Computing the Field of Values

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

The extreme points of a convex set are those that cannot be expressed as a convex combination of two other points in the set. Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed that the extreme points of $W(A)$ can be characterized as

$$
\operatorname{ext} W(A)=\left\{z_{\theta}=v_{\theta}^{*} A v_{\theta}: \theta \in[0,2 \pi)\right\}
$$

where v_{θ} is a normalized eigenvector corresponding to the largest eigenvalue of the Hermitian matrix

$$
H_{\theta}=\frac{1}{2}\left(e^{i \theta} A+e^{-i \theta} A^{*}\right) .
$$

Computing the Field of Values

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

The extreme points of a convex set are those that cannot be expressed as a convex combination of two other points in the set. Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed that the extreme points of $W(A)$ can be characterized as

$$
\operatorname{ext} W(A)=\left\{z_{\theta}=v_{\theta}^{*} A v_{\theta}: \theta \in[0,2 \pi)\right\}
$$

where v_{θ} is a normalized eigenvector corresponding to the largest eigenvalue of the Hermitian matrix

$$
H_{\theta}=\frac{1}{2}\left(e^{i \theta} A+e^{-i \theta} A^{*}\right) .
$$

The proof uses a supporting hyperplane argument.

Computing the Field of Values

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun Example, continued The Crouzeix Ratio Computing the Crouzeix Ratio

Nonsmooth Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
Concluding Remarks

The extreme points of a convex set are those that cannot be expressed as a convex combination of two other points in the set. Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed that the extreme points of $W(A)$ can be characterized as

$$
\operatorname{ext} W(A)=\left\{z_{\theta}=v_{\theta}^{*} A v_{\theta}: \theta \in[0,2 \pi)\right\}
$$

where v_{θ} is a normalized eigenvector corresponding to the largest eigenvalue of the Hermitian matrix

$$
H_{\theta}=\frac{1}{2}\left(e^{i \theta} A+e^{-i \theta} A^{*}\right) .
$$

The proof uses a supporting hyperplane argument. Thus, we can compute as many extreme points as we like. Continuing with the previous example...

Johnson's Algorithm Finds the Extreme Points

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

Johnson's Algorithm Finds the Extreme Points

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

Chebfun

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

> Chebfun (Trefethen et al, 2004-present) represents real- or complex-valued functions on real intervals to machine precision accuracy using Chebyshev interpolation.

Chebfun

Crouzeix's

The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points

Chebfun

Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Chebfun (Trefethen et al, 2004-present) represents real- or complex-valued functions on real intervals to machine precision accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined automatically. For example, representing $\sin (\pi x)$ on $[-1,1]$ to machine precision requires degree 19 .

Chebfun

Crouzeix's

The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points

Chebfun

Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Chebfun (Trefethen et al, 2004-present) represents real- or complex-valued functions on real intervals to machine precision accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined automatically. For example, representing $\sin (\pi x)$ on $[-1,1]$ to machine precision requires degree 19.

Most Matlab functions are overloaded to work with chebfun's.

Chebfun

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points

Chebfun

Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Chebfun (Trefethen et al, 2004-present) represents real- or complex-valued functions on real intervals to machine precision accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined automatically. For example, representing $\sin (\pi x)$ on $[-1,1]$ to machine precision requires degree 19.

Most Matlab functions are overloaded to work with chebfun's.
Applying Chebfun's fov to compute the boundary of $W(A)$ for the previous example...

Example, continued

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio Computing the
Crouzeix Ratio
Nonsmooth Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

The small circles are the interpolation points generated by Chebfun.

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The conjecture states that $f(p, A)$ is bounded below by 0.5 independently of the polynomial degree m and the matrix order n.

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The conjecture states that $f(p, A)$ is bounded below by 0.5 independently of the polynomial degree m and the matrix order n. The Crouzeix ratio f is

- A mapping from $\mathbb{C}^{m+1} \times \mathbb{C}^{n \times n}$ to \mathbb{R} (associating polynomials $p \in P^{m}$ with their vectors of coefficients $c \in \mathbb{C}^{m+1}$ using the monomial basis)

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The conjecture states that $f(p, A)$ is bounded below by 0.5 independently of the polynomial degree m and the matrix order n. The Crouzeix ratio f is

- A mapping from $\mathbb{C}^{m+1} \times \mathbb{C}^{n \times n}$ to \mathbb{R} (associating polynomials $p \in P^{m}$ with their vectors of coefficients $c \in \mathbb{C}^{m+1}$ using the monomial basis)
- Not convex

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The conjecture states that $f(p, A)$ is bounded below by 0.5 independently of the polynomial degree m and the matrix order n. The Crouzeix ratio f is

- A mapping from $\mathbb{C}^{m+1} \times \mathbb{C}^{n \times n}$ to \mathbb{R} (associating polynomials $p \in P^{m}$ with their vectors of coefficients $c \in \mathbb{C}^{m+1}$ using the monomial basis)
- Not convex

■ Not defined if $p(A)=0$

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's

Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points

Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The conjecture states that $f(p, A)$ is bounded below by 0.5 independently of the polynomial degree m and the matrix order n. The Crouzeix ratio f is

- A mapping from $\mathbb{C}^{m+1} \times \mathbb{C}^{n \times n}$ to \mathbb{R} (associating polynomials $p \in P^{m}$ with their vectors of coefficients $c \in \mathbb{C}^{m+1}$ using the monomial basis)
- Not convex

■ Not defined if $p(A)=0$

- Lipschitz continuous at all other points, but not necessarily differentiable

The Crouzeix Ratio

Define the Crouzeix ratio

Crouzeix's
Conjecture
The Field of Values Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm Finds the Extreme Points
Chebfun
Example, continued
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

$$
f(p, A)=\frac{\|p\|_{W(A)}}{\|p(A)\|_{2}}
$$

The conjecture states that $f(p, A)$ is bounded below by 0.5 independently of the polynomial degree m and the matrix order n. The Crouzeix ratio f is

- A mapping from $\mathbb{C}^{m+1} \times \mathbb{C}^{n \times n}$ to \mathbb{R} (associating polynomials $p \in P^{m}$ with their vectors of coefficients $c \in \mathbb{C}^{m+1}$ using the monomial basis)
■ Not convex
■ Not defined if $p(A)=0$
■ Lipschitz continuous at all other points, but not necessarily differentiable
- Semialgebraic (its graph is a finite union of sets, each of which is defined by a finite system of polynomial inequalities)

Computing the Crouzeix Ratio

Crouzeix's
Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field
of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
Concluding Remarks

Numerator: use Chebfun's fov (modified to return any line segments in the boundary) combined with its overloaded polyval and norm(•,inf).

Computing the Crouzeix Ratio

Crouzeix's

Conjecture
The Field of Values
Examples
Example, continued
Crouzeix's
Conjecture
Crouzeix and
Palencia's Theorems
Special Cases
Computing the Field of Values
Johnson's Algorithm
Finds the Extreme
Points
Chebfun
Example, continued
The Crouzeix Ratio
Computing the
Crouzeix Ratio
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

Numerator: use Chebfun's fov (modified to return any line segments in the boundary) combined with its overloaded polyval and norm(•,inf).

Denominator: use Matlab's standard polyvalm and norm(•,2).

Computing the Crouzeix Ratio

Crouzeix's

Numerator: use Chebfun's fov (modified to return any line segments in the boundary) combined with its overloaded polyval and norm(•,inf).

Denominator: use Matlab's standard polyvalm and norm($\cdot, 2$).
The main cost is the construction of the chebfun defining the field of values.
Crouzeix'sConjecture
the Crouzeix Ratio
Nonsmoothness of
the Crouzeix Ratio
BFGS
Experiments
Optimizing over A
(order n) and p
($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis
of the Crouzeix
Ratio
Nonsmooth
Optimization of

Nonsmoothness of the Crouzeix Ratio

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of
the Crouzeix Ratio

BFGS

Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of Values for f Closest to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix

There are three possible sources of nonsmoothness in the Crouzeix ratio f

Nonsmoothness of the Crouzeix Ratio

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of
the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of Values for f Closest to 1
Why is the Crouzeix Ratio One?
Results for Larger Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix Ratio

There are three possible sources of nonsmoothness in the Crouzeix ratio f

- When the max value of $|p(\zeta)|$ on bd $W(A)$ is attained at more than one point ζ (the most important, as this frequently occurs at apparent minimizers)

Nonsmoothness of the Crouzeix Ratio

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of
the Crouzeix Ratio BFGS

Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger Dimension n and
Degree $n-1$
There are three possible sources of nonsmoothness in the Crouzeix ratio f

■ When the max value of $|p(\zeta)|$ on bd $W(A)$ is attained at more than one point ζ (the most important, as this frequently occurs at apparent minimizers)
■ Even if such ζ is unique, when the normalized vector v for which $v^{*} A v=\zeta$ is not unique up to a scalar, implying that the maximum eigenvalue of the corresponding H_{θ} matrix has multiplicity two or more (does not seem to occur at minimizers)

Nonsmoothness of the Crouzeix Ratio

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of
the Crouzeix Ratio BFGS

Experiments
Optimizing over A
(order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
There are three possible sources of nonsmoothness in the Crouzeix ratio f

■ When the max value of $|p(\zeta)|$ on bd $W(A)$ is attained at more than one point ζ (the most important, as this frequently occurs at apparent minimizers)
■ Even if such ζ is unique, when the normalized vector v for which $v^{*} A v=\zeta$ is not unique up to a scalar, implying that the maximum eigenvalue of the corresponding H_{θ} matrix has multiplicity two or more (does not seem to occur at minimizers)

- When the maximum singular value of $p(A)$ has multiplicity two or more (does not seem to occur at minimizers)

Nonsmoothness of the Crouzeix Ratio

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of
the Crouzeix Ratio BFGS

Experiments
Optimizing over A
(order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

There are three possible sources of nonsmoothness in the Crouzeix ratio f

■ When the max value of $|p(\zeta)|$ on bd $W(A)$ is attained at more than one point ζ (the most important, as this frequently occurs at apparent minimizers)
■ Even if such ζ is unique, when the normalized vector v for which $v^{*} A v=\zeta$ is not unique up to a scalar, implying that the maximum eigenvalue of the corresponding H_{θ} matrix has multiplicity two or more (does not seem to occur at minimizers)

- When the maximum singular value of $p(A)$ has multiplicity two or more (does not seem to occur at minimizers)

In all of these cases the gradient of f is not defined. But in practice, none of these cases ever occur, except the first one in the limit.

BFGS

Crouzeix's Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio

BFGS

Experiments
Optimizing over A (order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of Values for f Closest to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix

BFGS (Broyden, Fletcher, Goldfarb and Shanno, all independently in 1970), is the standard quasi-Newton algorithm for minimizing smooth (continuously differentiable) functions.

BFGS

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio

BFGS

Experiments
Optimizing over A (order n) and p
($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$

BFGS (Broyden, Fletcher, Goldfarb and Shanno, all independently in 1970), is the standard quasi-Newton algorithm for minimizing smooth (continuously differentiable) functions.
It works by building an approximation to the Hessian of the function using gradient differences, and has a well known superlinear convergence property under a regularity condition.

BFGS

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio

BFGS

Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$

BFGS (Broyden, Fletcher, Goldfarb and Shanno, all independently in 1970), is the standard quasi-Newton algorithm for minimizing smooth (continuously differentiable) functions.
It works by building an approximation to the Hessian of the function using gradient differences, and has a well known superlinear convergence property under a regularity condition. Although its global convergence theory is limited to the convex case (Powell, 1976), it generally finds local minimizers efficiently in the nonconvex case too, although there are pathological counterexamples.

BFGS

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio

BFGS

Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

BFGS (Broyden, Fletcher, Goldfarb and Shanno, all independently in 1970), is the standard quasi-Newton algorithm for minimizing smooth (continuously differentiable) functions.
It works by building an approximation to the Hessian of the function using gradient differences, and has a well known superlinear convergence property under a regularity condition. Although its global convergence theory is limited to the convex case (Powell, 1976), it generally finds local minimizers efficiently in the nonconvex case too, although there are pathological counterexamples.
Remarkably, this property seems to extend to nonsmooth functions too, with a linear rate of local convergence, although the convergence theory is extremely limited (Lewis and Overton, 2013). It builds a very ill conditioned "Hessian" approximation, with "infinitely large" curvature in some directions and finite curvature in other directions.

Experiments

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of Values for Lowest
Computed f
Optimizing over both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of Values for f Closest to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix

We have run many experiments searching for local minimizers of the Crouzeix ratio using BFGS.

Experiments

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix

We have run many experiments searching for local minimizers of the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of $\operatorname{deg} \leq n-1$, running BFGS for a maximum of 1000 iterations from each of 100 randomly generated starting points.

Experiments

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p
($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

We have run many experiments searching for local minimizers of the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of $\operatorname{deg} \leq n-1$, running BFGS for a maximum of 1000 iterations from each of 100 randomly generated starting points.

We restrict p to have real coefficients and A to be real, in Hessenberg form (all but one superdiagonal is zero).

Experiments

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A
(order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

We have run many experiments searching for local minimizers of the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of $\operatorname{deg} \leq n-1$, running BFGS for a maximum of 1000 iterations from each of 100 randomly generated starting points.

We restrict p to have real coefficients and A to be real, in Hessenberg form (all but one superdiagonal is zero).

We have obtained similar results for p with complex coefficients and complex A (then can take A to be triangular).

Experiments

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmoothness of the Crouzeix Ratio BFGS

Experiments

Optimizing over A
(order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

We have run many experiments searching for local minimizers of the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of $\operatorname{deg} \leq n-1$, running BFGS for a maximum of 1000 iterations from each of 100 randomly generated starting points.

We restrict p to have real coefficients and A to be real, in Hessenberg form (all but one superdiagonal is zero).

We have obtained similar results for p with complex coefficients and complex A (then can take A to be triangular).
We have also obtained similar results using Gradient Sampling (Burke, Lewis and Overton, 2005; Kiwiel 2007) instead of BFGS. This method has a very satisfactory convergence theory, but it is much slower.

Optimizing over $A($ order $n)$ and $p(\operatorname{deg} \leq n-1)$

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS

Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio
Sorted final values of the Crouzeix ratio f found starting from 100 randomly generated initial points.

Optimizing over $A($ order $n)$ and $p(\operatorname{deg} \leq n-1)$

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS

Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Sorted final values of the Crouzeix ratio f found starting from 100 randomly generated initial points. Suggests that only locally optimal values of f are 0.5 and 1 .

Final Fields of Values for Lowest Computed f

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p
($\operatorname{deg} \leq n-1$)

Final Fields of

Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Solid blue curve is boundary of field of values of final computed A Blue asterisks are eigenvalues of final computed A Small red circles are roots of final computed p

Final Fields of Values for Lowest Computed f

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p (deg $\leq n-1$)

Final Fields of

Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Solid blue curve is boundary of field of values of final computed A Blue asterisks are eigenvalues of final computed A Small red circles are roots of final computed p
$n=3,4,5$: two eigenvalues of A and one root of p nearly coincident

Optimizing over both p and A : Final $f(p, A)$

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of Values for f Closest to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio
Concluding Remarks

n	f
3	0.500000000000000
4	0.500000000000000
5	0.500000000000014
6	0.500000017156953
7	0.500000746246673
8	0.500000206563813

f is the lowest value $f(p, A)$ found over 100 runs

Is the Ratio 0.5 Attained?

Crouzeix's
Conjecture
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmoothness of
the Crouzeix Ratio
BFGS
Experiments
Optimizing over A
(order n) and p
(deg $\leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis
of the Crouzeix
Ratio

Is the Ratio 0.5 Attained?

Independently, Crabb, Choi and Crouzeix showed that the ratio

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
0.5 is attained if $p(\zeta)=\zeta^{n-1}$ and A is the n by n matrix

$$
\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] \text { if } n=2 \text {, or }\left[\begin{array}{ccccccc}
0 & \sqrt{2} & & & & & \\
& \cdot & 1 & & & & \\
& & \cdot & \cdot & & & \\
& & & \cdot & \cdot & & \\
& & & & \cdot & 1 & \\
& & & & & \cdot & \sqrt{2} \\
& & & & & & 0
\end{array}\right] \text { if } n>2
$$

for which $W(A)$ is the unit disk.

Is the Ratio 0.5 Attained?

Independently, Crabb, Choi and Crouzeix showed that the ratio

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$

Is the Ratio 0.5

Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$

Is the Ratio 0.5 Attained?

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio

BFGS
Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$

Is the Ratio 0.5

Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Independently, Crabb, Choi and Crouzeix showed that the ratio 0.5 is attained if $p(\zeta)=\zeta^{n-1}$ and A is the n by n matrix

$$
\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] \text { if } n=2 \text {, or }\left[\begin{array}{ccccccc}
0 & \sqrt{2} & & & & & \\
& \cdot & 1 & & & & \\
& & \cdot & \cdot & & & \\
& & & \cdot & \cdot & & \\
& & & & \cdot & 1 & \\
& & & & & \cdot & \sqrt{2} \\
& & & & & 0
\end{array}\right] \text { if } n>2
$$

for which $W(A)$ is the unit disk.
Our computed minimizers are nearly equivalent to such pairs (p, A) (with A changed via unitary similarity transformations, multiplication by a scalar, by shifting the root of p and eigenvalue of A by the same scalar, and by appending another diagonal block whose field of values is contained in that of the first block)
Conjecture: these are the only cases where $f(p, A)=0.5$.

Is the Ratio 0.5 Attained?

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio

BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest Computed f
Optimizing over
both p and A : Final $f(p, A)$

Is the Ratio 0.5

Attained?
Final Fields of
Values for f Closest to 1
Why is the Crouzeix Ratio One?
Results for Larger Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix

Independently, Crabb, Choi and Crouzeix showed that the ratio 0.5 is attained if $p(\zeta)=\zeta^{n-1}$ and A is the n by n matrix

$$
\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] \text { if } n=2 \text {, or }\left[\begin{array}{ccccccc}
0 & \sqrt{2} & & & & & \\
& \cdot & 1 & & & & \\
& & \cdot & \cdot & & & \\
& & & \cdot & \cdot & & \\
& & & & \cdot & 1 & \\
& & & & & \cdot & \sqrt{2} \\
& & & & & 0
\end{array}\right] \text { if } n>2
$$

for which $W(A)$ is the unit disk.
Our computed minimizers are nearly equivalent to such pairs (p, A) (with A changed via unitary similarity transformations, multiplication by a scalar, by shifting the root of p and eigenvalue of A by the same scalar, and by appending another diagonal block whose field of values is contained in that of the first block)
Conjecture: these are the only cases where $f(p, A)=0.5$.
f is nonsmooth at these pairs (p, A) because $|p|$ is constant on the boundary of $W(A)$.

Final Fields of Values for f Closest to 1

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest

to 1

Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Final Fields of Values for f Closest to 1

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest

to 1

Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Ice cream cone shape: exactly one eigenvalue at a vertex of the field of values

Why is the Crouzeix Ratio One?

Crouzeix's
Conjecture
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmoothness of
the Crouzeix Ratio
BFGS
Experiments
Optimizing over A
(order n) and p
$(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final
$f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis
of the Crouzeix
Ratio

Why is the Crouzeix Ratio One?

Because for this computed local minimizer, A is nearly unitarily similar to a block diagonal matrix

$$
\operatorname{diag}(\lambda, B), \quad \lambda \in \mathbb{R}
$$

SO

$$
W(A) \approx \operatorname{conv}(\lambda, W(B))
$$

with λ active and the block B inactive, that is:

- $\|p\|_{W(A)}$ is attained only at λ

■ $|p(\lambda)|>\|p(B)\|_{2}$

Concluding Remarks

Why is the Crouzeix Ratio One?

Because for this computed local minimizer, A is nearly unitarily similar to a block diagonal matrix

$$
\operatorname{diag}(\lambda, B), \quad \lambda \in \mathbb{R}
$$

SO

$$
W(A) \approx \operatorname{conv}(\lambda, W(B))
$$

with λ active and the block B inactive, that is:

- $\|p\|_{W(A)}$ is attained only at λ
- $|p(\lambda)|>\|p(B)\|_{2}$

So, $\|p\|_{W(A)}=|p(\lambda)|=\|p(A)\|_{2}$ and hence $f(p, A)=1$.

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of Values for f Closest to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix

Why is the Crouzeix Ratio One?

Because for this computed local minimizer, A is nearly unitarily similar to a block diagonal matrix

$$
\operatorname{diag}(\lambda, B), \quad \lambda \in \mathbb{R}
$$

SO

$$
W(A) \approx \operatorname{conv}(\lambda, W(B))
$$

with λ active and the block B inactive, that is:

- $\|p\|_{W(A)}$ is attained only at λ
- $|p(\lambda)|>\|p(B)\|_{2}$

So, $\|p\|_{W(A)}=|p(\lambda)|=\|p(A)\|_{2}$ and hence $f(p, A)=1$.
Furthermore, f is differentiable at this pair (p, A), with zero gradient.
Thus, such (p, A) is a smooth stationary point of f.

Crouzeix's

 ConjectureNonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Why is the Crouzeix Ratio One?

Because for this computed local minimizer, A is nearly unitarily similar to a block diagonal matrix

$$
\operatorname{diag}(\lambda, B), \quad \lambda \in \mathbb{R}
$$

SO

$$
W(A) \approx \operatorname{conv}(\lambda, W(B))
$$

with λ active and the block B inactive, that is:

- $\|p\|_{W(A)}$ is attained only at λ
- $|p(\lambda)|>\|p(B)\|_{2}$

So, $\|p\|_{W(A)}=|p(\lambda)|=\|p(A)\|_{2}$ and hence $f(p, A)=1$.
Furthermore, f is differentiable at this pair (p, A), with zero gradient.
Thus, such (p, A) is a smooth stationary point of f.
This doesn't imply that it is a local minimizer, but the numerical results make this evident.

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Why is the Crouzeix Ratio One?

Crouzeix's Conjecture

Nonsmooth

Optimization of

 the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGSExperiments
Optimizing over A (order n) and p $(\operatorname{deg} \leq n-1)$
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

Because for this computed local minimizer, A is nearly unitarily similar to a block diagonal matrix

$$
\operatorname{diag}(\lambda, B), \quad \lambda \in \mathbb{R}
$$

SO

$$
W(A) \approx \operatorname{conv}(\lambda, W(B))
$$

with λ active and the block B inactive, that is:

- $\|p\|_{W(A)}$ is attained only at λ
- $|p(\lambda)|>\|p(B)\|_{2}$

So, $\|p\|_{W(A)}=|p(\lambda)|=\|p(A)\|_{2}$ and hence $f(p, A)=1$.
Furthermore, f is differentiable at this pair (p, A), with zero gradient.
Thus, such (p, A) is a smooth stationary point of f.
This doesn't imply that it is a local minimizer, but the numerical results make this evident.

As n increases, ice cream cone stationary points become increasingly common and it becomes very difficult to reduce f below 1 .

Results for Larger Dimension n and Degree $n-1$

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS
Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

$\mathrm{n}=12$

Sorted final values of the Crouzeix ratio f found starting from many randomly generated initial points.

Results for Larger Dimension n and Degree $n-1$

Crouzeix's

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio Nonsmoothness of the Crouzeix Ratio BFGS

Experiments
Optimizing over A (order n) and p ($\operatorname{deg} \leq n-1$)
Final Fields of
Values for Lowest
Computed f
Optimizing over
both p and A : Final $f(p, A)$
Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix Ratio One?
Results for Larger
Dimension n and
Degree $n-1$
Nonsmooth Analysis of the Crouzeix
Ratio

```
Crouzeix's
Conjecture
Nonsmooth
Optimization of
the Crouzeix Ratio
```

```
Nonsmooth Analysis
```

Nonsmooth Analysis
of the Crouzeix
of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio
Regularity
Simplest Case where
Crouzeix Ratio is
Nonsmooth
(\hat{c},\hat{A}) is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)
The General Case
(\hat{c},\hat{A}) is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)
Is the Crouzeix Ratio
Globally Clarke
Regular?

```

\section*{Nonsmooth Analysis of the Crouzeix Ratio}

\section*{The Clarke Subdifferential}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

\section*{The Clarke}

Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).

\section*{The Clarke Subdifferential}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.

\section*{The Clarke Subdifferential}

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.
The Clarke subdifferential, or set of subgradients, of \(h\) at \(\bar{x}\) is
\[
\partial h(\bar{x})=\operatorname{conv}\left\{\lim _{x \rightarrow \bar{x}, x \in D} \nabla h(x)\right\} .
\]

\section*{The Clarke Subdifferential}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.
The Clarke subdifferential, or set of subgradients, of \(h\) at \(\bar{x}\) is
\[
\partial h(\bar{x})=\operatorname{conv}\left\{\lim _{x \rightarrow \bar{x}, x \in D} \nabla h(x)\right\} .
\]
F.H. Clarke, 1973 (he used the name "generalized gradient").

\section*{The Clarke Subdifferential}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.
The Clarke subdifferential, or set of subgradients, of \(h\) at \(\bar{x}\) is
\[
\partial h(\bar{x})=\operatorname{conv}\left\{\lim _{x \rightarrow \bar{x}, x \in D} \nabla h(x)\right\} .
\]
F.H. Clarke, 1973 (he used the name "generalized gradient").

If \(h\) is continuously differentiable at \(\bar{x}\), then \(\partial h(\bar{x})=\{\nabla h(\bar{x})\}\).

\section*{The Clarke Subdifferential}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.
The Clarke subdifferential, or set of subgradients, of \(h\) at \(\bar{x}\) is
\[
\partial h(\bar{x})=\operatorname{conv}\left\{\lim _{x \rightarrow \bar{x}, x \in D} \nabla h(x)\right\} .
\]
F.H. Clarke, 1973 (he used the name "generalized gradient").

If \(h\) is continuously differentiable at \(\bar{x}\), then \(\partial h(\bar{x})=\{\nabla h(\bar{x})\}\).
If \(h\) is convex, \(\partial h\) is the subdifferential of convex analysis.

\section*{The Clarke Subdifferential}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.
The Clarke subdifferential, or set of subgradients, of \(h\) at \(\bar{x}\) is
\[
\partial h(\bar{x})=\operatorname{conv}\left\{\lim _{x \rightarrow \bar{x}, x \in D} \nabla h(x)\right\} .
\]
F.H. Clarke, 1973 (he used the name "generalized gradient").

If \(h\) is continuously differentiable at \(\bar{x}\), then \(\partial h(\bar{x})=\{\nabla h(\bar{x})\}\).
If \(h\) is convex, \(\partial h\) is the subdifferential of convex analysis.
We say \(\bar{x}\) is Clarke stationary for \(h\) if \(0 \in \partial h(\bar{x})\) (a nonsmooth stationary point if \(\in \partial h(\bar{x})\) contains more than one vector)

\section*{The Clarke Subdifferential}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio

\section*{The Clarke}

Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Assume \(h: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is locally Lipschitz, and let \(D=\left\{x \in \mathbb{R}^{n}: h\right.\) is differentiable at \(\left.x\right\}\).
Rademacher's Theorem: \(\mathbb{R}^{n} \backslash D\) has measure zero.
The Clarke subdifferential, or set of subgradients, of \(h\) at \(\bar{x}\) is
\[
\partial h(\bar{x})=\operatorname{conv}\left\{\lim _{x \rightarrow \bar{x}, x \in D} \nabla h(x)\right\} .
\]
F.H. Clarke, 1973 (he used the name "generalized gradient").

If \(h\) is continuously differentiable at \(\bar{x}\), then \(\partial h(\bar{x})=\{\nabla h(\bar{x})\}\).
If \(h\) is convex, \(\partial h\) is the subdifferential of convex analysis.
We say \(\bar{x}\) is Clarke stationary for \(h\) if \(0 \in \partial h(\bar{x})\) (a nonsmooth stationary point if \(\in \partial h(\bar{x})\) contains more than one vector)
Clarke stationarity is a necessary condition for local or global optimality.

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of
```

Crouzeix's
Conjecture
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio
Regularity
Simplest Case where
Crouzeix Ratio is
Nonsmooth
(\hat{c},\hat{A}) is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)
The General Case
(}\hat{c},\hat{A})\mathrm{ is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)
Is the Crouzeix Ratio
Globally Clarke
Regular?

```
\(\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad\) where \(\quad z_{\theta}=v_{\theta}^{*} A v_{\theta}\).

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]

■ the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]

■ the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

If the max of \(\left|p\left(z_{\theta}\right)\right|\) is attained by a unique point \(\hat{\theta}\), then all these are evaluated at \(\hat{\theta}\) and combined with the gradient of \(|\cdot|\) to obtain the gradient of the numerator.

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

If the max of \(\left|p\left(z_{\theta}\right)\right|\) is attained by a unique point \(\hat{\theta}\), then all these are evaluated at \(\hat{\theta}\) and combined with the gradient of \(|\cdot|\) to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over all maximizing \(\theta\) to get the subgradients of the numerator.

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

If the max of \(\left|p\left(z_{\theta}\right)\right|\) is attained by a unique point \(\hat{\theta}\), then all these are evaluated at \(\hat{\theta}\) and combined with the gradient of \(|\cdot|\) to obtain the gradient of the numerator.
Otherwise, need to take the convex hull of these gradients over all maximizing \(\theta\) to get the subgradients of the numerator.
For the denominator, combine:

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

For the numerator, we need the variational properties of
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

If the max of \(\left|p\left(z_{\theta}\right)\right|\) is attained by a unique point \(\hat{\theta}\), then all these are evaluated at \(\hat{\theta}\) and combined with the gradient of \(|\cdot|\) to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over all maximizing \(\theta\) to get the subgradients of the numerator.
For the denominator, combine:
- the gradient or subgradients of the 2-norm (maximum singular value) of a matrix (involves the singular vectors)

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]

■ the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

If the max of \(\left|p\left(z_{\theta}\right)\right|\) is attained by a unique point \(\hat{\theta}\), then all these are evaluated at \(\hat{\theta}\) and combined with the gradient of \(|\cdot|\) to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over all maximizing \(\theta\) to get the subgradients of the numerator.
For the denominator, combine:
- the gradient or subgradients of the 2-norm (maximum singular value) of a matrix (involves the singular vectors)
- the gradient of the matrix polynomial \(p(A)\) w.r.t. \(A\) (involves differentiating \(A^{k}\) w.r.t. \(A\), resulting in Kronecker products).

\section*{The Gradient or Subgradients of the Crouzeix Ratio}

For the numerator, we need the variational properties of

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?
\[
\max _{\theta \in[0,2 \pi]}\left|p\left(z_{\theta}\right)\right| \quad \text { where } \quad z_{\theta}=v_{\theta}^{*} A v_{\theta}
\]

■ the gradient of \(p\left(z_{\theta}\right)\) w.r.t. the coefficients of \(p\)
- the gradient of \(p\left(z_{\theta}\right)\) w.r.t. \(z_{\theta}\)
- the gradient of \(z_{\theta}(A)=v_{\theta}^{*} A v_{\theta}\) w.r.t. \(A\)

If the max of \(\left|p\left(z_{\theta}\right)\right|\) is attained by a unique point \(\hat{\theta}\), then all these are evaluated at \(\hat{\theta}\) and combined with the gradient of \(|\cdot|\) to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over all maximizing \(\theta\) to get the subgradients of the numerator.
For the denominator, combine:
- the gradient or subgradients of the 2-norm (maximum singular value) of a matrix (involves the singular vectors)
- the gradient of the matrix polynomial \(p(A)\) w.r.t. \(A\) (involves differentiating \(A^{k}\) w.r.t. \(A\), resulting in Kronecker products).

Finally, use the quotient rule.

\section*{Regularity}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio
Nonsmooth Analysis of the Crouzeix Ratio

\section*{The Clarke}

Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

\section*{Regularity}

Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

A directionally differentiable, locally Lipschitz function \(h\) is regular (in the sense of Clarke, 1975) near a point \(x\) when its directional derivative \(x \mapsto h^{\prime}(x ; d)\) is upper semicontinuous there for every fixed direction \(d\).

\section*{Regularity}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

\section*{Regularity}

Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

A directionally differentiable, locally Lipschitz function \(h\) is regular (in the sense of Clarke, 1975) near a point \(x\) when its directional derivative \(x \mapsto h^{\prime}(x ; d)\) is upper semicontinuous there for every fixed direction \(d\).

In this case \(0 \in \partial h(x)\) is equivalent to the first-order optimality condition \(h^{\prime}(x, d) \geq 0\) for all directions \(d\).

\section*{Regularity}

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

\section*{Regularity}

Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a
Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

A directionally differentiable, locally Lipschitz function \(h\) is regular (in the sense of Clarke, 1975) near a point \(x\) when its directional derivative \(x \mapsto h^{\prime}(x ; d)\) is upper semicontinuous there for every fixed direction \(d\).

In this case \(0 \in \partial h(x)\) is equivalent to the first-order optimality condition \(h^{\prime}(x, d) \geq 0\) for all directions \(d\).
- All convex functions are regular

\section*{Regularity}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

\section*{Regularity}

Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

A directionally differentiable, locally Lipschitz function \(h\) is regular (in the sense of Clarke, 1975) near a point \(x\) when its directional derivative \(x \mapsto h^{\prime}(x ; d)\) is upper semicontinuous there for every fixed direction \(d\).

In this case \(0 \in \partial h(x)\) is equivalent to the first-order optimality condition \(h^{\prime}(x, d) \geq 0\) for all directions \(d\).
- All convex functions are regular
- All continuously differentiable functions are regular

\section*{Regularity}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

\section*{Regularity}

Simplest Case where Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

A directionally differentiable, locally Lipschitz function \(h\) is regular (in the sense of Clarke, 1975) near a point \(x\) when its directional derivative \(x \mapsto h^{\prime}(x ; d)\) is upper semicontinuous there for every fixed direction \(d\).

In this case \(0 \in \partial h(x)\) is equivalent to the first-order optimality condition \(h^{\prime}(x, d) \geq 0\) for all directions \(d\).
- All convex functions are regular
- All continuously differentiable functions are regular
- Nonsmooth concave functions, e.g. \(h(x)=-|x|\), are not regular.

\section*{Simplest Case where Crouzeix Ratio is Nonsmooth}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

\section*{The Clarke}

Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case \((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Optimize over complex monic linear polynomials \(p(\zeta) \equiv c+\zeta\) and complex matrices with order \(n=2\). Let \(f(p, A) \equiv f(c, A)\), where now \(f: \mathbb{C} \times \mathbb{C}^{2 \times 2} \rightarrow \mathbb{R}\).

\section*{Simplest Case where Crouzeix Ratio is Nonsmooth}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio

Regularity
Simplest Case where
Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Optimize over complex monic linear polynomials \(p(\zeta) \equiv c+\zeta\) and complex matrices with order \(n=2\). Let \(f(p, A) \equiv f(c, A)\), where now \(f: \mathbb{C} \times \mathbb{C}^{2 \times 2} \rightarrow \mathbb{R}\).

Let \(\hat{c}=0(\hat{p}(\zeta)=\zeta)\) and \(\hat{A}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]\), so \(W(\hat{A})=\mathcal{D}\), the unit disk, and hence \(|p(\zeta)|\) is maximized everywhere on the unit circle, with \(f\) nonsmooth at \((\hat{c}, \hat{A})\) and \(f(\hat{c}, \hat{A})=1 / 2\).

\section*{Simplest Case where Crouzeix Ratio is Nonsmooth}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where
Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Optimize over complex monic linear polynomials \(p(\zeta) \equiv c+\zeta\) and complex matrices with order \(n=2\). Let \(f(p, A) \equiv f(c, A)\), where now \(f: \mathbb{C} \times \mathbb{C}^{2 \times 2} \rightarrow \mathbb{R}\).

Let \(\hat{c}=0(\hat{p}(\zeta)=\zeta)\) and \(\hat{A}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]\), so \(W(\hat{A})=\mathcal{D}\), the unit disk, and hence \(|p(\zeta)|\) is maximized everywhere on the unit circle, with \(f\) nonsmooth at \((\hat{c}, \hat{A})\) and \(f(\hat{c}, \hat{A})=1 / 2\).

Theorem 3. The Crouzeix ratio \(f\) is regular at \((\hat{c}, \hat{A})\), with
\[
\partial f(\hat{c}, \hat{A})=\operatorname{conv}_{\theta \in[0,2 \pi)}\left\{\left(\frac{1}{2} e^{-i \theta}, \frac{1}{4}\left[\begin{array}{cc}
e^{-i \theta} & 0 \\
e^{-2 i \theta} & e^{-i \theta}
\end{array}\right]\right)\right\}
\]

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio

Regularity
Simplest Case where Crouzeix Ratio is
Nonsmooth
```

(\hat{c},\hat{A}) is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)

```

The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

\section*{Corollary.}
\[
0 \in \partial f(\hat{c}, \hat{A})
\]

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
```

(\hat{c},\hat{A}) is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)

```

The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Corollary.
\[
0 \in \partial f(\hat{c}, \hat{A})
\]

Proof: the vectors inside the convex hull defined by \(\theta=0,2 \pi / 3\) and \(4 \pi / 3\) sum to zero.

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio

Regularity
Simplest Case where
Crouzeix Ratio is Nonsmooth
```

(\hat{c},\hat{A}) is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)

```

The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Corollary.
\[
0 \in \partial f(\hat{c}, \hat{A})
\]

Proof: the vectors inside the convex hull defined by \(\theta=0,2 \pi / 3\) and \(4 \pi / 3\) sum to zero.

Actually, we knew this must be true as Crouzeix's conjecture is known to hold for \(n=2\), and hence ( \(\hat{c}, \hat{A}\) ) is a global minimizer of \(f(\cdot, \cdot)\), but we can extend the result to larger values of \(m, n\), for which we don't know whether the conjecture holds.

\section*{The General Case}
\begin{tabular}{l} 
Crouzeix's \\
Conjecture \\
Nonsmooth \\
Optimization of \\
the Crouzeix Ratio \\
Nonsmooth Analysis \\
of the Crouzeix \\
Ratio \\
\hline The Clarke \\
Subdifferential \\
The Gradient or \\
Subgradients of the \\
Crouzeix Ratio \\
Regularity \\
Simplest Case where \\
Crouzeix Ratio is \\
Nonsmooth \\
\((\hat{c}, \hat{A})\) is a \\
Nonsmooth \\
Stataionary Point of \\
\(f(, \cdot \cdot)\) \\
\hline The General Case \\
\((\hat{c}, \hat{A})\) is a \\
Nonsmooth \\
Stationary Point of \\
\(f(,, \cdot)\) \\
It .he Crouzeix Ratio \\
Globally Clarke \\
Regular?
\end{tabular}

Optimize over complex polynomials \(p(\zeta) \equiv c_{0}+\cdots+c_{m} \zeta^{m}\) and complex matrices with order \(n\). Let \(f(p, A) \equiv f(c, A)\), where \(f: \mathbb{C}^{m+1} \times \mathbb{C}^{n \times n} \rightarrow \mathbb{R}\).

\section*{The General Case}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
( \(\hat{c}, \hat{A}\) ) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Optimize over complex polynomials \(p(\zeta) \equiv c_{0}+\cdots+c_{m} \zeta^{m}\) and complex matrices with order \(n\). Let \(f(p, A) \equiv f(c, A)\), where \(f: \mathbb{C}^{m+1} \times \mathbb{C}^{n \times n} \rightarrow \mathbb{R}\). Let \(\hat{c}=[0,0, \ldots, 1]\), corresponding to the polynomial \(z^{n-1}\), and \(\hat{A}\) equal the Crabb-Choi-Crouzeix matrix of order \(n\) so \(W(\hat{A})=\mathcal{D}\), the unit disk, and hence \(f(\hat{c}, \hat{A})=1 / 2\).

\section*{The General Case}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio

Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)

The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Optimize over complex polynomials \(p(\zeta) \equiv c_{0}+\cdots+c_{m} \zeta^{m}\) and complex matrices with order \(n\). Let \(f(p, A) \equiv f(c, A)\), where \(f: \mathbb{C}^{m+1} \times \mathbb{C}^{n \times n} \rightarrow \mathbb{R}\). Let \(\hat{c}=[0,0, \ldots, 1]\), corresponding to the polynomial \(z^{n-1}\), and \(\hat{A}\) equal the Crabb-Choi-Crouzeix matrix of order \(n\) so \(W(\hat{A})=\mathcal{D}\), the unit disk, and hence \(f(\hat{c}, \hat{A})=1 / 2\).
Theorem 4. The Crouzeix ratio on \((c, A) \in \mathbb{C}^{m+1} \times \mathbb{C}^{n \times n}\) is regular at \((\hat{c}, \hat{A})\) with
\[
\partial f(\hat{c}, \hat{A})=\operatorname{conv}_{\theta \in[0,2 \pi)}\left\{\left(y_{\theta}, Y_{\theta}\right)\right\}
\]
where
\[
y_{\theta}=\frac{1}{2}\left[z^{m}, z^{m-1}, \ldots, z, 0\right]^{T}
\]
and \(Y_{\theta} n \times n\) matrix
\(Y_{\theta}=\frac{1}{4}\left[\begin{array}{ccccccc}z & 0 & \sqrt{2} z^{-1} & \sqrt{2} z^{-2} & \cdots & \sqrt{2} z^{3-n} & z^{2-n} \\ \sqrt{2} z^{2} & 2 z & 0 & 2 z^{-1} & \cdots & 2 z^{4-n} & \sqrt{2} z^{3-n} \\ \vdots & & & & & & \vdots \\ \sqrt{2} z^{n-2} & 2 z^{n-3} & 2 z^{n-4} & 2 z^{n-5} & \cdots & 0 & \sqrt{2} z \\ \sqrt{2} z^{n-1} & 2 z^{n-2} & 2 z^{n-3} & 2 z^{n-4} & \cdots & 2 z & 0 \\ z^{n} & \sqrt{2} z^{n-1} & \sqrt{2} z^{n-2} & \sqrt{2} z^{n-3} & \cdots & \sqrt{2} z^{2} & z\end{array}\right]\)
with \(z=e^{-i \theta}\).

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is Nonsmooth \((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)
The General Case
```

(}\hat{c},\hat{A})\mathrm{ is a
Nonsmooth
Stationary Point of
f(\cdot,\cdot)

```

Is the Crouzeix Ratio Globally Clarke Regular?

\section*{Corollary.}
\[
0 \in \partial f(\hat{c}, \hat{A})
\]
so, for any \(n\), the pair \((\hat{c}, \hat{A})\) is a nonsmooth stationary point of \(f\).

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
```

(}\hat{c},\hat{A}\mathrm{) is a
Nonsmooth
Stationary Point of

```


Is the Crouzeix Ratio Globally Clarke
Regular?

\section*{Corollary.}
\[
0 \in \partial f(\hat{c}, \hat{A})
\]
so, for any \(n\), the pair \((\hat{c}, \hat{A})\) is a nonsmooth stationary point of \(f\).

Proof. The convex combination
\[
\frac{1}{n+1} \sum_{k=0}^{n}\left(y_{2 k \pi /(n+1)}, Y_{2 k \pi /(n+1)}\right)
\]
is zero.

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or Subgradients of the Crouzeix Ratio

Regularity
Simplest Case where Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case

\section*{( \(\hat{c}, \hat{A}\) ) is a}

Nonsmooth
Stationary Point of


Is the Crouzeix Ratio Globally Clarke
Regular?

\section*{Corollary.}
\[
0 \in \partial f(\hat{c}, \hat{A})
\]
so, for any \(n\), the pair \((\hat{c}, \hat{A})\) is a nonsmooth stationary point of \(f\).
Proof. The convex combination
\[
\frac{1}{n+1} \sum_{k=0}^{n}\left(y_{2 k \pi /(n+1)}, Y_{2 k \pi /(n+1)}\right)
\]
is zero.
This is a necessary condition for \((\hat{c}, \hat{A})\) to be a local (or global) minimizer of \(f\) on \(\mathbb{R}^{m+1} \times \mathbb{R}^{n \times n}\). This is a new result for \(n>2\).

\section*{\((\hat{c}, \hat{A})\) is a Nonsmooth Stationary Point of \(f(\cdot, \cdot)\)}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio

Regularity
Simplest Case where Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case

\section*{( \(\hat{c}, \hat{A}\) ) is a}

Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio Globally Clarke
Regular?

Corollary.
\[
0 \in \partial f(\hat{c}, \hat{A})
\]
so, for any \(n\), the pair \((\hat{c}, \hat{A})\) is a nonsmooth stationary point of \(f\).
Proof. The convex combination
\[
\frac{1}{n+1} \sum_{k=0}^{n}\left(y_{2 k \pi /(n+1)}, Y_{2 k \pi /(n+1)}\right)
\]
is zero.
This is a necessary condition for \((\hat{c}, \hat{A})\) to be a local (or global) minimizer of \(f\) on \(\mathbb{R}^{m+1} \times \mathbb{R}^{n \times n}\). This is a new result for \(n>2\).
And by regularity, it implies that the directional derivative \(f^{\prime}(\cdot, d) \geq 0\) for all directions \(d\).

\section*{Is the Crouzeix Ratio Globally Clarke Regular?}
\begin{tabular}{l} 
Crouzeix's \\
Conjecture \\
Nonsmooth \\
Optimization of \\
the Crouzeix Ratio \\
Nonsmooth Analysis \\
of the Crouzeix \\
Ratio \\
\hline The Clarke \\
Subdifferential \\
The Gradient or \\
Subgradients of the \\
Crouzeix Ratio \\
Regularity \\
Simplest Case where \\
Crouzeix Ratio is \\
Nonsmooth \\
\((\hat{c}, \hat{A})\) is a \\
Nonsmooth \\
Stationary Point of \\
\(f(\cdot, \cdot)\) \\
The General Case \\
\((\hat{c}, \hat{A})\) is a \\
Nonsmooth \\
Stationary Point of \\
\(f(\cdot \cdot \cdot)\) \\
Is the Crouzeix Ratio \\
Globally Clarke \\
Regular?
\end{tabular}

\section*{Is the Crouzeix Ratio Globally Clarke Regular?}

No. Let \(\tilde{p}(\zeta)=\zeta\) and

\section*{Crouzeix's}

Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the Crouzeix Ratio
Regularity
Simplest Case where
Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
Is the Crouzeix Ratio
Globally Clarke
Regular?
\[
\tilde{A}=\left[\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right]
\]
for which \(W(\tilde{A})\) is a disk and \(f(\tilde{p}, \tilde{A})=1 / \sqrt{2}\).
The Crouzeix ratio \(f\) is not regular at \((\tilde{p}, \tilde{A})\).

\section*{Is the Crouzeix Ratio Globally Clarke Regular?}

No. Let \(\tilde{p}(\zeta)=\zeta\) and

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio
Regularity
Simplest Case where
Crouzeix Ratio is
Nonsmooth
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)
The General Case
\((\hat{c}, \hat{A})\) is a
Nonsmooth
Stationary Point of \(f(\cdot, \cdot)\)

\author{
Is the Crouzeix Ratio \\ Globally Clarke
}

Regular?
\[
\tilde{A}=\left[\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right]
\]
for which \(W(\tilde{A})\) is a disk and \(f(\tilde{p}, \tilde{A})=1 / \sqrt{2}\).
The Crouzeix ratio \(f\) is not regular at \((\tilde{p}, \tilde{A})\).


Plot of the denominator \(\beta\), the numerator \(\tau\) and the Crouzeix ratio \(f\) evaluated at ( \(\tilde{p}, \tilde{A}+t \tilde{A}^{2}\) ), \(t \in[-2,2]\).
```

Crouzeix's
Conjecture
Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmooth Analysis
of the Crouzeix
Ratio

```

Concluding Remarks
Summary
Our Papers
Best Wishes to Don Using Chebfun
Or, More Circularly

\title{
Concluding Remarks
}

\section*{Summary}

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

\section*{Summary}

\section*{Our Papers}

Best Wishes to Don Using Chebfun Or, More Circularly

Minimizing the Crouzeix ratio \(f\) over \(p\) and \(A\), BFGS almost always converged either to nonsmooth stationary values of 0.5 associated with the Crabb-Choi-Crouzeix matrix (with field of values a disk), or smooth stationary values of 1 (with "ice cream cone" fields of values).

\section*{Summary}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

\section*{Summary}

Our Papers
Best Wishes to Don Using Chebfun Or, More Circularly

Minimizing the Crouzeix ratio \(f\) over \(p\) and \(A\), BFGS almost always converged either to nonsmooth stationary values of 0.5 associated with the Crabb-Choi-Crouzeix matrix (with field of values a disk), or smooth stationary values of 1 (with "ice cream cone" fields of values).
Both Chebfun and BFGS perform remarkably reliably despite nonsmoothness that can occur either in the boundary of the field of values (w.r.t. the complex plane) or in the Crouzeix ratio \(f\) (w.r.t the polynomial-matrix space).

\section*{Summary}

Crouzeix's
Conjecture
Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

\section*{Summary}

Our Papers
Best Wishes to Don
Using Chebfun
Or, More Circularly

Minimizing the Crouzeix ratio \(f\) over \(p\) and \(A\), BFGS almost always converged either to nonsmooth stationary values of 0.5 associated with the Crabb-Choi-Crouzeix matrix (with field of values a disk), or smooth stationary values of 1 (with "ice cream cone" fields of values).
Both Chebfun and BFGS perform remarkably reliably despite nonsmoothness that can occur either in the boundary of the field of values (w.r.t. the complex plane) or in the Crouzeix ratio \(f\) (w.r.t the polynomial-matrix space).

Using nonsmooth variational analysis, we proved regularity and Clarke stationarity of the Crouzeix ratio, with value 0.5 , at pairs \((\hat{p}, \hat{A})\), where \(\hat{p}\) is the monomial \(\zeta^{n-1}\) and \(\hat{A}\) is aCrabb-Choi-Crouzeix matrix of order \(n\), a necessary condition for local or global optimality.

Crouzeix's Conjecture

Nonsmooth

\section*{Optimization of} the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

\section*{Summary}

Our Papers
Best Wishes to Don
Using Chebfun
Or, More Circularly

\section*{Summary}

Minimizing the Crouzeix ratio \(f\) over \(p\) and \(A\), BFGS almost always converged either to nonsmooth stationary values of 0.5 associated with the Crabb-Choi-Crouzeix matrix (with field of values a disk), or smooth stationary values of 1 (with "ice cream cone" fields of values).
Both Chebfun and BFGS perform remarkably reliably despite nonsmoothness that can occur either in the boundary of the field of values (w.r.t. the complex plane) or in the Crouzeix ratio \(f\) (w.r.t the polynomial-matrix space).

Using nonsmooth variational analysis, we proved regularity and Clarke stationarity of the Crouzeix ratio, with value 0.5 , at pairs \((\hat{p}, \hat{A})\), where \(\hat{p}\) is the monomial \(\zeta^{n-1}\) and \(\hat{A}\) is aCrabb-Choi-Crouzeix matrix of order \(n\), a necessary condition for local or global optimality.
We also found ( \(\tilde{p}, \tilde{A}\) ) for which the Crouzeix ratio is not regular.

Crouzeix's Conjecture

Nonsmooth Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks

\section*{Summary}

Our Papers
Best Wishes to Don
Using Chebfun
Or, More Circularly

\section*{Summary}

Minimizing the Crouzeix ratio \(f\) over \(p\) and \(A\), BFGS almost always converged either to nonsmooth stationary values of 0.5 associated with the Crabb-Choi-Crouzeix matrix (with field of values a disk), or smooth stationary values of 1 (with "ice cream cone" fields of values).
Both Chebfun and BFGS perform remarkably reliably despite nonsmoothness that can occur either in the boundary of the field of values (w.r.t. the complex plane) or in the Crouzeix ratio \(f\) (w.r.t the polynomial-matrix space).

Using nonsmooth variational analysis, we proved regularity and Clarke stationarity of the Crouzeix ratio, with value 0.5 , at pairs \((\hat{p}, \hat{A})\), where \(\hat{p}\) is the monomial \(\zeta^{n-1}\) and \(\hat{A}\) is aCrabb-Choi-Crouzeix matrix of order \(n\), a necessary condition for local or global optimality.
We also found ( \(\tilde{p}, \tilde{A}\) ) for which the Crouzeix ratio is not regular.
The results strongly support Crouzeix's conjecture: the globally minimal value of the Crouzeix ratio \(f(p, A)\) is 0.5 .

\section*{Our Papers}

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks
Summary
Our Papers
Best Wishes to Don Using Chebfun Or, More Circularly
A. Greenbaum and M.L. Overton Investigation of Crouzeix's Conjecture via Nonsmooth Optimization
Linear Alg. Appl., 2017
A. Greenbaum, A.S. Lewis and M.L. Overton

Variational Analysis of the Crouzeix Ratio
Math. Programming, 2016
A.S. Lewis and M.L. Overton

Nonsmooth Optimization via Quasi-Newton Methods
Math. Programming, 2013

\section*{A Chebfun Message to Don}

Crouzeix's Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks
Summary
Our Papers
Best Wishes to Don
Using Chebfun
Or, More Circularly
\% define and plot a chebfun with 338 pieces
s=scribble('Felicitaciones y mis mejores deseos para Don'); plot(s,'b','LineWidth',2), axis equal


\section*{Or, More Circularly}

\section*{Crouzeix's} Conjecture

Nonsmooth
Optimization of the Crouzeix Ratio

Nonsmooth Analysis of the Crouzeix Ratio

Concluding Remarks Summary
Our Papers
Best Wishes to Don Using Chebfun

\section*{Or, More Circularly}
plot (exp(3i*s),'m','LineWidth',2), axis equal
```

