
1 / 39

Investigation of Crouzeix’s Conjecture
via Nonsmooth Optimization

Michael L. Overton
Courant Institute of Mathematical Sciences

New York University

Joint work with
Anne Greenbaum, University of Washington and Adrian Lewis, Cornell

Workshop in Honor of Don Goldfarb

Huatulco, Jan 2018



Crouzeix’s Conjecture

Crouzeix’s
Conjecture

The Field of Values

Examples

Example, continued

Crouzeix’s
Conjecture

Crouzeix and
Palencia’s Theorems

Special Cases

Computing the Field
of Values
Johnson’s Algorithm
Finds the Extreme
Points

Chebfun

Example, continued

The Crouzeix Ratio
Computing the
Crouzeix Ratio

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio

Concluding Remarks

2 / 39



The Field of Values

Crouzeix’s
Conjecture

The Field of Values

Examples

Example, continued

Crouzeix’s
Conjecture

Crouzeix and
Palencia’s Theorems

Special Cases

Computing the Field
of Values
Johnson’s Algorithm
Finds the Extreme
Points

Chebfun

Example, continued

The Crouzeix Ratio
Computing the
Crouzeix Ratio

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio

Concluding Remarks

3 / 39

For A ∈ C
n×n, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.
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For A ∈ C
n×n, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.

Clearly
W (A) ⊇ σ(A)

where σ denotes spectrum.
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For A ∈ C
n×n, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.

Clearly
W (A) ⊇ σ(A)

where σ denotes spectrum.

If AA∗ = A∗A, then

W (A) = conv σ(A).
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For A ∈ C
n×n, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖2 = 1} ⊂ C.

Clearly
W (A) ⊇ σ(A)

where σ denotes spectrum.

If AA∗ = A∗A, then

W (A) = conv σ(A).

Toeplitz-Haussdorf Theorem: W (A) is convex for all A ∈ C
n×n.
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Let

J =

[

0 1
0 0

]

: W (J) is a disk of radius 0.5
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Let

J =

[

0 1
0 0

]

: W (J) is a disk of radius 0.5

B =

[

1 2
−3 4

]

: W (B) is an “elliptical disk”
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Let

J =

[

0 1
0 0

]

: W (J) is a disk of radius 0.5

B =

[

1 2
−3 4

]

: W (B) is an “elliptical disk”

D =

[

5 + i 0
0 5− i

]

: W (D) is a line segment
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Let

J =

[

0 1
0 0

]

: W (J) is a disk of radius 0.5

B =

[

1 2
−3 4

]

: W (B) is an “elliptical disk”

D =

[

5 + i 0
0 5− i

]

: W (D) is a line segment

A = diag(J,B,D) : W (A) = conv (W (J),W (B),W (D))
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Let p = p(ζ) be a polynomial and let A be a square matrix.
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Let p = p(ζ) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).
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Let p = p(ζ) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).
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Let p = p(ζ) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).

The norm on the right-hand side is the maximum of |p(ζ)|
over ζ ∈ W (A). By the maximum modulus principle, this must
be attained on bd W (A), the boundary of W (A).
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Let p = p(ζ) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).

The norm on the right-hand side is the maximum of |p(ζ)|
over ζ ∈ W (A). By the maximum modulus principle, this must
be attained on bd W (A), the boundary of W (A).

If p = χ(A), the characteristic polynomial (or minimal
polynomial) of A, then ‖p(A)‖2 = 0 by Cayley-Hamilton, but
‖p‖W (A) = 0 only if A = λI for λ ∈ C, so that W (A) = {λ}.
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Let p = p(ζ) be a polynomial and let A be a square matrix.

M. Crouzeix conjectured in “Bounds for analytical functions of
matrices”, Int. Eq. Oper. Theory 48 (2004), that for all p and A,

‖p(A)‖2 ≤ 2 ‖p‖W (A).

The left-hand side is the 2-norm (spectral norm, maximum
singular value) of the matrix p(A).

The norm on the right-hand side is the maximum of |p(ζ)|
over ζ ∈ W (A). By the maximum modulus principle, this must
be attained on bd W (A), the boundary of W (A).

If p = χ(A), the characteristic polynomial (or minimal
polynomial) of A, then ‖p(A)‖2 = 0 by Cayley-Hamilton, but
‖p‖W (A) = 0 only if A = λI for λ ∈ C, so that W (A) = {λ}.
If p(ζ) = ζ and A is a 2× 2 Jordan block with 0 on the diagonal,
then ‖p(A)‖2 = 1 and W (A) is a disk centered at 0 with radius
0.5, so the left and right-hand sides are equal.
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Crouzeix’s theorem (2008)

‖p(A)‖2 ≤ 11.08 ‖p‖W (A)

i.e., the conjecture is true if we replace 2 by 11.08.
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Crouzeix’s theorem (2008)

‖p(A)‖2 ≤ 11.08 ‖p‖W (A)

i.e., the conjecture is true if we replace 2 by 11.08.

Palencia’s theorem (2016)

‖p(A)‖2 ≤
(

1 +
√
2
)

‖p‖W (A)

i.e., the conjecture is true if we replace 2 by 1 +
√
2

Published in SIMAX, May 2017, with Crouzeix.
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk

■ p(ζ) = ζm:
‖Am‖ ≤ 2r(Am) ≤ 2r(A)m = 2maxζ∈W (A) |ζm|
(power inequality, Berger 1965, Pearcy 1966)
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk

■ p(ζ) = ζm:
‖Am‖ ≤ 2r(Am) ≤ 2r(A)m = 2maxζ∈W (A) |ζm|
(power inequality, Berger 1965, Pearcy 1966)

■ W (A) = D :
• if ‖B‖ ≤ 1, then ‖p(B)‖ ≤ supζ∈D |p(ζ)| (von Neumann, 1951)
• if r(A) ≤ 1, then A = TBT−1 with ‖B‖ ≤ 1 and ‖T‖‖T−1‖ ≤ 2
(Okubo and Ando, 1975), so ‖p(A)‖ ≤ 2‖p(B)‖
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk

■ p(ζ) = ζm:
‖Am‖ ≤ 2r(Am) ≤ 2r(A)m = 2maxζ∈W (A) |ζm|
(power inequality, Berger 1965, Pearcy 1966)

■ W (A) = D :
• if ‖B‖ ≤ 1, then ‖p(B)‖ ≤ supζ∈D |p(ζ)| (von Neumann, 1951)
• if r(A) ≤ 1, then A = TBT−1 with ‖B‖ ≤ 1 and ‖T‖‖T−1‖ ≤ 2
(Okubo and Ando, 1975), so ‖p(A)‖ ≤ 2‖p(B)‖

■ n = 2 (Crouzeix, 2004), and, more generally, the minimum
polynomial of A has degree 2 (follows from Tso and Wu, 1999)
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk

■ p(ζ) = ζm:
‖Am‖ ≤ 2r(Am) ≤ 2r(A)m = 2maxζ∈W (A) |ζm|
(power inequality, Berger 1965, Pearcy 1966)

■ W (A) = D :
• if ‖B‖ ≤ 1, then ‖p(B)‖ ≤ supζ∈D |p(ζ)| (von Neumann, 1951)
• if r(A) ≤ 1, then A = TBT−1 with ‖B‖ ≤ 1 and ‖T‖‖T−1‖ ≤ 2
(Okubo and Ando, 1975), so ‖p(A)‖ ≤ 2‖p(B)‖

■ n = 2 (Crouzeix, 2004), and, more generally, the minimum
polynomial of A has degree 2 (follows from Tso and Wu, 1999)

■ n = 3 and A3 = 0 (Crouzeix, 2013)
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk
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‖Am‖ ≤ 2r(Am) ≤ 2r(A)m = 2maxζ∈W (A) |ζm|
(power inequality, Berger 1965, Pearcy 1966)
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(Okubo and Ando, 1975), so ‖p(A)‖ ≤ 2‖p(B)‖

■ n = 2 (Crouzeix, 2004), and, more generally, the minimum
polynomial of A has degree 2 (follows from Tso and Wu, 1999)

■ n = 3 and A3 = 0 (Crouzeix, 2013)
■ A is an upper Jordan block with a perturbation in the bottom left

corner (Choi and Greenbaum, 2012) or any diagonal scaling of such
A (Choi, 2013)
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polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk
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■ n = 2 (Crouzeix, 2004), and, more generally, the minimum
polynomial of A has degree 2 (follows from Tso and Wu, 1999)

■ n = 3 and A3 = 0 (Crouzeix, 2013)
■ A is an upper Jordan block with a perturbation in the bottom left

corner (Choi and Greenbaum, 2012) or any diagonal scaling of such
A (Choi, 2013)

■ A = TDT−1 with D diagonal and ‖T‖‖T−1‖ ≤ 2 (easy)
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The conjecture is known to hold for certain restricted classes of
polynomials p ∈ Pm or matrices A ∈ Cn×n.
Let r(A) = maxζ∈W (A) |ζ| (numerical radius) and D = open unit disk

■ p(ζ) = ζm:
‖Am‖ ≤ 2r(Am) ≤ 2r(A)m = 2maxζ∈W (A) |ζm|
(power inequality, Berger 1965, Pearcy 1966)

■ W (A) = D :
• if ‖B‖ ≤ 1, then ‖p(B)‖ ≤ supζ∈D |p(ζ)| (von Neumann, 1951)
• if r(A) ≤ 1, then A = TBT−1 with ‖B‖ ≤ 1 and ‖T‖‖T−1‖ ≤ 2
(Okubo and Ando, 1975), so ‖p(A)‖ ≤ 2‖p(B)‖

■ n = 2 (Crouzeix, 2004), and, more generally, the minimum
polynomial of A has degree 2 (follows from Tso and Wu, 1999)

■ n = 3 and A3 = 0 (Crouzeix, 2013)
■ A is an upper Jordan block with a perturbation in the bottom left

corner (Choi and Greenbaum, 2012) or any diagonal scaling of such
A (Choi, 2013)

■ A = TDT−1 with D diagonal and ‖T‖‖T−1‖ ≤ 2 (easy)
■ AA∗ = A∗A (then the constant 2 can be improved to 1).
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The extreme points of a convex set are those that cannot be
expressed as a convex combination of two other points in the set.
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The extreme points of a convex set are those that cannot be
expressed as a convex combination of two other points in the set.

Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed
that the extreme points of W (A) can be characterized as

ext W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)}

where vθ is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗

)

.
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The extreme points of a convex set are those that cannot be
expressed as a convex combination of two other points in the set.

Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed
that the extreme points of W (A) can be characterized as

ext W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)}

where vθ is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗

)

.

The proof uses a supporting hyperplane argument.
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The extreme points of a convex set are those that cannot be
expressed as a convex combination of two other points in the set.

Based on R. Kippenhahn (1951), C.R. Johnson (1978) observed
that the extreme points of W (A) can be characterized as

ext W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)}

where vθ is a normalized eigenvector corresponding to the largest
eigenvalue of the Hermitian matrix

Hθ =
1

2

(

eiθA+ e−iθA∗

)

.

The proof uses a supporting hyperplane argument.

Thus, we can compute as many extreme points as we like.
Continuing with the previous example...
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But how can we do this accurately, automatically and efficiently?



Chebfun

Crouzeix’s
Conjecture

The Field of Values

Examples

Example, continued

Crouzeix’s
Conjecture

Crouzeix and
Palencia’s Theorems

Special Cases

Computing the Field
of Values
Johnson’s Algorithm
Finds the Extreme
Points

Chebfun

Example, continued

The Crouzeix Ratio
Computing the
Crouzeix Ratio

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio

Concluding Remarks

11 / 39

Chebfun (Trefethen et al, 2004–present) represents real- or
complex-valued functions on real intervals to machine precision
accuracy using Chebyshev interpolation.
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Chebfun (Trefethen et al, 2004–present) represents real- or
complex-valued functions on real intervals to machine precision
accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined
automatically. For example, representing sin(πx) on [−1, 1] to
machine precision requires degree 19.
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Chebfun (Trefethen et al, 2004–present) represents real- or
complex-valued functions on real intervals to machine precision
accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined
automatically. For example, representing sin(πx) on [−1, 1] to
machine precision requires degree 19.

Most Matlab functions are overloaded to work with chebfun’s.
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Chebfun (Trefethen et al, 2004–present) represents real- or
complex-valued functions on real intervals to machine precision
accuracy using Chebyshev interpolation.

The necessary degree of the polynomial is determined
automatically. For example, representing sin(πx) on [−1, 1] to
machine precision requires degree 19.

Most Matlab functions are overloaded to work with chebfun’s.

Applying Chebfun’s fov to compute the boundary of W (A) for
the previous example...
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The small circles are the interpolation points generated by Chebfun.
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n.
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n. The Crouzeix ratio f is

■ A mapping from C
m+1 × C

n×n to R (associating
polynomials p ∈ Pm with their vectors of coefficients
c ∈ C

m+1 using the monomial basis)
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n. The Crouzeix ratio f is

■ A mapping from C
m+1 × C

n×n to R (associating
polynomials p ∈ Pm with their vectors of coefficients
c ∈ C

m+1 using the monomial basis)
■ Not convex



The Crouzeix Ratio

Crouzeix’s
Conjecture

The Field of Values

Examples

Example, continued

Crouzeix’s
Conjecture

Crouzeix and
Palencia’s Theorems

Special Cases

Computing the Field
of Values
Johnson’s Algorithm
Finds the Extreme
Points

Chebfun

Example, continued

The Crouzeix Ratio
Computing the
Crouzeix Ratio

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio

Concluding Remarks

13 / 39

Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n. The Crouzeix ratio f is

■ A mapping from C
m+1 × C

n×n to R (associating
polynomials p ∈ Pm with their vectors of coefficients
c ∈ C

m+1 using the monomial basis)
■ Not convex
■ Not defined if p(A) = 0
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n. The Crouzeix ratio f is

■ A mapping from C
m+1 × C

n×n to R (associating
polynomials p ∈ Pm with their vectors of coefficients
c ∈ C

m+1 using the monomial basis)
■ Not convex
■ Not defined if p(A) = 0
■ Lipschitz continuous at all other points, but not necessarily

differentiable
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Define the Crouzeix ratio

f(p,A) =
‖p‖W (A)

‖p(A)‖2
.

The conjecture states that f(p,A) is bounded below by 0.5
independently of the polynomial degree m and the matrix
order n. The Crouzeix ratio f is

■ A mapping from C
m+1 × C

n×n to R (associating
polynomials p ∈ Pm with their vectors of coefficients
c ∈ C

m+1 using the monomial basis)
■ Not convex
■ Not defined if p(A) = 0
■ Lipschitz continuous at all other points, but not necessarily

differentiable
■ Semialgebraic (its graph is a finite union of sets, each of

which is defined by a finite system of polynomial inequalities)
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Numerator: use Chebfun’s fov (modified to return any line
segments in the boundary) combined with its overloaded polyval
and norm(·,inf).
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Numerator: use Chebfun’s fov (modified to return any line
segments in the boundary) combined with its overloaded polyval
and norm(·,inf).
Denominator: use Matlab’s standard polyvalm and norm(·,2).
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Numerator: use Chebfun’s fov (modified to return any line
segments in the boundary) combined with its overloaded polyval
and norm(·,inf).
Denominator: use Matlab’s standard polyvalm and norm(·,2).
The main cost is the construction of the chebfun defining the
field of values.
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There are three possible sources of nonsmoothness in the
Crouzeix ratio f



Nonsmoothness of the Crouzeix Ratio

Crouzeix’s
Conjecture

Nonsmooth
Optimization of
the Crouzeix Ratio
Nonsmoothness of
the Crouzeix Ratio

BFGS

Experiments

Optimizing over A
(order n) and p

(deg ≤ n − 1)

Final Fields of
Values for Lowest
Computed f

Optimizing over
both p and A: Final
f(p,A)

Is the Ratio 0.5
Attained?
Final Fields of
Values for f Closest
to 1
Why is the Crouzeix
Ratio One?
Results for Larger
Dimension n and
Degree n − 1

Nonsmooth Analysis
of the Crouzeix
Ratio

Concluding Remarks
16 / 39

There are three possible sources of nonsmoothness in the
Crouzeix ratio f

■ When the max value of |p(ζ)| on bd W (A) is attained at
more than one point ζ (the most important, as this
frequently occurs at apparent minimizers)
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There are three possible sources of nonsmoothness in the
Crouzeix ratio f

■ When the max value of |p(ζ)| on bd W (A) is attained at
more than one point ζ (the most important, as this
frequently occurs at apparent minimizers)

■ Even if such ζ is unique, when the normalized vector v for
which v∗Av = ζ is not unique up to a scalar, implying that
the maximum eigenvalue of the corresponding Hθ matrix has
multiplicity two or more (does not seem to occur at
minimizers)
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There are three possible sources of nonsmoothness in the
Crouzeix ratio f

■ When the max value of |p(ζ)| on bd W (A) is attained at
more than one point ζ (the most important, as this
frequently occurs at apparent minimizers)

■ Even if such ζ is unique, when the normalized vector v for
which v∗Av = ζ is not unique up to a scalar, implying that
the maximum eigenvalue of the corresponding Hθ matrix has
multiplicity two or more (does not seem to occur at
minimizers)

■ When the maximum singular value of p(A) has multiplicity
two or more (does not seem to occur at minimizers)
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There are three possible sources of nonsmoothness in the
Crouzeix ratio f

■ When the max value of |p(ζ)| on bd W (A) is attained at
more than one point ζ (the most important, as this
frequently occurs at apparent minimizers)

■ Even if such ζ is unique, when the normalized vector v for
which v∗Av = ζ is not unique up to a scalar, implying that
the maximum eigenvalue of the corresponding Hθ matrix has
multiplicity two or more (does not seem to occur at
minimizers)

■ When the maximum singular value of p(A) has multiplicity
two or more (does not seem to occur at minimizers)

In all of these cases the gradient of f is not defined.
But in practice, none of these cases ever occur, except the first
one in the limit.
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BFGS (Broyden, Fletcher, Goldfarb and Shanno, all
independently in 1970), is the standard quasi-Newton algorithm
for minimizing smooth (continuously differentiable) functions.
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BFGS (Broyden, Fletcher, Goldfarb and Shanno, all
independently in 1970), is the standard quasi-Newton algorithm
for minimizing smooth (continuously differentiable) functions.

It works by building an approximation to the Hessian of the
function using gradient differences, and has a well known
superlinear convergence property under a regularity condition.
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independently in 1970), is the standard quasi-Newton algorithm
for minimizing smooth (continuously differentiable) functions.

It works by building an approximation to the Hessian of the
function using gradient differences, and has a well known
superlinear convergence property under a regularity condition.

Although its global convergence theory is limited to the convex
case (Powell, 1976), it generally finds local minimizers efficiently
in the nonconvex case too, although there are pathological
counterexamples.
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BFGS (Broyden, Fletcher, Goldfarb and Shanno, all
independently in 1970), is the standard quasi-Newton algorithm
for minimizing smooth (continuously differentiable) functions.

It works by building an approximation to the Hessian of the
function using gradient differences, and has a well known
superlinear convergence property under a regularity condition.

Although its global convergence theory is limited to the convex
case (Powell, 1976), it generally finds local minimizers efficiently
in the nonconvex case too, although there are pathological
counterexamples.

Remarkably, this property seems to extend to nonsmooth
functions too, with a linear rate of local convergence, although
the convergence theory is extremely limited (Lewis and Overton,
2013). It builds a very ill conditioned “Hessian” approximation,
with “infinitely large” curvature in some directions and finite
curvature in other directions.
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of deg ≤ n− 1,
running BFGS for a maximum of 1000 iterations from each of
100 randomly generated starting points.
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of deg ≤ n− 1,
running BFGS for a maximum of 1000 iterations from each of
100 randomly generated starting points.

We restrict p to have real coefficients and A to be real, in
Hessenberg form (all but one superdiagonal is zero).
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of deg ≤ n− 1,
running BFGS for a maximum of 1000 iterations from each of
100 randomly generated starting points.

We restrict p to have real coefficients and A to be real, in
Hessenberg form (all but one superdiagonal is zero).

We have obtained similar results for p with complex coefficients
and complex A (then can take A to be triangular).
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We have run many experiments searching for local minimizers of
the Crouzeix ratio using BFGS.

For fixed n, optimize over A with order n and p of deg ≤ n− 1,
running BFGS for a maximum of 1000 iterations from each of
100 randomly generated starting points.

We restrict p to have real coefficients and A to be real, in
Hessenberg form (all but one superdiagonal is zero).

We have obtained similar results for p with complex coefficients
and complex A (then can take A to be triangular).

We have also obtained similar results using Gradient Sampling
(Burke, Lewis and Overton, 2005; Kiwiel 2007) instead of BFGS.
This method has a very satisfactory convergence theory, but it is
much slower.
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found starting from 100 randomly generated initial points.
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Suggests that only locally optimal values of f are 0.5 and 1.
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Blue asterisks are eigenvalues of final computed A
Small red circles are roots of final computed p
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n = 3, 4, 5: two eigenvalues of A and one root of p nearly coincident
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n f

3 0.500000000000000
4 0.500000000000000
5 0.500000000000014
6 0.500000017156953
7 0.500000746246673
8 0.500000206563813

f is the lowest value f(p,A) found over 100 runs
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Independently, Crabb, Choi and Crouzeix showed that the ratio
0.5 is attained if p(ζ) = ζn−1 and A is the n by n matrix

[
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]
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for which W (A) is the unit disk.
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Independently, Crabb, Choi and Crouzeix showed that the ratio
0.5 is attained if p(ζ) = ζn−1 and A is the n by n matrix

[

0 2
0 0

]

if n = 2, or





















0
√
2
· 1

· ·
· ·

· 1

·
√
2
0





















if n > 2

for which W (A) is the unit disk.

Our computed minimizers are nearly equivalent to such pairs (p, A)
(with A changed via unitary similarity transformations, multiplication
by a scalar, by shifting the root of p and eigenvalue of A by the same
scalar, and by appending another diagonal block whose field of values
is contained in that of the first block)
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Independently, Crabb, Choi and Crouzeix showed that the ratio
0.5 is attained if p(ζ) = ζn−1 and A is the n by n matrix
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for which W (A) is the unit disk.

Our computed minimizers are nearly equivalent to such pairs (p, A)
(with A changed via unitary similarity transformations, multiplication
by a scalar, by shifting the root of p and eigenvalue of A by the same
scalar, and by appending another diagonal block whose field of values
is contained in that of the first block)

Conjecture: these are the only cases where f(p,A) = 0.5.
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Independently, Crabb, Choi and Crouzeix showed that the ratio
0.5 is attained if p(ζ) = ζn−1 and A is the n by n matrix
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for which W (A) is the unit disk.

Our computed minimizers are nearly equivalent to such pairs (p, A)
(with A changed via unitary similarity transformations, multiplication
by a scalar, by shifting the root of p and eigenvalue of A by the same
scalar, and by appending another diagonal block whose field of values
is contained in that of the first block)

Conjecture: these are the only cases where f(p,A) = 0.5.

f is nonsmooth at these pairs (p,A) because |p| is constant on the
boundary of W (A).
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So, ‖p‖W (A) = |p(λ)| = ‖p(A)‖2 and hence f(p,A) = 1.

Furthermore, f is differentiable at this pair (p,A), with zero gradient.
Thus, such (p,A) is a smooth stationary point of f .

This doesn’t imply that it is a local minimizer, but the numerical
results make this evident.
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Because for this computed local minimizer, A is nearly unitarily similar
to a block diagonal matrix

diag(λ,B), λ ∈ R

so
W (A) ≈ conv(λ,W (B))

with λ active and the block B inactive, that is:

■ ‖p‖W (A) is attained only at λ
■ |p(λ)| > ‖p(B)‖2
So, ‖p‖W (A) = |p(λ)| = ‖p(A)‖2 and hence f(p,A) = 1.

Furthermore, f is differentiable at this pair (p,A), with zero gradient.
Thus, such (p,A) is a smooth stationary point of f .

This doesn’t imply that it is a local minimizer, but the numerical
results make this evident.

As n increases, ice cream cone stationary points become increasingly
common and it becomes very difficult to reduce f below 1.
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There are other locally optimal values of f between 0.5 and 1 !
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Assume h : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : h is differentiable at x}.



The Clarke Subdifferential

Crouzeix’s
Conjecture

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

Regularity

Simplest Case where
Crouzeix Ratio is
Nonsmooth
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Assume h : Rn → R is locally Lipschitz, and
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n : h is differentiable at x}.
Rademacher’s Theorem: Rn\D has measure zero.
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∇h(x)
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lim
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F.H. Clarke, 1973 (he used the name “generalized gradient”).
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{
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F.H. Clarke, 1973 (he used the name “generalized gradient”).

If h is continuously differentiable at x̄, then ∂h(x̄) = {∇h(x̄)}.



The Clarke Subdifferential

Crouzeix’s
Conjecture

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

Regularity

Simplest Case where
Crouzeix Ratio is
Nonsmooth
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Assume h : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : h is differentiable at x}.
Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential, or set of subgradients, of h at x̄ is

∂h(x̄) = conv

{

lim
x→x̄,x∈D

∇h(x)

}

.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If h is continuously differentiable at x̄, then ∂h(x̄) = {∇h(x̄)}.
If h is convex, ∂h is the subdifferential of convex analysis.
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If h is continuously differentiable at x̄, then ∂h(x̄) = {∇h(x̄)}.
If h is convex, ∂h is the subdifferential of convex analysis.

We say x̄ is Clarke stationary for h if 0 ∈ ∂h(x̄) (a nonsmooth

stationary point if ∈ ∂h(x̄) contains more than one vector)
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Assume h : Rn → R is locally Lipschitz, and
let D = {x ∈ R

n : h is differentiable at x}.
Rademacher’s Theorem: Rn\D has measure zero.

The Clarke subdifferential, or set of subgradients, of h at x̄ is

∂h(x̄) = conv

{

lim
x→x̄,x∈D

∇h(x)

}

.

F.H. Clarke, 1973 (he used the name “generalized gradient”).

If h is continuously differentiable at x̄, then ∂h(x̄) = {∇h(x̄)}.
If h is convex, ∂h is the subdifferential of convex analysis.

We say x̄ is Clarke stationary for h if 0 ∈ ∂h(x̄) (a nonsmooth

stationary point if ∈ ∂h(x̄) contains more than one vector)

Clarke stationarity is a necessary condition for local or global
optimality.
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For the numerator, we need the variational properties of

max
θ∈[0,2π]

|p(zθ)| where zθ = v∗θAvθ.
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|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
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■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
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For the numerator, we need the variational properties of

max
θ∈[0,2π]

|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
■ the gradient of zθ(A) = v∗θAvθ w.r.t. A
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For the numerator, we need the variational properties of

max
θ∈[0,2π]

|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
■ the gradient of zθ(A) = v∗θAvθ w.r.t. A

If the max of |p(zθ)| is attained by a unique point θ̂, then all
these are evaluated at θ̂ and combined with the gradient of | · |
to obtain the gradient of the numerator.
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For the numerator, we need the variational properties of

max
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|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
■ the gradient of zθ(A) = v∗θAvθ w.r.t. A

If the max of |p(zθ)| is attained by a unique point θ̂, then all
these are evaluated at θ̂ and combined with the gradient of | · |
to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over
all maximizing θ to get the subgradients of the numerator.
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For the numerator, we need the variational properties of

max
θ∈[0,2π]

|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
■ the gradient of zθ(A) = v∗θAvθ w.r.t. A

If the max of |p(zθ)| is attained by a unique point θ̂, then all
these are evaluated at θ̂ and combined with the gradient of | · |
to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over
all maximizing θ to get the subgradients of the numerator.

For the denominator, combine:
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For the numerator, we need the variational properties of

max
θ∈[0,2π]

|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
■ the gradient of zθ(A) = v∗θAvθ w.r.t. A

If the max of |p(zθ)| is attained by a unique point θ̂, then all
these are evaluated at θ̂ and combined with the gradient of | · |
to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over
all maximizing θ to get the subgradients of the numerator.

For the denominator, combine:
■ the gradient or subgradients of the 2-norm (maximum singular

value) of a matrix (involves the singular vectors)
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these are evaluated at θ̂ and combined with the gradient of | · |
to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over
all maximizing θ to get the subgradients of the numerator.

For the denominator, combine:
■ the gradient or subgradients of the 2-norm (maximum singular

value) of a matrix (involves the singular vectors)
■ the gradient of the matrix polynomial p(A) w.r.t. A (involves

differentiating Ak w.r.t. A, resulting in Kronecker products).
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For the numerator, we need the variational properties of

max
θ∈[0,2π]

|p(zθ)| where zθ = v∗θAvθ.

■ the gradient of p(zθ) w.r.t. the coefficients of p
■ the gradient of p(zθ) w.r.t. zθ
■ the gradient of zθ(A) = v∗θAvθ w.r.t. A

If the max of |p(zθ)| is attained by a unique point θ̂, then all
these are evaluated at θ̂ and combined with the gradient of | · |
to obtain the gradient of the numerator.

Otherwise, need to take the convex hull of these gradients over
all maximizing θ to get the subgradients of the numerator.

For the denominator, combine:
■ the gradient or subgradients of the 2-norm (maximum singular

value) of a matrix (involves the singular vectors)
■ the gradient of the matrix polynomial p(A) w.r.t. A (involves

differentiating Ak w.r.t. A, resulting in Kronecker products).

Finally, use the quotient rule.
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A directionally differentiable, locally Lipschitz function h is
regular (in the sense of Clarke, 1975) near a point x when its
directional derivative x 7→ h′(x; d) is upper semicontinuous there
for every fixed direction d.
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A directionally differentiable, locally Lipschitz function h is
regular (in the sense of Clarke, 1975) near a point x when its
directional derivative x 7→ h′(x; d) is upper semicontinuous there
for every fixed direction d.

In this case 0 ∈ ∂h(x) is equivalent to the first-order optimality
condition h′(x, d) ≥ 0 for all directions d.



Regularity

Crouzeix’s
Conjecture

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

Regularity

Simplest Case where
Crouzeix Ratio is
Nonsmooth
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A directionally differentiable, locally Lipschitz function h is
regular (in the sense of Clarke, 1975) near a point x when its
directional derivative x 7→ h′(x; d) is upper semicontinuous there
for every fixed direction d.

In this case 0 ∈ ∂h(x) is equivalent to the first-order optimality
condition h′(x, d) ≥ 0 for all directions d.

■ All convex functions are regular
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A directionally differentiable, locally Lipschitz function h is
regular (in the sense of Clarke, 1975) near a point x when its
directional derivative x 7→ h′(x; d) is upper semicontinuous there
for every fixed direction d.

In this case 0 ∈ ∂h(x) is equivalent to the first-order optimality
condition h′(x, d) ≥ 0 for all directions d.

■ All convex functions are regular
■ All continuously differentiable functions are regular
■ Nonsmooth concave functions, e.g. h(x) = −|x|, are not

regular.
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Optimize over complex monic linear polynomials p(ζ) ≡ c+ ζ
and complex matrices with order n = 2. Let f(p,A) ≡ f(c, A),
where now f : C× C

2×2 → R.
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Optimize over complex monic linear polynomials p(ζ) ≡ c+ ζ
and complex matrices with order n = 2. Let f(p,A) ≡ f(c, A),
where now f : C× C

2×2 → R.

Let ĉ = 0 (p̂(ζ) = ζ) and Â =

[

0 2
0 0

]

, so W (Â) = D, the unit

disk, and hence |p(ζ)| is maximized everywhere on the unit
circle, with f nonsmooth at (ĉ, Â) and f(ĉ, Â) = 1/2.
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Optimize over complex monic linear polynomials p(ζ) ≡ c+ ζ
and complex matrices with order n = 2. Let f(p,A) ≡ f(c, A),
where now f : C× C

2×2 → R.

Let ĉ = 0 (p̂(ζ) = ζ) and Â =

[

0 2
0 0

]

, so W (Â) = D, the unit

disk, and hence |p(ζ)| is maximized everywhere on the unit
circle, with f nonsmooth at (ĉ, Â) and f(ĉ, Â) = 1/2.

Theorem 3. The Crouzeix ratio f is regular at (ĉ, Â), with

∂f(ĉ, Â) = convθ∈[0,2π)

{(

1

2
e−iθ,

1

4

[

e−iθ 0
e−2iθ e−iθ

])}
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Corollary.
0 ∈ ∂f(ĉ, Â)
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Corollary.
0 ∈ ∂f(ĉ, Â)

Proof: the vectors inside the convex hull defined by θ = 0, 2π/3
and 4π/3 sum to zero.
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Corollary.
0 ∈ ∂f(ĉ, Â)

Proof: the vectors inside the convex hull defined by θ = 0, 2π/3
and 4π/3 sum to zero.

Actually, we knew this must be true as Crouzeix’s conjecture is
known to hold for n = 2, and hence (ĉ, Â) is a global minimizer
of f(·, ·), but we can extend the result to larger values of m, n,
for which we don’t know whether the conjecture holds.
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Optimize over complex polynomials p(ζ) ≡ c0 + · · ·+ cmζm and complex

matrices with order n. Let f(p,A) ≡ f(c,A), where f : Cm+1 × C
n×n → R.
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Optimize over complex polynomials p(ζ) ≡ c0 + · · ·+ cmζm and complex

matrices with order n. Let f(p,A) ≡ f(c,A), where f : Cm+1 × C
n×n → R.

Let ĉ = [0, 0, . . . , 1], corresponding to the polynomial zn−1, and Â equal the

Crabb-Choi-Crouzeix matrix of order n so W (Â) = D, the unit disk, and

hence f(ĉ, Â) = 1/2.
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Optimize over complex polynomials p(ζ) ≡ c0 + · · ·+ cmζm and complex

matrices with order n. Let f(p,A) ≡ f(c,A), where f : Cm+1 × C
n×n → R.

Let ĉ = [0, 0, . . . , 1], corresponding to the polynomial zn−1, and Â equal the

Crabb-Choi-Crouzeix matrix of order n so W (Â) = D, the unit disk, and

hence f(ĉ, Â) = 1/2.

Theorem 4. The Crouzeix ratio on (c,A) ∈ C
m+1 × C

n×n is regular at

(ĉ, Â) with

∂f(ĉ, Â) = convθ∈[0,2π)

{

(

yθ, Yθ

)

}

where
yθ =

1

2

[

zm, zm−1, . . . , z, 0
]T

and Yθ n× n matrix

Yθ =
1

4



















z 0
√
2z−1

√
2z−2 · · ·

√
2z3−n z2−n

√
2z2 2z 0 2z−1 · · · 2z4−n

√
2z3−n

...
...√

2zn−2 2zn−3 2zn−4 2zn−5 · · · 0
√
2z√

2zn−1 2zn−2 2zn−3 2zn−4 · · · 2z 0

zn
√
2zn−1

√
2zn−2

√
2zn−3 · · ·

√
2z2 z



















with z = e−iθ.



(ĉ, Â) is a Nonsmooth Stationary Point of f(·, ·)

Crouzeix’s
Conjecture

Nonsmooth
Optimization of
the Crouzeix Ratio

Nonsmooth Analysis
of the Crouzeix
Ratio
The Clarke
Subdifferential
The Gradient or
Subgradients of the
Crouzeix Ratio

Regularity

Simplest Case where
Crouzeix Ratio is
Nonsmooth
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Corollary.
0 ∈ ∂f(ĉ, Â)

so, for any n, the pair (ĉ, Â) is a nonsmooth stationary point of
f .
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Corollary.
0 ∈ ∂f(ĉ, Â)

so, for any n, the pair (ĉ, Â) is a nonsmooth stationary point of
f .

Proof. The convex combination

1

n+ 1

n
∑

k=0

(

y2kπ/(n+1), Y2kπ/(n+1)

)

is zero.
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Corollary.
0 ∈ ∂f(ĉ, Â)

so, for any n, the pair (ĉ, Â) is a nonsmooth stationary point of
f .

Proof. The convex combination

1

n+ 1

n
∑

k=0

(

y2kπ/(n+1), Y2kπ/(n+1)

)

is zero.

This is a necessary condition for (ĉ, Â) to be a local (or global)
minimizer of f on R

m+1 × R
n×n. This is a new result for n > 2.
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(ĉ, Â) is a
Nonsmooth
Stationary Point of
f(·, ·)

Is the Crouzeix Ratio
Globally Clarke
Regular?

Concluding Remarks
33 / 39

Corollary.
0 ∈ ∂f(ĉ, Â)

so, for any n, the pair (ĉ, Â) is a nonsmooth stationary point of
f .

Proof. The convex combination

1

n+ 1

n
∑

k=0

(

y2kπ/(n+1), Y2kπ/(n+1)

)

is zero.

This is a necessary condition for (ĉ, Â) to be a local (or global)
minimizer of f on R

m+1 × R
n×n. This is a new result for n > 2.

And by regularity, it implies that the directional derivative
f ′(·, d) ≥ 0 for all directions d.
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No. Let p̃(ζ) = ζ and

Ã =





0
√
2 0

0 0
√
2

0 0 0





for which W (Ã) is a disk and f(p̃, Ã) = 1/
√
2.

The Crouzeix ratio f is not regular at (p̃, Ã).
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Plot of the denominator β, the numerator τ and
the Crouzeix ratio f evaluated at (p̃, Ã+ tÃ2), t ∈ [−2, 2].
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Minimizing the Crouzeix ratio f over p and A, BFGS almost
always converged either to nonsmooth stationary values of 0.5
associated with the Crabb-Choi-Crouzeix matrix (with field of
values a disk), or smooth stationary values of 1 (with “ice cream
cone” fields of values).
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Minimizing the Crouzeix ratio f over p and A, BFGS almost
always converged either to nonsmooth stationary values of 0.5
associated with the Crabb-Choi-Crouzeix matrix (with field of
values a disk), or smooth stationary values of 1 (with “ice cream
cone” fields of values).
Both Chebfun and BFGS perform remarkably reliably despite
nonsmoothness that can occur either in the boundary of the field
of values (w.r.t. the complex plane) or in the Crouzeix ratio f
(w.r.t the polynomial-matrix space).
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associated with the Crabb-Choi-Crouzeix matrix (with field of
values a disk), or smooth stationary values of 1 (with “ice cream
cone” fields of values).
Both Chebfun and BFGS perform remarkably reliably despite
nonsmoothness that can occur either in the boundary of the field
of values (w.r.t. the complex plane) or in the Crouzeix ratio f
(w.r.t the polynomial-matrix space).

Using nonsmooth variational analysis, we proved regularity and
Clarke stationarity of the Crouzeix ratio, with value 0.5, at pairs
(p̂, Â), where p̂ is the monomial ζn−1 and Â is
aCrabb-Choi-Crouzeix matrix of order n, a necessary condition
for local or global optimality.
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We also found (p̃, Ã) for which the Crouzeix ratio is not regular.
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always converged either to nonsmooth stationary values of 0.5
associated with the Crabb-Choi-Crouzeix matrix (with field of
values a disk), or smooth stationary values of 1 (with “ice cream
cone” fields of values).
Both Chebfun and BFGS perform remarkably reliably despite
nonsmoothness that can occur either in the boundary of the field
of values (w.r.t. the complex plane) or in the Crouzeix ratio f
(w.r.t the polynomial-matrix space).

Using nonsmooth variational analysis, we proved regularity and
Clarke stationarity of the Crouzeix ratio, with value 0.5, at pairs
(p̂, Â), where p̂ is the monomial ζn−1 and Â is
aCrabb-Choi-Crouzeix matrix of order n, a necessary condition
for local or global optimality.

We also found (p̃, Ã) for which the Crouzeix ratio is not regular.

The results strongly support Crouzeix’s conjecture: the globally
minimal value of the Crouzeix ratio f(p,A) is 0.5.
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% define and plot a chebfun with 338 pieces

s=scribble(’Felicitaciones y mis mejores deseos para Don’);

plot(s,’b’,’LineWidth’,2), axis equal
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plot(exp(3i*s),’m’,’LineWidth’,2), axis equal
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