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Discussion

1. The BFGS method continues to surprise

2. One of the best methods for nonsmooth optimization (Lewis-Overton)
3. Leading approach for (deterministic) DFO derivative-free optimization
4. This talk: Very good method for the minimization of noisy functions

We had not fully recognized the power and generality of quasi-Newton
updating until we tried to find alternatives!

Subject of this talk:

1. Black-box noisy functions

2. No known structure

3. Not the finite sum loss functions arising in machine learning, where
cheap approximate gradients are available



Outline

Problem 1: min f(x) f smooth but derivatives not available; DFO

1. fcontains no noise
2. Scalability, Parallelism
3. Robustness

Problem 2: min f(x;&) f(;&) smooth
min f(x) =@(x)+e(x)  f(x)=d(x)(1+€(x))

* Propose method build upon classical quasi-Newton updating using finite-
difference gradients

» Estimate good finite-difference interval A

« Use noise estimation techniques (More’-Wild)

» Deal with noise adaptively

 Can solve problems with thousands of variables

* Novel convergence results — to neighborhood of solution (Richard Byrd)
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DFO: Derivative free deterministic optimization (no noise)

min f(x) f 1s smooth

» Direct search/pattern search methods: not scalable
Much better idea:

— Interpolation based models with trust regions (Powell, Conn, Scheinberg,...)

min m(x)=x"Bx+g'x st lxl,<A

1. Need (n+1)(n+2)/2 function values to define quadratic model by pure
interpolation

Can use O(7) points and assume minimum norm change in the Hessian

Arithmetic costs high: n? & scalability
Placement of interpolation points is important

Correcting the model may require many function evaluations
Parallelizable? <

N hELDd



B a4
Why not simply BFGS with finite difference gradients?

X =X — 0 H VI (x,) Af(x) _ f(x+he)— f(x)
ox, h

« Invest significant effort in estimation of gradient

« Delegate construction of model to BFGS

« Interpolating gradients

*  Modest linear algebra costs O(n) for L-BFGS

« Placement of sample points on an orthogonal set

« BFGS is an overwriting process: no inconsistencies or ill conditioning
with Armijo-Wolfe line search

*  Gradient evaluation parallelizes easily

Why now?
 Perception that 7 function evaluations per step 1s too high
* Derivative-free literature rarely compares with FD — quasi-Newton

» Already used extensively: fminunc MATLAB
» Black-box competition and KNITRO



Some numerical results

Compare:
Model based trust region code DFOtr by Conn, Scheinberg, Vicente

vs FD-L-BFGS with forward and central differences

Plot function decrease vs total number of function evaluations



Comparison: function decrease vs total # of function evaluations

quadratic
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Conclusion: DFO without noise

Finite difference BFGS is a real competitor of DFO method based on
function evaluations
Can solve problems with thousands of variables

... but really nothing new.



Optimization of Noisy Functions

min f(x;&E) where f(;&) is smooth
min f(x) =@(x)+e(x)  f(x)=d(x)(1+e(x))

Focus on additive noise

£(x) = sin(x) 4 cos(x) + 1072U(0,2sgrt(3))
1.04

Finite-difference BFGS should not work!

1. Difference of noisy functions dangerous

2. Just one bad update once in a while: disastrous
3. Not done to the best of our knowledge
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Finite Differences — Noisy Functions

o(x) h too small h too big

N True Derivative @ x = —2.5: —1.6 True Derivative @ x = —3.5: —0.5
. Finite Difference Estimate @ x = —2.5: 1.33 Finite Difference Estimate @ x = —3.5: 0.5

XV
>
>
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A Practible Algorithm

min f(x) =¢(x)+e(x)  f(x)=@(x)(1+e(x))

Outline of adaptive finite-difference BFGS method
Estimate noise €(x)at every iteration -- More’-Wild

Estimate /1

Compute finite difference gradient

Perform line search (?!)

Corrective Procedure when case line search fails
* (need to modify line search)

* Re-estimate noise level

SNk =

Will require very few extra f evaluations/iteration — even none
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Noise estimation More’-Wild (2011)
Noise level: o = [var(e(x)]" min f(x) =¢(x)+e(x)

Noise estimate: €;

At x choose a random direction v
evaluate f at g +1 equally spaced points x+ifv, i=0,....,qg

Compute function differences:

A’ f(x)= f(x)
AT f(x) = ATAF(0)1= AL f(x+ B = ALf (0]

Compute finite diverence table:

T'U:Aff(x-l-lﬁ\/) yj q—j , , :(J')Q
I<j<q 0<i<j—q ITgm1—j&t T gy
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Noise estimation

More’-Wild (2011)

min f(x) =sin(x)+ cos(x) + 1()_3U(O,2\/§) qg==6 B=10""

X f Af A%f A3f AYf A f AOf
~3.107% | 1.003 754e—3 215e—3  1.87e—4  —587e—3  ldbe—2  —2.49¢ — 2
—2.107% | 1.011 9.69e—3 233e-3 -568e—3 873¢—3 —1.03e—3

~107% | 1.021 1.20e—2 -335% -3 3.05e—3 —1.6le—3
0 1.033  8.67e—3 —2.96e—3  ldde—3
102 1.041  838¢—3  1.l4e—3
2.1072 | 1.050 9.52¢ —3
3.1072 | 1.059
Tk 6.65e — 3 8.69e — 4 7.39e — 4 7.34e — 4 7.97e — 4 8.20e — 4

High order differences of a smooth function tend to zero rapidly, while differences

in noise are bounded away from zero. Changes in sign, useful.

Procedure 1s scale invariant!
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Finite difference itervals

Once noise estimate € has been chosen:

F . . __ol/a e_f 1/2 _ ’”
orward difference: h =8 (.U ) W, =max _, | f7(x)l
2

Central difference: h = 3" 3(€—f)” ; = |7 (x)l

My

Bad estimates of second and third derivatives can cause problems
(not often)
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Adaptive Finite Difference L-BFGS Method

Estimate noise ¢,
Compute A for forward or central differences [(4-8) function evaluations]
Compute g,
While convergence test not satisfied:

d=—-—H,g, [L-BFGS procedure]

(x,.f,.flag)= LineSearch(x,, f,.g,.d,.f,)

IF flag=1 [line search failed]

(x,.,f..,h)= Recovery(x,,f, .g..d, ,max

iter

endif
xk+1 - x+’ f}c+1 — f+
Compute g, , [finite differences using /]

S = X1 — Xio Vi = 81 — 8k
Discard (s,,y,) if s,y, <0
k=k+1

endwhile
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Line Search

BFGS method requires Armijo-Wolfe line search

flx, +od) < f(x)+ac,Vf(x,)d  Armijo
VF(x, +ad) d=c,Vf(x)'d  Wolfe

Deterministic case: always possible if f 1s bounded below

» (Can be problematic in the noisy case.
» Strategy: try to satisfy both but limit the number of attempts
« If first trial point (unit steplength) 1s not acceptable relax:

fx+ad) < f(x)+oceVf(x)d +2¢, relaxed Armijo

Three outcomes: a) both satisfied; b) only Armijo; c¢) none
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Corrective Procedure

Compute a new noise estimate €, along search direction d,
Compute corresponding /

Ifh#h use new estimat h < h ; return w.o. changing x,
Finite difference

Else compute new iterate (various options): Stencil (Kelley)

small perturbation; stencil point
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Some quotes

| believe that eventually the better methods will not use derivative approximations...
[Powell, 1972]

f is ... somewhat noisy, which renders most methods based on finite differences of
little or no use [X,X,X]. [Rios & Sahinidis, 2013]
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END
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