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Discussion

1. The BFGS method continues to surprise
2. One of the best methods for nonsmooth optimization  (Lewis-Overton)
3. Leading approach for (deterministic) DFO derivative-free optimization
4. This talk: Very good method for the minimization of noisy functions

Subject of this talk:

1. Black-box noisy functions
2. No known structure
3. Not the finite sum loss functions arising in machine learning, where 

cheap approximate gradients are available

We had not fully recognized the power and generality of quasi-Newton 
updating until we tried to find alternatives!
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Outline

1. f contains no noise
2. Scalability, Parallelism
3. Robustness

• Propose method build upon classical quasi-Newton updating using finite-
difference gradients
• Estimate good finite-difference interval h
• Use noise estimation techniques (More’-Wild)
• Deal with noise adaptively
• Can solve problems with thousands of variables
• Novel convergence results – to neighborhood of solution   (Richard Byrd)

Problem 1:  min f (x) f  smooth but derivatives not available

Problem 2:  min f (x;ξ ) f (⋅;ξ ) smooth

 min f (x) =φ(x)+ ε(x)       f (x) = φ(x)(1+ ε(x))

: DFO
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DFO: Derivative free deterministic optimization (no noise)

• Direct search/pattern search methods: not scalable
• Much better idea:

– Interpolation based models with trust regions    (Powell, Conn, Scheinberg,…)

min f (x)        f  is smooth

1. Need (n+1)(n+2)/2 function values to define quadratic model by pure 
interpolation

2. Can use O(n) points and assume minimum norm change in the Hessian
3. Arithmetic costs high: n4          ß scalability
4. Placement of interpolation points is important
5. Correcting the model may require many function evaluations
6. Parallelizable?   ß

 min m(x) = xT Bx + gT x    s.t.     ‖x‖2≤ Δ
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Why not simply BFGS with finite difference gradients?

• Invest significant effort in estimation of gradient
• Delegate construction of model to BFGS
• Interpolating gradients
• Modest linear algebra costs O(n) for L-BFGS
• Placement of sample points on an orthogonal set
• BFGS is an overwriting process: no inconsistencies or ill conditioning 

with Armijo-Wolfe line search
• Gradient evaluation parallelizes easily

∂ f (x)
∂xi

≈ f (x + hei )− f (x)
h

Why now?
• Perception that n function evaluations per step is too high
• Derivative-free literature rarely compares with FD – quasi-Newton
• Already used extensively: fminunc MATLAB
• Black-box competition and KNITRO

xk+1 = xk −α kHk∇f (xk )
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Some numerical results

Compare: 

Model based trust region code DFOtr by Conn, Scheinberg, Vicente

vs FD-L-BFGS with forward and central differences

Plot function decrease vs total number of function evaluations
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Comparison:   function decrease vs total # of function evaluations
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Conclusion: DFO without noise

Finite difference BFGS is a real competitor of DFO method based on 
function evaluations
Can solve problems with thousands of variables

… but really nothing new.



10

Optimization of Noisy Functions

 min f (x) =φ(x)+ ε(x)       f (x) = φ(x)(1+ ε(x))

                                 min f (x;ξ )     where   f (⋅;ξ ) is smooth

Focus on additive noise

Finite-difference BFGS should not work!
1. Difference of noisy functions dangerous
2. Just one bad update once in a while: disastrous
3. Not done to the best of our knowledge
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Finite Differences – Noisy Functions
DFO via Quasi-Newton Methods

Finite Di↵erences – Noisy Functions

Can we just apply what we did in the smooth case? NOT REALLY!

x

�(x)

f (x) = �(x) + ✏(x)

h h

h too small
True Derivative @ x = �2.5: �1.6

Finite Di↵erence Estimate @ x = �2.5: 1.33

xh h

f (x) = �(x) + ✏(x)

�(x)

h too big
True Derivative @ x = �3.5: �0.5

Finite Di↵erence Estimate @ x = �3.5: 0.5

A. S. Berahas (NU) SN & SQN Methods for Nonlinear Opt. 37/59optML, Lehigh University 37 / 59
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A Practible Algorithm

 min f (x) =φ(x)+ ε(x)       f (x) = φ(x)(1+ ε(x))

Outline of adaptive finite-difference BFGS method
1. Estimate noise at every iteration  -- More’-Wild 
2. Estimate h
3. Compute finite difference gradient
4. Perform line search (?!)
5. Corrective Procedure when case line search fails

• (need to modify line search)
• Re-estimate noise level

Will require very few extra f evaluations/iteration – even none

ε(x)
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Noise estimation                                             More’-Wild (2011)

At x  choose a random direction v
evaluate f  at q +1 equally spaced points  x + iβv, i = 0,...,q

 

Noise level:        σ = [var(ε(x))]1/2

Noise estimate:     ε f

Compute function differences:
Δ0 f (x) = f (x)
Δ j+1 f (x) = Δ j[Δf (x)] = Δ j[ f (x + β )]− Δ j[ f (x)]]

Compute finite diverence table:
Tij = Δ j f (x + iβv)
1< j < q 0 < i < j − q

 min f (x) =φ(x)+ ε(x)       

σ j =
γ j

q −1− j
Ti, j
2

i=0

q− j

∑ γ j =
( j!)2

(2 j)!
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Noise estimation                                             More’-Wild (2011)

Noisy L-BFGS Noisy Functions

Finite-Di↵erence L-BFGS
Noise Estimation – ECNoise

1 @ x , sample m + 1 with sampling distance �

..., f (x � 2�), f (x � �), f (x), f (x + �), f (x + 2�), ...

2 Compute di↵erences (table): Ti,k = �k f (xi ), 1  k  m, 0  i  m � k

3 Approximate E{[�k f (x)]2} by the k-th level estimate

✏f
2 ⇡ �2

k =
�k

m + 1 � k

m�kX

i=0

T 2
i,k

Example: f (x) = sin(x) + cos(x) + 10�3U(0, 2
p
3), (m = 6,� = 10�2)

x f �f �2f �3f �4f �5f �6f

�3 · 10�2 1.003 7.54e � 3 2.15e � 3 1.87e � 4 �5.87e � 3 1.46e � 2 �2.49e � 2
�2 · 10�2 1.011 9.69e � 3 2.33e � 3 �5.68e � 3 8.73e � 3 �1.03e � 3
�10�2 1.021 1.20e � 2 �3.35e � 3 3.05e � 3 �1.61e � 3

0 1.033 8.67e � 3 �2.96e � 3 1.44e � 3
10�2 1.041 8.38e � 3 1.14e � 3

2 · 10�2 1.050 9.52e � 3
3 · 10�2 1.059

�k 6.65e � 3 8.69e � 4 7.39e � 4 7.34e � 4 7.97e � 4 8.20e � 4

A. S. Berahas (NW) Progress Report 2017 Evanston, IL 131 / 177

min f (x) =sin(x)+ cos(x)+10−3U(0,2 3 ) q = 6 β = 10−2        

High order differences of a smooth function tend to zero rapidly, while differences
in noise are  bounded away from zero. Changes in sign, useful.

Procedure is scale invariant!
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Finite difference itervals

 

Once noise estimate ε f has been chosen:

Forward difference:   h = 81/4 (
ε f
µ2

)1/2 µ2 = maxx∈I | ′′f (x) |

Central difference:  h = 31/3(
ε f
µ3

)1/3 µ3 ≈  | ′′′f (x) |

Bad estimates of second and third derivatives can cause problems
(not often)
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Adaptive Finite Difference L-BFGS Method

 

Estimate noise ε f
Compute h by forward or central differences  [(4-8) function evaluations]
Compute gk
While convergence test not satisfied:

d = −Hkgk [L-BFGS procedure]
(x+ , f+ , flag) =  LineSearch(xk , fk ,gk ,dk , fs )
IF flag=1     [line search failed]

     (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter )
endif

   xk+1 = x+ , fk+1 = f+
Compute gk+1        [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

    Discard (sk , yk )  if  sk
T yk ≤ 0

k = k +1
   endwhile

for
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Line Search

BFGS method requires Armijo-Wolfe line search

f (xk +αd) ≤ f (xk )+αc1∇f (xk )d       Armijo

∇f (xk +αd)T d ≥ c2∇f (xk )T d       Wolfe

• Can be problematic in the noisy case. 
• Strategy: try to satisfy both but limit the number of attempts
• If first trial point (unit steplength) is not acceptable relax:

Deterministic case: always possible if f is bounded below

 
f (xk +αd) ≤ f (xk )+αc1∇f (xk )d  + 2ε f      relaxed Armijo

Three outcomes: a) both satisfied;   b) only Armijo;   c) none
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Corrective Procedure

Finite difference
Stencil (Kelley)

xs

Compute a new noise estimate εf  along search direction dk
Compute corresponding h
If ĥ /≈ h use new estimat h← h;  return w.o. changing xk

Else compute new iterate (various options):
small perturbation; stencil point
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Some quotes

I believe that eventually the better methods will not use derivative approximations… 
[Powell, 1972]

f is … somewhat noisy, which renders most methods based on finite differences of 
little or no use [X,X,X]. [Rios & Sahinidis, 2013]
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END


