
1

Derivative-Free Optimization of Noisy Functions
via Quasi-Newton Methods

Jorge Nocedal
Northwestern University

Huatulco, Jan 2018

2

Collaborators

Albert Berahas Richard Byrd
Northwestern University University of Colorado

3

Discussion

1. The BFGS method continues to surprise
2. One of the best methods for nonsmooth optimization (Lewis-Overton)
3. Leading approach for (deterministic) DFO derivative-free optimization
4. This talk: Very good method for the minimization of noisy functions

Subject of this talk:

1. Black-box noisy functions
2. No known structure
3. Not the finite sum loss functions arising in machine learning, where

cheap approximate gradients are available

We had not fully recognized the power and generality of quasi-Newton
updating until we tried to find alternatives!

4

Outline

1. f contains no noise
2. Scalability, Parallelism
3. Robustness

• Propose method build upon classical quasi-Newton updating using finite-
difference gradients
• Estimate good finite-difference interval h
• Use noise estimation techniques (More’-Wild)
• Deal with noise adaptively
• Can solve problems with thousands of variables
• Novel convergence results – to neighborhood of solution (Richard Byrd)

Problem 1: min f (x) f smooth but derivatives not available

Problem 2: min f (x;ξ) f (⋅;ξ) smooth

 min f (x) =φ(x)+ ε(x) f (x) = φ(x)(1+ ε(x))

: DFO

5

DFO: Derivative free deterministic optimization (no noise)

• Direct search/pattern search methods: not scalable
• Much better idea:

– Interpolation based models with trust regions (Powell, Conn, Scheinberg,…)

min f (x) f is smooth

1. Need (n+1)(n+2)/2 function values to define quadratic model by pure
interpolation

2. Can use O(n) points and assume minimum norm change in the Hessian
3. Arithmetic costs high: n4 ß scalability
4. Placement of interpolation points is important
5. Correcting the model may require many function evaluations
6. Parallelizable? ß

 min m(x) = xT Bx + gT x s.t. ‖x‖2≤ Δ

6

Why not simply BFGS with finite difference gradients?

• Invest significant effort in estimation of gradient
• Delegate construction of model to BFGS
• Interpolating gradients
• Modest linear algebra costs O(n) for L-BFGS
• Placement of sample points on an orthogonal set
• BFGS is an overwriting process: no inconsistencies or ill conditioning

with Armijo-Wolfe line search
• Gradient evaluation parallelizes easily

∂ f (x)
∂xi

≈ f (x + hei)− f (x)
h

Why now?
• Perception that n function evaluations per step is too high
• Derivative-free literature rarely compares with FD – quasi-Newton
• Already used extensively: fminunc MATLAB
• Black-box competition and KNITRO

xk+1 = xk −α kHk∇f (xk)

7

Some numerical results

Compare:

Model based trust region code DFOtr by Conn, Scheinberg, Vicente

vs FD-L-BFGS with forward and central differences

Plot function decrease vs total number of function evaluations

8

Comparison: function decrease vs total # of function evaluations

20 40 60 80 100 120

Number of function evaluations

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

F
(
x
)
-
F
*

s271

Smooth Deterministic

DFOtr

LBFGS FD (FD)

LBFGS FD (CD)

100 200 300 400 500 600 700 800 900 1000

Number of function evaluations

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

F
(
x
)
-
F
*

s289

Smooth Deterministic

DFOtr

LBFGS FD (FD)

LBFGS FD (CD)

20 40 60 80 100 120 140 160 180 200

Number of function evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

F
(
x
)
-
F
*

s334

Smooth Deterministic

DFOtr

LBFGS FD (FD)

LBFGS FD (CD)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

10
-15

10
-10

10
-5

10
0

10
5

10
10

F
(
x
)
-
F
*

s293

Smooth Deterministic

DFOtr

LBFGS FD (FD)

LBFGS FD (CD)

quadratic

9

Conclusion: DFO without noise

Finite difference BFGS is a real competitor of DFO method based on
function evaluations
Can solve problems with thousands of variables

… but really nothing new.

10

Optimization of Noisy Functions

 min f (x) =φ(x)+ ε(x) f (x) = φ(x)(1+ ε(x))

 min f (x;ξ) where f (⋅;ξ) is smooth

Focus on additive noise

Finite-difference BFGS should not work!
1. Difference of noisy functions dangerous
2. Just one bad update once in a while: disastrous
3. Not done to the best of our knowledge

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

x

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

f
(
x
)

f(x) = sin(x) + cos(x) + 10-3U(0,2sqrt(3))

Smooth
Noisy

11

Finite Differences – Noisy Functions
DFO via Quasi-Newton Methods

Finite Di↵erences – Noisy Functions

Can we just apply what we did in the smooth case? NOT REALLY!

x

�(x)

f (x) = �(x) + ✏(x)

h h

h too small
True Derivative @ x = �2.5: �1.6

Finite Di↵erence Estimate @ x = �2.5: 1.33

xh h

f (x) = �(x) + ✏(x)

�(x)

h too big
True Derivative @ x = �3.5: �0.5

Finite Di↵erence Estimate @ x = �3.5: 0.5

A. S. Berahas (NU) SN & SQN Methods for Nonlinear Opt. 37/59optML, Lehigh University 37 / 59

12

A Practible Algorithm

 min f (x) =φ(x)+ ε(x) f (x) = φ(x)(1+ ε(x))

Outline of adaptive finite-difference BFGS method
1. Estimate noise at every iteration -- More’-Wild
2. Estimate h
3. Compute finite difference gradient
4. Perform line search (?!)
5. Corrective Procedure when case line search fails

• (need to modify line search)
• Re-estimate noise level

Will require very few extra f evaluations/iteration – even none

ε(x)

13

Noise estimation More’-Wild (2011)

At x choose a random direction v
evaluate f at q +1 equally spaced points x + iβv, i = 0,...,q

Noise level: σ = [var(ε(x))]1/2

Noise estimate: ε f

Compute function differences:
Δ0 f (x) = f (x)
Δ j+1 f (x) = Δ j[Δf (x)] = Δ j[f (x + β)]− Δ j[f (x)]]

Compute finite diverence table:
Tij = Δ j f (x + iβv)
1< j < q 0 < i < j − q

 min f (x) =φ(x)+ ε(x)

σ j =
γ j

q −1− j
Ti, j
2

i=0

q− j

∑ γ j =
(j!)2

(2 j)!

14

Noise estimation More’-Wild (2011)

Noisy L-BFGS Noisy Functions

Finite-Di↵erence L-BFGS
Noise Estimation – ECNoise

1 @ x , sample m + 1 with sampling distance �

..., f (x � 2�), f (x � �), f (x), f (x + �), f (x + 2�), ...

2 Compute di↵erences (table): Ti,k = �k f (xi), 1  k  m, 0  i  m � k

3 Approximate E{[�k f (x)]2} by the k-th level estimate

✏f
2 ⇡ �2

k =
�k

m + 1 � k

m�kX

i=0

T 2
i,k

Example: f (x) = sin(x) + cos(x) + 10�3U(0, 2
p
3), (m = 6,� = 10�2)

x f �f �2f �3f �4f �5f �6f

�3 · 10�2 1.003 7.54e � 3 2.15e � 3 1.87e � 4 �5.87e � 3 1.46e � 2 �2.49e � 2
�2 · 10�2 1.011 9.69e � 3 2.33e � 3 �5.68e � 3 8.73e � 3 �1.03e � 3
�10�2 1.021 1.20e � 2 �3.35e � 3 3.05e � 3 �1.61e � 3

0 1.033 8.67e � 3 �2.96e � 3 1.44e � 3
10�2 1.041 8.38e � 3 1.14e � 3

2 · 10�2 1.050 9.52e � 3
3 · 10�2 1.059

�k 6.65e � 3 8.69e � 4 7.39e � 4 7.34e � 4 7.97e � 4 8.20e � 4

A. S. Berahas (NW) Progress Report 2017 Evanston, IL 131 / 177

min f (x) =sin(x)+ cos(x)+10−3U(0,2 3) q = 6 β = 10−2

High order differences of a smooth function tend to zero rapidly, while differences
in noise are bounded away from zero. Changes in sign, useful.

Procedure is scale invariant!

15

Finite difference itervals

Once noise estimate ε f has been chosen:

Forward difference: h = 81/4 (
ε f
µ2

)1/2 µ2 = maxx∈I | ′′f (x) |

Central difference: h = 31/3(
ε f
µ3

)1/3 µ3 ≈ | ′′′f (x) |

Bad estimates of second and third derivatives can cause problems
(not often)

16

Adaptive Finite Difference L-BFGS Method

Estimate noise ε f
Compute h by forward or central differences [(4-8) function evaluations]
Compute gk
While convergence test not satisfied:

d = −Hkgk [L-BFGS procedure]
(x+ , f+ , flag) = LineSearch(xk , fk ,gk ,dk , fs)
IF flag=1 [line search failed]

 (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter)
endif

 xk+1 = x+ , fk+1 = f+
Compute gk+1 [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

 Discard (sk , yk) if sk
T yk ≤ 0

k = k +1
 endwhile

for

17

Line Search

BFGS method requires Armijo-Wolfe line search

f (xk +αd) ≤ f (xk)+αc1∇f (xk)d Armijo

∇f (xk +αd)T d ≥ c2∇f (xk)T d Wolfe

• Can be problematic in the noisy case.
• Strategy: try to satisfy both but limit the number of attempts
• If first trial point (unit steplength) is not acceptable relax:

Deterministic case: always possible if f is bounded below

f (xk +αd) ≤ f (xk)+αc1∇f (xk)d + 2ε f relaxed Armijo

Three outcomes: a) both satisfied; b) only Armijo; c) none

18

Corrective Procedure

Finite difference
Stencil (Kelley)

xs

Compute a new noise estimate εf along search direction dk
Compute corresponding h
If ĥ /≈ h use new estimat h← h; return w.o. changing xk

Else compute new iterate (various options):
small perturbation; stencil point

19

Some quotes

I believe that eventually the better methods will not use derivative approximations…
[Powell, 1972]

f is … somewhat noisy, which renders most methods based on finite differences of
little or no use [X,X,X]. [Rios & Sahinidis, 2013]

20

END

