Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods

> Jorge Nocedal Northwestern University

> > Huatulco, Jan 2018

Collaborators

Albert Berahas Northwestern University Richard Byrd University of Colorado

Discussion

- 1. The BFGS method continues to surprise
- 2. One of the best methods for nonsmooth optimization (Lewis-Overton)
- 3. Leading approach for (deterministic) DFO derivative-free optimization
- 4. This talk: Very good method for the minimization of noisy functions

We had not fully recognized the power and generality of quasi-Newton updating until we tried to find alternatives!

Subject of this talk:

- 1. Black-box noisy functions
- 2. No known structure
- 3. Not the finite sum loss functions arising in machine learning, where cheap approximate gradients are available

Outline

Problem 1: $\min f(x)$ f smooth but derivatives not available: DFO

- 1. f contains no noise
- 2. Scalability, Parallelism
- 3. Robustness

Problem 2: $\min f(x;\xi) \quad f(\cdot;\xi)$ smooth

 $\min f(x) = \phi(x) + \epsilon(x) \qquad f(x) = \phi(x)(1 + \epsilon(x))$

- Propose method build upon classical quasi-Newton updating using finitedifference gradients
- Estimate good finite-difference interval *h*
- Use noise estimation techniques (More'-Wild)
- Deal with noise adaptively
- Can solve problems with thousands of variables
- Novel convergence results to neighborhood of solution (Richard Byrd)

DFO: Derivative free deterministic optimization (no noise)

 $\min f(x)$ f is smooth

- Direct search/pattern search methods: not scalable
- Much better idea:
 - Interpolation based models with trust regions (Powell, Conn, Scheinberg,...)

$$\min \quad m(x) = x^T B x + g^T x \quad \text{s.t.} \quad \| x \|_2 \le \Delta$$

- 1. Need (n+1)(n+2)/2 function values to define quadratic model by pure interpolation
- 2. Can use O(n) points and assume minimum norm change in the Hessian
- 3. Arithmetic costs high: $n^4 \leftarrow scalability$
- 4. Placement of interpolation points is important
- 5. Correcting the model may require many function evaluations
- 6. Parallelizable? \leftarrow

Why not simply BFGS with finite difference gradients?

$$x_{k+1} = x_k - \alpha_k H_k \nabla f(x_k)$$

- Invest significant effort in estimation of gradient
- Delegate construction of model to BFGS
- Interpolating gradients
- Modest linear algebra costs O(n) for L-BFGS
- Placement of sample points on an orthogonal set
- BFGS is an overwriting process: no inconsistencies or ill conditioning *with* Armijo-Wolfe line search
- Gradient evaluation parallelizes easily

Why now?

- Perception that *n* function evaluations per step is too high
- Derivative-free literature rarely compares with FD quasi-Newton
- Already used extensively: fminunc MATLAB
- Black-box competition and KNITRO

$$\frac{\partial f(x)}{\partial x_i} \approx \frac{f(x+he_i) - f(x)}{h}$$

Compare:

Model based trust region code DFOtr by Conn, Scheinberg, Vicente

vs FD-L-BFGS with forward and central differences

Plot function decrease vs total number of function evaluations

Comparison: function decrease vs total # of function evaluations

Finite difference BFGS is a real competitor of DFO method based on function evaluations Can solve problems with thousands of variables

... but really nothing new.

Optimization of Noisy Functions

 $\min f(x;\xi) \quad \text{where } f(\cdot;\xi) \text{ is smooth}$ $\min f(x) = \phi(x) + \epsilon(x) \quad f(x) = \phi(x)(1 + \epsilon(x))$

Focus on additive noise

Finite-difference BFGS should not work!

- 1. Difference of noisy functions dangerous
- 2. Just one bad update once in a while: disastrous
- 3. Not done to the best of our knowledge

Finite Differences – Noisy Functions

11

 $\min f(x) = \phi(x) + \epsilon(x) \qquad f(x) = \phi(x)(1 + \epsilon(x))$

Outline of adaptive finite-difference BFGS method

- 1. Estimate noise $\epsilon(x)$ at every iteration -- More'-Wild
- 2. Estimate *h*
- 3. Compute finite difference gradient
- 4. Perform line search (?!)
- 5. Corrective Procedure when case line search fails
 - (need to modify line search)
 - Re-estimate noise level

Will require very few extra f evaluations/iteration – even none

Noise estimation

More'-Wild (2011)

Noise level: $\sigma = [var(\epsilon(x))]^{1/2}$ $\min f(x) = \phi(x) + \epsilon(x)$ Noise estimate: ϵ_f

At x choose a random direction v evaluate f at q + 1 equally spaced points $x + i\beta v$, i = 0,...,q

Compute function differences:

$$\Delta^{0} f(x) = f(x)$$

$$\Delta^{j+1} f(x) = \Delta^{j} [\Delta f(x)] = \Delta^{j} [f(x + \beta)] - \Delta^{j} [f(x)]]$$

Compute finite diverence table:

$$T_{ij} = \Delta^{j} f(x + i\beta v)$$

$$1 < j < q \quad 0 < i < j - q$$

$$\sigma_{j} = \frac{\gamma_{j}}{q - 1 - j} \sum_{i=0}^{q-j} T_{i,j}^{2} \qquad \gamma_{j} = \frac{(j!)^{2}}{(2j)!}$$

Noise estimation

 $\min f(x) = \sin(x) + \cos(x) + 10^{-3} U(0, 2\sqrt{3}) \qquad q = 6 \qquad \beta = 10^{-2}$

Х	f	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$	$\Delta^5 f$	$\Delta^6 f$
$-3 \cdot 10^{-2}$	1.003	7.54 <i>e</i> - 3	2.15 <i>e</i> - 3	1.87 <i>e</i> — 4	-5.87 <i>e</i> - 3	1.46 <i>e</i> — 2	-2.49 <i>e</i> - 2
$-2 \cdot 10^{-2}$	1.011	9.69 <i>e</i> - 3	2.33 <i>e</i> - 3	-5.68e - 3	8.73 <i>e</i> – 3	-1.03e - 3	
-10^{-2}	1.021	1.20e - 2	-3.35 <i>e</i> - 3	3.05 <i>e</i> - 3	-1.61e - 3		
0	1.033	8.67 <i>e</i> – 3	-2.96e - 3	1.44 <i>e</i> - 3			
10^{-2}	1.041	8.38 <i>e</i> - 3	1.14e - 3				
$2 \cdot 10^{-2}$	1.050	9.52 <i>e</i> - 3					
$3 \cdot 10^{-2}$	1.059						
σ_k		6.65 <i>e</i> – 3	8.69 <i>e</i> - 4	7.39 <i>e</i> – 4	7.34 <i>e</i> – 4	7.97e — 4	8.20 <i>e</i> − 4

High order differences of a smooth function tend to zero rapidly, while differences in noise are bounded away from zero. Changes in sign, useful.

Procedure is scale invariant!

Finite difference itervals

Once noise estimate ϵ_f has been chosen:

Forward difference: $h = 8^{1/4} (\frac{\epsilon_f}{\mu_2})^{1/2}$ $\mu_2 = \max_{x \in I} |f''(x)|$ Central difference: $h = 3^{1/3} (\frac{\epsilon_f}{\mu_3})^{1/3}$ $\mu_3 \approx |f'''(x)|$

Bad estimates of second and third derivatives can cause problems (not often)

Adaptive Finite Difference L-BFGS Method

Estimate noise ϵ_f

Compute *h* for forward or central differences [(4-8) function evaluations] Compute g_k

1

While convergence test not satisfied:

$$d = -H_k g_k \quad [\text{L-BFGS procedure}]$$

(x₊, f₊, flag) = LineSearch(x_k, f_k, g_k, d_k, f_s)
IF flag=1 [line search failed]
(x₊, f₊, h) = Recovery(x_k, f_k, g_k, d_k, max_{iter})

endif

$$x_{k+1} = x_{+}, f_{k+1} = f_{+}$$

Compute g_{k+1} [finite differences using h
 $s_{k} = x_{k+1} - x_{k}, y_{k} = g_{k+1} - g_{k}$
Discard (s_{k}, y_{k}) if $s_{k}^{T} y_{k} \le 0$
 $k = k + 1$
endwhile

Line Search

BFGS method requires Armijo-Wolfe line search

 $f(x_k + \alpha d) \le f(x_k) + \alpha c_1 \nabla f(x_k) d \quad \text{Armijo}$ $\nabla f(x_k + \alpha d)^T d \ge c_2 \nabla f(x_k)^T d \quad \text{Wolfe}$

Deterministic case: always possible if f is bounded below

- Can be problematic in the noisy case.
- Strategy: try to satisfy both but limit the number of attempts
- If first trial point (unit steplength) is not acceptable relax:

 $f(x_k + \alpha d) \le f(x_k) + \alpha c_1 \nabla f(x_k) d + 2\epsilon_f$ relaxed Armijo

Three outcomes: a) both satisfied; b) only Armijo; c) none

Corrective Procedure

Compute a new noise estimate $\overline{\epsilon_f}$ along search direction d_k Compute corresponding \overline{h} If $\hat{h} \neq h$ use new estimat $h \leftarrow \overline{h}$; return w.o. changing x_k Else compute new iterate (various options): small perturbation; stencil point

Finite difference Stencil (Kelley)

I believe that eventually the better methods will not use derivative approximations... [Powell, 1972]

f is ... somewhat noisy, which renders most methods based on finite differences of little or no use [X,X,X]. [Rios & Sahinidis, 2013]

END