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The Dual Simplex Method for a Special SOCP Problem

The Simplex Method has been extended to convex Quadratic Programming
decades ago (Franke-Wolfe 55)

(Goldfarb-Idnani 83) gave a practical dual algorithm (our research is inspired
partly by their work)

The simplex method can be extended to a large class of LP-Type problems
(Matousek, Sharir, Welzl 96)

Competitiveness and contrast to Interior Point Methods
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Simplex vs Interior point methods, why simplex?

Reminder: For linear optimization:

I Interior point (IP) methods usually have to solve a full-fledged linear
system per iteration, but have a small number of iterations

I In the simplex method a low rank update of a previously solved system
must be found, but the number of iterations is large

I IP methods are better for parallel implementation, and sparse systems

I Simplex is better for warm-start, and for cases where constraints arrive in a
stream

I Dual simplex is also generally more suitable for branch and bound and
similar procedures

A Similar situation exists for problems more general than linear optimization
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Infimum with respect to the Second-Order cone

Let Q be the second-order cone Q :=
{
x = (x0; x) ∈ Rd : ‖x‖2 ≤ x0

}
We define the infimum of a set of points P = {p1, . . . , pm} ⊂ Rd with respect
to Q as:

InfQ(P) := max
x
x0

(
= 〈e0, x〉

)
s.t. x �Q pi, i = 1, ...,m

with e0 = (1, 0, . . . , 0)>.

Fig 1. Example in R3 with 6 points.

It does not seem that this problem is a QP.
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Equivalence to the Smallest Enclosing Ball of Balls

Lemma

B(c1, r1) ⊆ B(c2, r2) iff ‖c2 − c1‖ ≤ r2 − r1.

Fig 2. Consider a SOC with vertex at each pi. Fig 3. View from the top.
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The smallest ball containing a set of balls:

max
x
x0
(
= radius

)
s.t. ‖pi − x‖ ≤ pi0 − x0, i = 1, ...,m

But ‖pi − xi‖ ≤ pi0 − x0 ⇔ (
x0
x

)
�Q

(
pi0
pi

)
The smallest enclosing ball of balls is an “LP-type” problem (Matous̆ek, Sharir &
Welzl (1996))

Previous work: Megiddo (1989); Welzl (1991); Chazelle and Matous̆ek (1996); Bădoiu
et al. (2002); Fischer and Gärtner (2003); Kumar et al. (2003); Zhou et al (2005).
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Duality and Complementary Slackness

Dual problem:

min
y

m∑
i=1

〈pi, yi〉

s.t.
m∑
i=1

yi = e0

yi �Q 0, i = 1, . . . ,m

Complementary slackness:

〈pi − x, yi〉 = 0, for i = 1, . . . ,m.

with x and yi, i = 1, ...,m, be the optimal primal
and dual solutions, respectively.

I if x ≺Q pi then yi = 0;

I if yi �Q 0 then x = pi (which can happen at
most once);

I if pi − x ∈ ∂Q and yi ∈ ∂Q then
yi0(p− x) + (pi0 − x0)yi = 0

⇔ yi =
yi0

pi0−x0
(x− pi).

Theorem
x is the optimal solution to the primal problem iff x �Q pi, i = 1, ...,m, and

x ∈ conv (pi : ‖pi − x‖ = pi0 − x0) .
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Fig 4. View from the top. The center is in the
convex hull of points on the boundary, so it is
optimal
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The concept of basis

Based on the concept for LP-type problems Matous̆ek, Sharir & Welzl (1996)

I Let P be the set of all points, and P1 ⊆ P

I Define w(P1) = InfQ(P1)

I A subset B ⊆ P1 is a basis if w(B ′) > w(B) for all B ′ ⊂ B.

I A basis contains at least 2 points and at most d affinely independent points

I B ⊆ P1 is a basis for InfQ(P1) problem if B is affinely independent, and
where the optimal x satisfies x ∈ ri conv(B), with B = {pi : pi ∈ B}

I The points on a basis B reside on the boundary ∂(Q + x)

9 / 22



Given a basis, how to find x?

‖pi − x‖
2 − (pi0 − x0)

2 = ‖p1 − x‖
2 − (p10 − x0)

2, ∀pi ∈ B \ {p1}

and

x ∈ aff(B)

m[
BT

NT

]
︸ ︷︷ ︸

A

x =

(
b+ x0c
NTp1

)
︸ ︷︷ ︸

w(x0)

and
∥∥p1 −A−1w(x0)

∥∥2−(p10−x0)
2 = 0

with N a basis for Null(Sub(B ∪ {p∗})), B = 2
[
p1 − p1, ..., p|B| − p1

]
,

c = 2

 p10 − p20
...

p10 − p|B|0

 and b =


‖p1‖

2 − p210 − ‖p2‖
2 + p220

...

‖p1‖
2 − p210 −

∥∥p|B|∥∥2 + p2|B|0
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The dual variables given a basic solution

A basic solution corresponds to a dual feasible solution.

Consider x, the solution to InfQ(B), with B ⊆ P1 a basis. We know that:

x ∈ conv({pi : pi ∈ B}) so ∃αi ≥ 0 s.t. x =
∑
pi∈B

αipi,
∑
i

αi = 1,

and αi’s are unique. The corresponding dual variables are:

• yi for i : pi ∈ B is such that:

yi0 =
αi(pi0 − x0)∑
j αj(pj0 − x0)

and yi =
yi0

pi0 − x0
(pi − x),

• yi = 0 for i : pi 6∈ B,

which are feasible for the dual problem and satisfy the complementary slackness
conditions.
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A Dual Simplex Algorithm Based on Dearing and Zeck’s
dual algorithm (2009)

0. Initialization: It starts with x, the solution InfQ(B) for some basis B (it is
easy to find a basis for a set of two points).

1. Check optimality: If x is primal feasible, then x is the optimal solution to
InfQ(P). Else pick p∗ primal infeasible.

2. Solve InfQ(B ∪ {p∗}): Move x ”towards” the feasibility of p∗, such that the
following invariants are maintained:

I The corresponding dual solution is always feasible.

I Complementary slackness is satisfied, that is, the primal constraints
corresponding to the basis are binding.

At the end, we have a new basis for the problem InfQ(B ∪ {p∗}), which is
obtained by possibly having to remove some points from the old basis, and by
adding p∗. A new iteration then starts
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Movement along a curve
The “curve” is parametrized by t is as follows
I ‖pi − x(t)‖ = pi0 − x0(t) for all pi ∈ B
I x(t) ∈ aff

(
B ∪ {p∗}

}
And the search is restricted to the polyhedron

C =
{(
x0
x

)
| x ∈ conv

(
B ∪ {p∗}

)}

Scanned by CamScanner Scanned by CamScanner
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Two scenarios are possible

I By moving along this curve, we reduce x0 enough to make p∗ become
feasible and at ∂Q, and xnew ∈ C. In this case the pivot is complete and
Bnew = B ∪

{
p∗
}

I Or before p∗ is absorbed into Q, the curve hits the wall of C. In this case
one of the points pi whose dual variable yi is about to become infeasible
must leave the basis:

B′new ← B \ {pi} where yi = 0

Cnew ← conv
(
B′new ∪ {p∗}

)
The curve will now move in the affine space spanned by Cnew

This may have to be repeated several times before p∗ becomes feasible
(Similar to Goldfarb & Idnani for QP)
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The curve x(t)

x moves along the curve ∆x(t) : R → Rd−1 which has the following properties:

I Primal constraints of B are binding (complementary slackness is kept):

‖pi − (x + ∆x(t))‖ − pi0 = ‖p1 − (x + ∆x(t))‖ − p10, pi ∈ B \ {p1}

m
BT (x(t) + ∆x(t)) = b + x0(t)c

‖p1 − (x(t) + ∆x(t))‖2 = (p10 − x0(t))
2

I Dual feasibility of
∑m

i=1 yi(t) = e0 is kept:

x + ∆x(t) ∈ aff(B ∪ {p∗})m
NT (x(t) + ∆x(t)) = N

Tp∗

N is a basis for Null(Sub(B ∪ {p∗})).

I We wish to move towards feasibility of p∗.
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Fig 4. ∆x(t) moving in C.
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What if ∆x(t) = 0?

This happens when x is the only point such that the primal constraints are binding for
the points in B, that is |B| = d.

When this happens, a point needs to be removed from the basis:

I pk ∈ B such that x ∈ conv({pj : pj ∈ B \ {pk} ∪ {p∗})

This rule ensures that the dual variables corresponding to x (which are now different
from before) are still dual feasible.
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The dual variables for x+ ∆x(t)

x+∆x(t) ∈ aff(B ∪ {p∗}) so ∃αj s.t. x+∆x(t) =
∑

pj∈B∪{p∗}

αjpj,
∑

pj∈B∪{p∗}

αj = 1.

The corresponding dual variables are

yi0(t) =
αi(pi0 − x0(t))∑

pj∈B∪{p∗} αj(pj0 − x0(t))
, yi(t) =

yi0

pi0 − x0
(pi−(x+∆x(t))), i : pi ∈ B∪{p∗}

yi(t) = 0, i : pi 6∈ B ∪ {p∗}

and these always satisfy
m∑
i=1

yi(t) = e0 for all t.

If αi < 0 then yi �Q 0, so yi becomes dual infeasible. This tells us how far we can
move along ∆x(t): until we hit one face of conv(B ∪ {p∗}).
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Curve search

We move from x along ∆x(t), t ≥ 0, until the first of the following happens:

1. p∗ becomes primal feasible: Let x∗ be the point on the curve at which
this happens. Since ‖p∗ − x∗‖ = p∗0 − x∗0, to find x∗, we add the following
constraint to the set of constraints that define any point on the curve:

2[p∗ − p1]
Tx∗ = 2x∗0 [p10 − p

∗
0] +

[
‖p1‖

2
− p210 − ‖p∗‖

2
+ (p∗0)

2
]

2. a face of conv(B ∪ {p∗}) is hit: Let xi be the point s.t. xi is the
intersection of the curve with Fi, the face opposed to pi ∈ B. To find it we
get Ni, a basis of Null(Sub(B \ {pi} ∪ {p∗})):

NT
i xi = N

T
i p
∗

Calculate xi for every face, and select the one with maximum xi0 s.t.
〈p∗ − x, xi − x〉 > 0 (the direction improving feasibility of p∗).
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Updating the basis after the curve search

The case that happens first is the one whose corresponding point has the largest
height.

1. When p∗ becomes feasible first: The new solution is now defined by a
new basis B = B′ ∪ {p∗}. And, we start a new iteration.

2. When a face of conv(B ∪ {p∗}) is hit first:

. The solution of InfQ(B ∪ {p∗}) is not defined by the corresponding pi,
therefore it is removed from the basis B = B \ {pi}.

. We go back to finding a new curve now with the new basis.

Theorem
At each iteration the objective function value, x0, strictly decreases, and since it
stops when all points are covered, the algorithm is finite.
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Efficiency of the pivot

I When Bnew = B ∪
{
p∗
}

, that is no wall of C was hit, then the new basis
and the new x can be obtained by a rank-one update of the previous
system computing the old x

I When a wall of C is hit a point in B has to be dropped, the new x can be
computed by rank-one update of the previous system

I Every time a wall is hit and another rank-one update must be solved

I By maintaining a QR factorization rank-one updates can be achieved
efficiently (O(d2))
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Extensions

I We may replace Q in principle with any proper cone K and seek InfK,
these are, in principle LP-type problems

I Of particular interest is the cone of nonnegative univariate polynomials over
an interval [a, b]

I Use the dual algorithm to solve the problem of partial enclosure (when only
a fraction of the given points are to be covered).

I Another set of LP-type problems: Minimum volume ellipsoid containing a
set of points, or a set of ellipsoids
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