Directly and Efficiently Optimizing Prediction Error and AUC of Linear Classifiers

Hiva Ghanbari

Joint work with Prof. Katya Scheinberg

Industrial and Systems Engineering Department

US & Mexico Workshop on Optimization and its Applications

> Huatulco, Mexico January 2018

Outline

Introduction

Directly Optimizing Prediction Error

Directly Optimizing AUC

Numerical Analysis

Summary

Outline

Introduction

Directly Optimizing Prediction Error

Directly Optimizing AUC

Numerical Analysis

Summary

Supervised Learning Problem

• Given a finite sample data set S of n (input, label) pairs, e.g.,

$$S := \{(x_i, y_i) : i = 1, \dots, n\}, where \ x_i \in \mathbb{R}^d \ and \ y_i \in \{+1, -1\}.$$

- We are interested in Binary Classification Problem in supervised learning
- Binary Classification Problem \Rightarrow Discrete valued output +1 or -1
- We are interested in linear classifier (predictor) $f(x; w) = w^T x$ so that

$$f: \mathcal{X} \to \mathcal{Y},$$

where ${\mathcal X}$ denote the space of input values and ${\mathcal Y}$ the space of output values.

Supervised Learning Problem

How good is this classifier?

- Prediction Error
- Area Under ROC Curve (AUC)

• Given a finite sample data set S of n (input, label) pairs, e.g.,

$$S := \{(x_i, y_i) : i = 1, \cdots, n\}, \text{ where } x_i \in \mathbb{R}^d \text{ and } y_i \in \{+1, -1\}.$$

- We are interested in Binary Classification Problem in supervised learning
- Binary Classification Problem \Rightarrow Discrete valued output +1 or -1
- We are interested in linear classifier (predictor) $f(x; w) = w^T x$ so that

$$f: \mathcal{X} \to \mathcal{Y},$$

where ${\mathcal X}$ denote the space of input values and ${\mathcal Y}$ the space of output values.

Outline

Introduction

Directly Optimizing Prediction Error

Directly Optimizing AUC

Numerical Analysis

Summary

- In S, each (x_i, y_i) is an i.i.d. observation of the random variables (X, Y).
- (X, Y) has an unknown joint probability distribution $P_{X,Y}(x, y)$ over \mathcal{X} and \mathcal{Y} .
- The expected risk associated with a linear classifier $f(x; w) = w^T x$ for zero-one loss function is defined as

$$R_{0-1}(f) = \mathbb{E}_{\mathcal{X}, \mathcal{Y}} \left[\ell_{0-1}(f(X; w), Y) \right]$$

= $\int_{\mathcal{X}} \int_{\mathcal{Y}} P_{X, Y}(x, y) \ell_{0-1}(f(x; w), y) \, dy dx$

where

$$\ell_{0-1}(f(x;w),y) = \begin{cases} +1 & \text{if } y \cdot f(x;w) < 0, \\ 0 & \text{if } y \cdot f(x;w) \ge 0. \end{cases}$$

Empirical Risk Minimization

- The joint probability distribution $P_{X,Y}(x,y)$ is unknown
- The *empirical risk* of the linear classifier f(x; w) for zero-one loss function over the finite training set S is of the interest, e.g.,

$$R_{0-1}(f;S) = \frac{1}{n} \sum_{i=1}^{n} \ell_{0-1}(f(x_i;w), y_i).$$

Empirical Risk Minimization

- The joint probability distribution $P_{X,Y}(x,y)$ is unknown
- The *empirical risk* of the linear classifier f(x; w) for zero-one loss function over the finite training set S is of the interest, e.g.,

$$R_{0-1}(f;S) = \frac{1}{n} \sum_{i=1}^{n} \ell_{0-1}(f(x_i;w), y_i).$$

• Utilizing the logistic regression loss function instead of 0-1 loss function, results

$$R_{log}\left(f;\mathcal{S}
ight) = rac{1}{n}\sum_{i=1}^{n}\log\left(1+\exp(-y_i\cdot f(x_i;w))
ight),$$

• Practically

$$\min_{w \in \mathbb{R}^d} \left\{ F_{log}(w) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-y_i \cdot f(x_i; w)) \right) + \lambda \|w\|^2 \right\}.$$

Alternative Interpretation of the Prediction Error

• We can interpret prediction error as a probability value:

$$F_{error}(w) = R_{0-1}(f)$$

= $\mathbb{E}_{\mathcal{X},\mathcal{Y}} \left[\ell_{0-1} \left(f(X; w), Y \right) \right]$
= $P(Y \cdot w^T X < 0).$

Alternative Interpretation of the Prediction Error

• We can interpret prediction error as a probability value:

$$F_{error}(w) = R_{0-1}(f)$$

= $\mathbb{E}_{\mathcal{X},\mathcal{Y}} \left[\ell_{0-1} \left(f(X; w), Y \right) \right]$
= $P(Y \cdot w^T X < 0).$

If the true values of the prior probabilities P(Y = +1) and P(Y = -1) are known or obtainable from a trivial calculation, then

Lemma 1

Expected risk can be interpreted in terms of the probability value, so that

$$F_{error}(w) = P(Y \cdot w^T X < 0)$$

= $P(Z^+ \le 0) P(Y = +1) + (1 - P(Z^- \le 0)) P(Y = -1),$

where

$$Z^+ = w^T X^+$$
, and $Z^- = w^T X^-$,

for X^+ and X^- as random variables from positive and negative classes, respectively.

- Suppose (X_1, \dots, X_n) is a multivariate random variable.
- For a given mapping function $g(\cdot)$ we are interested in the c.d.f of

$$Z = g\left(X_1, \cdots, X_n\right).$$

• If we define a region in space $\{\mathcal{X}_1 \times \cdots \times \mathcal{X}_n\}$ such that $g(x_1, \cdots, x_n) \leq z$, then we have

$$\begin{aligned} F_Z(z) &= P(Z \le z) \\ &= P(g(X) \le z) \\ &= P\left(\{x_1 \in \mathcal{X}_1, \cdots, x_n \in \mathcal{X}_n : g(x_1, \cdots, x_n) \le z\}\right) \\ &= \int_{\{x_1 \in \mathcal{X}_1, \cdots, x_n \in \mathcal{X}_n : g(x_1, \cdots, x_n) \le z\}} \cdots \int f_{X_1, \cdots, X_n}(x_1, \cdots, x_n) dx_1 \cdots dx_n. \end{aligned}$$

Data with Normal Distribution

Assume

$$X^+ \sim \mathcal{N}\left(\mu^+, \Sigma^+\right)$$
 and $X^- \sim \mathcal{N}\left(\mu^-, \Sigma^-\right)$.

Data with Normal Distribution

Assume

$$X^+ \sim \mathcal{N}\left(\mu^+, \Sigma^+\right)$$
 and $X^- \sim \mathcal{N}\left(\mu^-, \Sigma^-\right)$.

Why Normal?

• The family of multivariate Normal distributions is closed under linear transformations.

Theorem 2 (Tong (1990))

If $X \sim \mathcal{N}(\mu, \Sigma)$ and Z = CX + b, where C is any given $m \times n$ real matrix and b is any $m \times 1$ real vector, then $Z \sim \mathcal{N}(C\mu + b, C\Sigma C^T)$.

• Normal Distribution has a smooth c.d.f.

Prediction Error as a Smooth Function

Theorem 3

 $Suppose \ that$

$$X^+ \sim \mathcal{N}\left(\mu^+, \Sigma^+\right) \quad and \quad X^- \sim \mathcal{N}\left(\mu^-, \Sigma^-\right).$$

Then,

$$F_{error}(w) = P(Y = +1) \left(1 - \phi \left(\mu_{Z^+} / \sigma_{Z^+}\right)\right) + P(Y = -1)\phi \left(\mu_{Z^-} / \sigma_{Z^-}\right),$$

where

$$\begin{split} \mu_{Z^{+}} &= w^{T} \mu^{+}, \ \ \sigma_{Z^{+}} &= \sqrt{w^{T} \Sigma^{+} w}, \ \ and \\ \mu_{Z^{-}} &= w^{T} \mu^{-}, \ \ \sigma_{Z^{-}} &= \sqrt{w^{T} \Sigma^{-} w}, \end{split}$$

in which ϕ is the c.d.f of the standard normal distribution, e.g.,

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) dt, \text{ for } \forall x \in \mathbb{R}.$$

Prediction Error as a Smooth Function

Theorem 3

 $Suppose \ that$

$$X^+ \sim \mathcal{N}\left(\mu^+, \Sigma^+\right) \quad and \quad X^- \sim \mathcal{N}\left(\mu^-, \Sigma^-\right).$$

Then,

$$F_{error}(w) = P(Y = +1) \left(1 - \phi \left(\mu_{Z^+} / \sigma_{Z^+}\right)\right) + P(Y = -1)\phi \left(\mu_{Z^-} / \sigma_{Z^-}\right),$$

where

$$\begin{split} \mu_{Z^+} &= w^T \mu^+, \quad \sigma_{Z^+} = \sqrt{w^T \Sigma^+ w}, \quad \text{and} \\ \mu_{Z^-} &= w^T \mu^-, \quad \sigma_{Z^-} = \sqrt{w^T \Sigma^- w}, \end{split}$$

in which ϕ is the c.d.f of the standard normal distribution, e.g.,

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}t^2) dt, \text{ for } \forall x \in \mathbb{R}.$$

Prediction error is a smooth function of $w \Rightarrow$ we can compute the gradient and ...

Outline

Introduction

Directly Optimizing Prediction Error

Directly Optimizing AUC

Numerical Analysis

Summary

Learning From Imbalanced Data Sets

• Many real-world machine learning problems are dealing with imbalanced learning data

(a) Balanced data set

(b) Imbalanced data set

Receiver Operating Characteristic (ROC) Curve

• Sorted outputs based on descending value of $f(x; w) = w^T x$

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

- Various thresholds result in different True Positive Rate = $\frac{TP}{TP+FN}$ and False Positive Rate = $\frac{FP}{FP+TN}$.
- ROC curve presents the tradeoff between the TPR and the FPR, for all possible thresholds.

Area Under ROC Curve (AUC)

• How we can compare ROC curves?

Area Under ROC Curve (AUC)

• How we can compare ROC curves? Higher AUC \implies Better classifier

An unbiased estimation of the AUC value of a linear classifier can be obtained via Wilcoxon-Mann-Whitney (WMW) statistic result (Mann and R. Whitney (1947)), e.g.,

$$AUC(f; \mathcal{S}^+, \mathcal{S}^-) = \frac{\sum_{i=1}^{n^+} \sum_{j=1}^{n^-} \mathbb{1}\left[f(x_i^+; w) > f(x_j^-; w)\right]}{n^+ \cdot n^-}.$$

where

$$\mathbb{1}\left[f(x_i^+;w) > f(x_j^-;w)\right] = \begin{cases} +1 & \text{if } f(x_i^+;w) > f(x_j^-;w), \\ 0 & \text{otherwise.} \end{cases}$$

in which $\mathcal{S} = \mathcal{S}^+ \cup \mathcal{S}^-$.

The indicator function $\mathbb{1}[\cdot]$ can be approximate with:

- Sigmoid surrogate function, Yan et al. (2003),
- Pairwise exponential loss or pairwise logistic loss, *Rudin and Schapire* (2009),
- Pairwise hinge loss, Steck (2007),

$$F_{hinge}(w) = \frac{\sum_{i=1}^{n^{+}} \sum_{j=1}^{n^{-}} \max\left\{0, 1 - \left(f(x_{j}^{-}; w) - f(x_{i}^{+}; w)\right)\right\}}{n^{+} \cdot n^{-}}$$

Measuring AUC Statistically

- Let \mathcal{X}^+ and \mathcal{X}^- denote the space of the positive and negative input values,
- Then x_i^+ is an i.i.d. observation of the random variable X^+ and x_j^- is an i.i.d. observation of the random variable X^- ,
- If the joint probability distribution $P_{X^+,X^-}(x^+,x^-)$ is known, the actual associated AUC value of a linear classifier $f(x;w) = w^T x$ is defined as

$$\begin{aligned} AUC(f) &= \mathbb{E}_{\mathcal{X}^+, \mathcal{X}^-} \left[\mathbb{1} \left[f(X^+; w) > f(X^-; w) \right] \right] \\ &= \int_{\mathcal{X}^+} \int_{\mathcal{X}^-} P_{X^+, X^-}(x^+, x^-) \mathbb{1} \left[f(x^+; w) > f(x^-; w) \right] dx^- dx^+. \end{aligned}$$

Lemma 4

We can interpret AUC value as a probability value:

$$F_{AUC}(w) = 1 - AUC(f)$$

= 1 - $\mathbb{E}_{\mathcal{X}^+, \mathcal{X}^-} \left[\mathbb{1} \left[f\left(X^+; w\right) > f\left(X^-; w\right) \right] \right]$
= 1 - $P\left(Z < 0\right),$

where

$$Z = w^T \left(X^- - X^+ \right),$$

for X^+ and X^- as random variables from positive and negative classes, respectively.

AUC as a Smooth Function

Theorem 5

If two random variables X^+ and X^- have a joint multivariate normal distribution, such that

$$\begin{pmatrix} X^+ \\ X^- \end{pmatrix} \sim \mathcal{N}\left(\mu, \Sigma\right),$$

where
$$\mu = \begin{pmatrix} \mu^+ \\ \mu^- \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} \Sigma^{++} & \Sigma^{+-} \\ \Sigma^{-+} & \Sigma^{--} \end{pmatrix}$,

then the AUC function can be defined as

$$F_{AUC}(w) = 1 - \phi \left(\frac{\mu_Z}{\sigma_Z}\right),$$

where

$$\mu_Z = w^T \left(\mu^- - \mu^+ \right) \quad and$$

$$\sigma_Z = \sqrt{w^T \left(\Sigma^{--} + \Sigma^{++} - \Sigma^{-+} - \Sigma^{+-} \right) w},$$

and is the c.d.f of the standard normal distribution.

AUC as a Smooth Function

Theorem 5

If two random variables X^+ and X^- have a joint multivariate normal distribution, such that

$$\begin{pmatrix} X^+ \\ X^- \end{pmatrix} \sim \mathcal{N}\left(\mu, \Sigma\right),$$

where
$$\mu = \begin{pmatrix} \mu^+ \\ \mu^- \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} \Sigma^{++} & \Sigma^{+-} \\ \Sigma^{-+} & \Sigma^{--} \end{pmatrix}$,

then the AUC function can be defined as

$$F_{AUC}(w) = 1 - \phi \left(\frac{\mu_Z}{\sigma_Z}\right),$$

where

$$\mu_Z = w^T \left(\mu^- - \mu^+ \right) \quad and$$

$$\sigma_Z = \sqrt{w^T \left(\Sigma^{--} + \Sigma^{++} - \Sigma^{-+} - \Sigma^{+-} \right) w},$$

and is the c.d.f of the standard normal distribution.

AUC is a smooth function of $w \Rightarrow$ we can compute the gradient.

Outline

Introduction

Directly Optimizing Prediction Error

Directly Optimizing AUC

Numerical Analysis

Summary

Computational Settings

- We have used *gradient descent with backtracking line search* as the optimization method.
- The algorithm is implemented in *Python 2.7.11* and computations are performed on the *COR@L computational cluster*.
- We have used both *artificial data sets* and *real data sets*.
- We used *five-fold cross-validation* with the *train-test* framework.

Artificial Data Sets Information

• Artificial data points with normal distribution are generated randomly.

Name	d	n	P^+	P^{-}	out%
$data_1$	500	5000	0.05	0.95	0
$data_2$	500	5000	0.35	0.65	5
$data_3$	500	5000	0.5	0.5	10
$data_4$	1000	5000	0.15	0.85	0
$data_5$	1000	5000	0.4	0.6	5
$data_6$	1000	5000	0.5	0.5	10
$data_7$	2500	5000	0.1	0.9	0
$data_8$	2500	5000	0.35	0.65	5
$data_9$	2500	5000	0.5	0.5	10

Optimizing $F_{error}(w)$ vs. $F_{log}(w)$ on Artificial Data

rerror(w) within zation rerror(w) within zation rigg(w) within	$F_{log}(w)$ Minimization	
Data Exact moments Approximate moments		
Accuracy \pm std Time (s) Accuracy \pm std Time (s) Accuracy \pm std	Time (s)	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3.86	
$data_2 0.9905 \pm 0.0023 \qquad 0.26 \qquad \textbf{0.9806} \pm 0.0032 \qquad 0.86 \qquad 0.9557 \pm 0.0049$	13.72	
$data_3 0.9884 \pm 0.0030 \qquad 0.03 \qquad 0.9745 \pm 0.0037 \qquad 1.28 \qquad 0.9537 \pm 0.0048$	15.79	
$data_4 0.9935 \pm 0.0017 \qquad 0.63 \qquad 0.9791 \pm 0.0034 \qquad 5.51 \qquad 0.9782 \pm 0.0031$	10.03	
$data_5 0.9899 \pm 0.0026 \qquad 5.68 \qquad \textbf{0.9716} \pm 0.0048 \qquad 10.86 \qquad 0.9424 \pm 0.0055$	28.29	
$data_{6} 0.9904 \pm 0.0017 0.83 0.9670 \pm 0.0058 5.18 0.9291 \pm 0.0076$	25.47	
$data_7 0.9945 \pm 0.0019 \qquad 4.79 \qquad 0.9786 \pm 0.0028 \qquad 32.75 \qquad 0.9697 \pm 0.0031$	43.20	
$data_8 0.9901 \pm 0.0013 9.96 0.9290 \pm 0.0045 119.64 0.9263 \pm 0.0069$	104.94	
$data_9 \mid 0.9899 \pm 0.0028 \qquad 1.02 0.9249 \pm 0.0096 \qquad 68.91 0.9264 \pm 0.0067$	123.85	

Real Data Sets Information

Name	\mathbf{AC}	d	n	P^+	P^{-}
fourclass	[-1, 1], real	2	862	0.35	0.65
svmguide1	[-1, 1], real	4	3089	0.35	0.65
diabetes	[-1, 1], real	8	768	0.35	0.65
shuttle	[-1, 1], real	9	43500	0.22	0.78
vowel	[-6, 6], int	10	528	0.09	0.91
magic04	[-1, 1], real	10	19020	0.35	0.65
poker	[1, 13], int	11	25010	0.02	0.98
letter	[0, 15], int	16	20000	0.04	0.96
segment	[-1, 1], real	19	210	0.14	0.86
svmguide3	[-1, 1], real	22	1243	0.23	0.77
ijcnn1	[-1, 1], real	22	35000	0.1	0.9
german	[-1, 1], real	24	1000	0.3	0.7
landsat satellite	[27, 157], int	36	4435	0.09	0.91
sonar	[-1, 1], real	60	208	0.5	0.5
a9a	binary	123	32561	0.24	0.76
w8a	binary	300	49749	0.02	0.98
mnist	[0, 1], real	782	100000	0.1	0.9
colon-cancer	[-1, 1], real	2000	62	0.35	0.65
gisette	[-1, 1], real	5000	6000	0.49	0.51

These data sets can be downloaded from LIBSVM website 1 and UCI machine learning repository 2 .

¹https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

²http://archive.ics.uci.edu/ml/

Optimizing $F_{error}(w)$ vs. $F_{log}(w)$ on Real Data

Data	$F_{error}(w)$ Minin	mization	$F_{log}(w)$ Minimization		
Data	Accuracy \pm std	Time (s)	Accuracy \pm std	Time (s)	
fourclass	$0.8782 {\pm} 0.0162$	0.02	$0.8800 {\pm} 0.0147$	0.12	
svmguide1	0.9735±0.0047	0.42	$0.9506 {\pm} 0.0070$	0.28	
diabetes	$0.8832{\pm}0.0186$	1.04	$0.8839 {\pm} 0.0193$	0.13	
shuttle	$0.8920 {\pm} 0.0015$	0.01	0.9301 ±0.0019	4.05	
vowel	$0.9809 {\pm} 0.0112$	0.91	$0.9826 {\pm} 0.0088$	0.11	
magic04	0.8867 ± 0.0044	0.66	$0.8925 {\pm} 0.0041$	1.75	
poker	$0.9897 {\pm} 0.0008$	0.17	$0.9897 {\pm} 0.0008$	10.96	
letter	$0.9816 {\pm} 0.0015$	0.01	$0.9894{\pm}0.0009$	4.51	
segment	$0.9316 {\pm} 0.0212$	0.17	0.9915 ±0.0101	0.36	
svmguide3	0.9118±0.0136	0.39	$0.8951 {\pm} 0.0102$	0.17	
ijcnn1	$0.9512{\pm}0.0011$	0.01	$0.9518{\pm}0.0011$	4.90	
german	0.8780 ± 0.0125	1.09	$0.8826 {\pm} 0.0159$	0.62	
landsat satellite	$0.9532{\pm}0.0032$	0.01	$0.9501 {\pm} 0.0049$	3.30	
sonar	0.8926 ±0.0292	0.49	$0.8774 {\pm} 0.0380$	0.92	
a9a	$0.9193 {\pm} 0.0021$	0.98	$0.9233 {\pm} 0.0020$	11.45	
w8a	$0.9851 {\pm} 0.0005$	0.36	$0.9876 {\pm} 0.004$	24.16	
mnist	0.9909 ± 0.0004	3.79	$0.9938 {\pm} 0.0004$	136.83	
colon-cancer	0.9364±0.0394	15.92	$0.8646 {\pm} 0.0555$	1.20	
gisette	0.9782 ± 0.0025	310.72	$0.9706 {\pm} 0.0036$	136.71	

Optimizing $F_{error}(w)$ vs. $F_{log}(w)$ on Real Data

Optimizing $F_{AUC}(w)$ vs. $F_{hinge}(w)$ on Artificial Data

	$F_{AUC}(w)$ Minimization		$F_{AUC}(w)$ Minimization		$F_{hinge}(w)$ Minimization	
Data	Exact more	nents	Approximate 1	noments		
	AUC \pm std	Time (s)	AUC \pm std	Time (s)	AUC \pm std	Time (s)
$data_1$	$0.9972{\pm}0.0014$	0.01	0.9941 ± 0.0027	0.23	$0.9790 {\pm} 0.0089$	5.39
$data_2$	$0.9963 {\pm} 0.0016$	0.01	0.9956 ±0.0018	0.22	$0.9634 {\pm} 0.0056$	159.23
$data_3$	$0.9965{\pm}0.0015$	0.01	0.9959 ±0.0018	0.24	$0.9766 {\pm} 0.0041$	317.44
$data_4$	$0.9957{\pm}0.0018$	0.02	0.9933 ±0.0022	0.83	$0.9782 {\pm} 0.0054$	23.36
$data_5$	$0.9962{\pm}0.0011$	0.02	0.9951±0.0013	0.80	$0.9589 {\pm} 0.0068$	110.26
$data_6$	$0.9962{\pm}0.0013$	0.02	0.9949 ±0.0015	0.82	$0.9470 {\pm} 0.0086$	275.06
$data_7$	$0.9965 {\pm} 0.0021$	0.08	0.9874 ±0.0034	4.61	$0.9587 {\pm} 0.0092$	28.31
$data_8$	$0.9966{\pm}0.0008$	0.07	0.9929 ±0.0017	4.54	$0.9514{\pm}0.0051$	104.16
$data_9$	$0.9962{\pm}0.0014$	0.08	0.9932 ±0.0020	4.54	$0.9463 {\pm} 0.0085$	157.62

Optimizing $F_{AUC}(w)$ vs. $F_{hinge}(w)$ on Real Data

Data	$F_{AUC}(w)$ Minimization		$F_{hinge}(w)$ Minimization		
Data	AUC \pm std	Time (s)	AUC \pm std	Time (s)	
fourclass	$0.8362{\pm}0.0312$	0.01	$0.8362 {\pm} 0.0311$	6.81	
svmguide1	$0.9717 {\pm} 0.0065$	0.06	$0.9863 {\pm} 0.0037$	35.09	
diabetes	$0.8311 {\pm} 0.0311$	0.03	$0.8308 {\pm} 0.0327$	12.48	
shuttle	$0.9872 {\pm} 0.0013$	0.11	$0.9861 {\pm} 0.0017$	2907.84	
vowel	$0.9585 {\pm} 0.0333$	0.12	0.9765 ±0.0208	2.64	
magic04	$0.8382{\pm}0.0071$	0.11	$0.8419 {\pm} 0.0071$	1391.29	
poker	$0.5054{\pm}0.0224$	0.11	$0.5069 {\pm} 0.0223$	1104.56	
letter	$0.9830 {\pm} 0.0029$	0.12	$0.9883 {\pm} 0.0023$	121.49	
segment	$0.9948 {\pm} 0.0035$	0.21	$0.9992 {\pm} 0.0012$	4.23	
svmguide3	0.8013±0.0420	0.34	$0.7877 {\pm} 0.0432$	23.89	
ijcnn1	$0.9269 {\pm} 0.0036$	0.08	$0.9287 {\pm} 0.0037$	2675.67	
german	$0.7938 {\pm} 0.0292$	0.14	$0.7919 {\pm} 0.0294$	32.63	
landsat satellite	0.7587±0.0160	0.43	$0.7458 {\pm} 0.0159$	193.46	
sonar	$0.8214{\pm}0.0729$	0.88	0.8456±0.0567	2.15	
a9a	$0.9004{\pm}0.0039$	0.92	$0.9027 {\pm} 0.0037$	15667.87	
w8a	$0.9636 {\pm} 0.0055$	0.54	$0.9643 {\pm} 0.0057$	5353.23	
mnist	$0.9943{\pm}0.0009$	0.64	$0.9933 {\pm} 0.0009$	28410.2393	
colon-cancer	0.8942 ± 0.1242	2.50	$0.8796 {\pm} 0.1055$	0.05	
gisette	0.9957 ±0.0015	31.32	$0.9858 {\pm} 0.0029$	3280.38	

Optimizing $F_{AUC}(w)$ vs. $F_{hinge}(w)$ on Real Data

Outline

Introduction

Directly Optimizing Prediction Error

Directly Optimizing AUC

Numerical Analysis

Summary

Summary

- We proposed some conditions under which the expected error and AUC are smooth functions.
- Any gradient-based optimization method can be applied to directly optimize these functions.
- These new proposed approaches work efficiently without perturbing the unknown distribution of the real data sets.
- Studying data distributions may lead to new efficient approaches.

References

- H. B. Mann and D. R.Whitney. On a test whether one of two random variables is stochastically larger than the other. *Ann. Math. Statist*, 18:50-60, 1947.
- Y.L. Tong. The multivariate normal distribution. Springer Series in Statistics, 1990.
- G. Casella and R.L. Berger. Statistical Inference. *Pacific Grove, CA: Duxbury, 2, 2002.*

Thanks for your attention!