Reduced-Hessian Methods for Constrained Optimization

Philip E. Gill
University of California, San Diego

Joint work with:
Michael Ferry \& Elizabeth Wong

11th US \& Mexico Workshop on Optimization and its Applications Huatulco, Mexico, January 8-12, 2018.

Our honoree ...

Outline

(1) Reduced-Hessian Methods for Unconstrained Optimization
(2) Bound-Constrained Optimization
(3) Quasi-Wolfe Line Search

4 Reduced-Hessian Methods for Bound-Constrained Optimization
(5) Some Numerical Results

Reduced-Hessian Methods
 for Unconstrained Optimization

Definitions

Minimize $f: \mathbb{R}^{n} \mapsto \mathbb{R} \in C^{2}$ with quasi-Newton line-search method:
Given x_{k}, let $f_{k}=f\left(x_{k}\right), g_{k}=\nabla f\left(x_{k}\right)$, and $H_{k} \approx \nabla^{2} f\left(x_{k}\right)$.
Choose p_{k} such that $x_{k}+p_{k}$ minimizes the quadratic model

$$
q_{k}(x)=f_{k}+g_{k}^{T}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{T} H_{k}\left(x-x_{k}\right)
$$

If H_{k} is positive definite then p_{k} satisfies

$$
\begin{equation*}
H_{k} p_{k}=-g_{k} \tag{qNstep}
\end{equation*}
$$

Definitions

Define $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ where α_{k} is obtained from line search on

$$
\phi_{k}(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
$$

- Armijo condition:

$$
\phi_{k}(\alpha)<\phi_{k}(0)+\eta_{A} \alpha \phi_{k}^{\prime}(0), \quad \eta_{A} \in\left(0, \frac{1}{2}\right)
$$

- (strong) Wolfe conditions:

$$
\begin{aligned}
\phi_{k}(\alpha)<\phi_{k}(0)+\eta_{A} \alpha \phi_{k}^{\prime}(0), & \eta_{A} \in\left(0, \frac{1}{2}\right) \\
\left|\phi_{k}^{\prime}(\alpha)\right| \leq \eta_{w}\left|\phi_{k}^{\prime}(0)\right|, & \eta_{w} \in\left(\eta_{A}, 1\right)
\end{aligned}
$$

Quasi-Newton Methods

Updating H_{k} :

- $H_{0}=\sigma I_{n}$ where $\sigma>0$
- Compute H_{k+1} as the BFGS update to H_{k}, i.e.,

$$
H_{k+1}=H_{k}-\frac{1}{s_{k}^{T} H_{k} s_{k}} H_{k} s_{k} s_{k}^{T} H_{k}+\frac{1}{y_{k}^{T} s_{k}} y_{k} y_{k}^{T},
$$

where $s_{k}=x_{k+1}-x_{k}, y_{k}=g_{k+1}-g_{k}$, and $y_{k}^{\top} s_{k}$ approximates the curvature of f along p_{k}.

- Wolfe condition guarantees that H_{k} can be updated.

Quasi-Newton Methods

Updating H_{k} :

- $H_{0}=\sigma I_{n}$ where $\sigma>0$
- Compute H_{k+1} as the BFGS update to H_{k}, i.e.,

$$
H_{k+1}=H_{k}-\frac{1}{s_{k}^{T} H_{k} s_{k}} H_{k} s_{k} s_{k}^{T} H_{k}+\frac{1}{y_{k}^{T} s_{k}} y_{k} y_{k}^{T},
$$

where $s_{k}=x_{k+1}-x_{k}, y_{k}=g_{k+1}-g_{k}$, and $y_{k}^{T} s_{k}$ approximates the curvature of f along p_{k}.

- Wolfe condition guarantees that H_{k} can be updated.

One option to calculate p_{k} :

- Store upper-triangular Cholesky factor R_{k} where $R_{k}^{T} R_{k}=H_{k}$

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)
Let $\mathcal{G}_{k}=\operatorname{span}\left(g_{0}, g_{1}, \ldots, g_{k}\right)$ and \mathcal{G}_{k}^{\perp} be the orthogonal complement of \mathcal{G}_{k} in \mathbb{R}^{n}.

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If $H_{0}=\sigma I(\sigma>0)$, then:

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)
Let $\mathcal{G}_{k}=\operatorname{span}\left(g_{0}, g_{1}, \ldots, g_{k}\right)$ and \mathcal{G}_{k}^{\perp} be the orthogonal complement of \mathcal{G}_{k} in \mathbb{R}^{n}.

Result

Consider a quasi-Newton method with BFGS update applied to a general nonlinear function. If $H_{0}=\sigma l(\sigma>0)$, then:

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)
Let $\mathcal{G}_{k}=\operatorname{span}\left(g_{0}, g_{1}, \ldots, g_{k}\right)$ and \mathcal{G}_{k}^{\perp} be the orthogonal complement of \mathcal{G}_{k} in \mathbb{R}^{n}.

Result

Consider a quasi-Newton method with BFGS update applied to a general nonlinear function. If $H_{0}=\sigma l(\sigma>0)$, then:

- $p_{k} \in \mathcal{G}_{k}$ for all k.

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)
Let $\mathcal{G}_{k}=\operatorname{span}\left(g_{0}, g_{1}, \ldots, g_{k}\right)$ and \mathcal{G}_{k}^{\perp} be the orthogonal complement of \mathcal{G}_{k} in \mathbb{R}^{n}.

Result

Consider a quasi-Newton method with BFGS update applied to a general nonlinear function. If $H_{0}=\sigma l(\sigma>0)$, then:

- $p_{k} \in \mathcal{G}_{k}$ for all k.
- If $z \in \mathcal{G}_{k}$ and $w \in \mathcal{G}_{k}^{\perp}$, then $H_{k} z \in \mathcal{G}_{k}$ and $H_{k} w=\sigma w$.

Reduced-Hessian Methods

Significance of $p_{k} \in \mathcal{G}_{k}$:

- No need to minimize the quadratic model over the full space.
- Search directions lie in an expanding sequence of subspaces.

Significance of $H_{k} z \in \mathcal{G}_{k}$ and $H_{k} w=\sigma w$:

- All nontrivial curvature information in H_{k} can be stored in a smaller $r_{k}, \times r_{k}$ matrix where $r_{k}=\operatorname{dim}\left(G_{k}\right)$

Reduced-Hessian Methods

Significance of $p_{k} \in \mathcal{G}_{k}$:

- No need to minimize the quadratic model over the full space.
- Search directions lie in an expanding sequence of subspaces.

Significance of $H_{k} z \in \mathcal{G}_{k}$ and $H_{k} w=\sigma w$:

- Curvature stored in H_{k} along any unit vector in \mathcal{G}_{k}^{\perp} is σ.
- All nontrivial curvature information in H_{k} can be stored in a smaller $r_{k} \times r_{k}$ matrix, where $r_{k}=\operatorname{dim}\left(\mathcal{G}_{k}\right)$.

Reduced-Hessian Methods

Given a matrix $B_{k} \in \mathbb{R}^{n \times r_{k}}$, whose columns span \mathcal{G}_{k}, let

- $B_{k}=Z_{k} T_{k}$ be the QR decomposition of B_{k};
- W_{k} be a matrix whose orthonormal columns span \mathcal{G}_{k}^{\perp};
- $Q_{k}=\left(\begin{array}{ll}Z_{k} & W_{k}\end{array}\right)$.

Reduced-Hessian Methods

Given a matrix $B_{k} \in \mathbb{R}^{n \times r_{k}}$, whose columns span \mathcal{G}_{k}, let

- $B_{k}=Z_{k} T_{k}$ be the QR decomposition of B_{k};
- W_{k} be a matrix whose orthonormal columns span \mathcal{G}_{k}^{\perp};
- $Q_{k}=\left(\begin{array}{ll}Z_{k} & W_{k}\end{array}\right)$.

Then, $\quad H_{k} p_{k}=-g_{k} \Leftrightarrow\left(Q_{k}^{T} H_{k} Q_{k}\right) Q_{k}^{T} p_{k}=-Q_{k}^{T} g_{k}$,

Reduced-Hessian Methods

Given a matrix $B_{k} \in \mathbb{R}^{n \times r_{k}}$, whose columns span \mathcal{G}_{k}, let

- $B_{k}=Z_{k} T_{k}$ be the QR decomposition of B_{k};
- W_{k} be a matrix whose orthonormal columns span \mathcal{G}_{k}^{\perp};
- $Q_{k}=\left(\begin{array}{ll}Z_{k} & W_{k}\end{array}\right)$.

Then, $\quad H_{k} p_{k}=-g_{k} \Leftrightarrow\left(Q_{k}^{T} H_{k} Q_{k}\right) Q_{k}^{T} p_{k}=-Q_{k}^{T} g_{k}$, where

$$
\begin{aligned}
Q_{k}^{T} H_{k} Q_{k} & =\left(\begin{array}{cc}
Z_{k}^{T} H_{k} Z_{k} & Z_{k}^{T} H_{k} W_{k} \\
W_{k}^{T} H_{k} Z_{k} & W_{k}^{T} H_{k} W_{k}
\end{array}\right)=\left(\begin{array}{cc}
Z_{k}^{T} H_{k} Z_{k} & 0 \\
0 & \sigma I_{n-r_{k}}
\end{array}\right) \\
Q_{k}^{T} g_{k} & =\binom{Z_{k}^{T} g_{k}}{0} .
\end{aligned}
$$

Reduced-Hessian Methods

A reduced-Hessian (RH) method obtains p_{k} from

$$
p_{k}=Z_{k} q_{k} \text { where } q_{k} \text { solves } Z_{k}^{T} H Z_{k} q_{k}=-Z_{k}^{T} g_{k}, \quad \text { (RH step) }
$$ which is equivalent to (qN step).

In practice, we use a Cholesky factorization $R_{k}^{\top} R_{k}=Z_{k}^{\top} H_{k} Z_{k}$ - The new gradient g_{k+1} is accepted iff $\left\|\left(I-Z_{k} Z_{k}^{T}\right) g_{k+1}\right\|>\epsilon$.

Reduced-Hessian Methods

A reduced-Hessian (RH) method obtains p_{k} from

$$
p_{k}=Z_{k} q_{k} \text { where } q_{k} \text { solves } Z_{k}^{T} H Z_{k} q_{k}=-Z_{k}^{T} g_{k}, \quad \text { (RH step) }
$$

which is equivalent to (qN step).
In practice, we use a Cholesky factorization $R_{k}^{T} R_{k}=Z_{k}^{T} H_{k} Z_{k}$.

- The new gradient g_{k+1} is accepted iff $\left\|\left(I-Z_{k} Z_{k}^{T}\right) g_{k+1}\right\|>\epsilon$.
- Store and update $Z_{k}, R_{k}, Z_{k}^{T} p_{k}, Z_{k}^{T} g_{k}$, and $Z_{k}^{T} g_{k+1}$.

$$
\begin{aligned}
H_{k} & =Q_{k} Q_{k}^{T} H_{k} Q_{k} Q_{k}^{T} \\
& =\left(\begin{array}{ll}
Z_{k} & W_{k}
\end{array}\right)\left(\begin{array}{cc}
Z_{k}^{T} H_{k} Z_{k} & 0 \\
0 & \sigma I_{n-r_{k}}
\end{array}\right)\binom{Z_{k}}{W_{k}} \\
& =Z_{k}\left(Z_{k}^{T} H_{k} Z_{k}\right) Z_{k}^{T}+\sigma\left(I-Z_{k} Z_{k}^{T}\right)
\end{aligned}
$$

\Rightarrow any z such that $Z_{k}^{T} z=0$ satisfies $H_{k} z=\sigma z$.

Reduced-Hessian Method Variants

Reinitialization: If $g_{k+1} \notin \mathcal{G}_{k}$, the Cholesky factor R_{k} is updated as

$$
R_{k+1} \leftarrow\left(\begin{array}{cc}
R_{k} & 0 \\
0 & \sqrt{\sigma_{k+1}}
\end{array}\right)
$$

where σ_{k+1} is based on the latest estimate of the curvature, e.g.,

$$
\sigma_{k+1}=\frac{y_{k}^{T} s_{k}}{s_{k}^{T} s_{k}}
$$

Lingering: restrict search direction to a smaller subspace and allow
the subsnace to exnand onlv when f is suitably minimized on that
subspace

Reduced-Hessian Method Variants

Reinitialization: If $g_{k+1} \notin \mathcal{G}_{k}$, the Cholesky factor R_{k} is updated as

$$
R_{k+1} \leftarrow\left(\begin{array}{cc}
R_{k} & 0 \\
0 & \sqrt{\sigma_{k+1}}
\end{array}\right)
$$

where σ_{k+1} is based on the latest estimate of the curvature, e.g.,

$$
\sigma_{k+1}=\frac{y_{k}^{T} s_{k}}{s_{k}^{T} s_{k}}
$$

Lingering: restrict search direction to a smaller subspace and allow the subspace to expand only when f is suitably minimized on that subspace.

Reduced-Hessian Method Variants

Limited-memory: instead of storing the full approximate Hessian, keep information from only the last m steps $(m \ll n)$.

Key differences:

- Form Z_{k} from search directions instead of the gradients.
- Must store T_{k} from $B_{k}=Z_{k} T_{k}$ to update most quantities.
- Drop columns from B_{k} when necessary

Reduced-Hessian Method Variants

Limited-memory: instead of storing the full approximate Hessian, keep information from only the last m steps $(m \ll n)$.

Key differences:

- Form Z_{k} from search directions instead of the gradients.
- Must store T_{k} from $B_{k}=Z_{k} T_{k}$ to update most quantities.
- Drop columns from B_{k} when necessary.

Main idea:
Maintain $B_{k}=Z_{k} T_{k}$, where B_{k} is the $m \times n$ matrix

$$
B_{k}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & p_{k}
\end{array}\right)
$$

with $m \ll n$ (e.g., $m=5$).
$B_{k}=Z_{k} T_{k}$ is not available until p_{k} has been computed.
However, if Z_{k} is a basis for $\operatorname{span}\left(p_{k-m+1}, \ldots, p_{k-1}, p_{k}\right)$
then it is also a hasis for
i.e., only the triangular factor associated with the (common) basis for each of these subspaces will be different.

Main idea:

Maintain $B_{k}=Z_{k} T_{k}$, where B_{k} is the $m \times n$ matrix

$$
B_{k}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & p_{k}
\end{array}\right)
$$

with $m \ll n$ (e.g., $m=5$).
$B_{k}=Z_{k} T_{k}$ is not available until p_{k} has been computed.
However, if Z_{k} is a basis for $\operatorname{span}\left(p_{k-m+1}, \ldots, p_{k-1}, p_{k}\right)$ then it is also a basis for $\operatorname{span}\left(p_{k-m+1}, \ldots, p_{k-1}, g_{k}\right)$,
i.e., only the triangular factor associated with the (common) basis for each of these subspaces will be different.

At the start of iteration k, suppose we have the factors of

$$
B_{k}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & g_{k}
\end{array}\right)
$$

- Compute p_{k}.
- Swap p_{k} with g_{k} to give the factors of
- Compute x_{k+1}, g_{k+1}, etc., using a Wolfe line search.
- Update and reinitialize the factor R_{k}
- If g_{k+1} is accepted, compute the factors of

At the start of iteration k, suppose we have the factors of

$$
B_{k}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & g_{k}
\end{array}\right)
$$

- Compute p_{k}.
- Swap p_{k} with g_{k} to give the factors of

Compute x_{k+1}, g_{k+1}, etc., using a Wolfe line search. - Update and reinitialize the factor R_{k} - If g_{k+1} is accepted, compute the factors of

At the start of iteration k, suppose we have the factors of

$$
B_{k}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & g_{k}
\end{array}\right)
$$

- Compute p_{k}.
- Swap p_{k} with g_{k} to give the factors of

$$
B_{k}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & p_{k}
\end{array}\right)
$$

- Compute x_{k+1}, g_{k+1}, etc., using a Wolfe line search.
- Update and reinitialize the factor R_{k}
- Ir g_{k+1} is accepted, compute the factors of

At the start of iteration k, suppose we have the factors of

$$
B_{k}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & g_{k}
\end{array}\right)
$$

- Compute p_{k}.
- Swap p_{k} with g_{k} to give the factors of

$$
B_{k}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & p_{k}
\end{array}\right)
$$

- Compute x_{k+1}, g_{k+1}, etc., using a Wolfe line search.
- Update and reinitialize the factor R_{k} - If g_{k+1} is accepted, compute the factors of

At the start of iteration k, suppose we have the factors of

$$
B_{k}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & g_{k}
\end{array}\right)
$$

- Compute p_{k}.
- Swap p_{k} with g_{k} to give the factors of

$$
B_{k}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & p_{k}
\end{array}\right)
$$

- Compute x_{k+1}, g_{k+1}, etc., using a Wolfe line search.
- Update and reinitialize the factor R_{k}.
- If g_{k+1} is accepted, compute the factors of

At the start of iteration k, suppose we have the factors of

$$
B_{k}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & g_{k}
\end{array}\right)
$$

- Compute p_{k}.
- Swap p_{k} with g_{k} to give the factors of

$$
B_{k}=\left(\begin{array}{lllll}
p_{k-m+1} & p_{k-m+2} & \cdots & p_{k-1} & p_{k}
\end{array}\right)
$$

- Compute x_{k+1}, g_{k+1}, etc., using a Wolfe line search.
- Update and reinitialize the factor R_{k}.
- If g_{k+1} is accepted, compute the factors of

$$
B_{k+1}^{(g)}=\left(\begin{array}{lllll}
p_{k-m+2} & p_{k-m+2} & \cdots & p_{k} & g_{k+1}
\end{array}\right)
$$

Summary of key differences:

- Form Z_{k} from search directions instead of gradients.
- Must store T_{k} from $B_{k}=Z_{k} T_{k}$ to update most quantities.
- Can store B_{k} instead of Z_{k}.
- Drop columns from B_{k} when necessary.
- Half the storage of conventional limited-memory approaches.

Retains finite termination property for quadratic f

Summary of key differences:

- Form Z_{k} from search directions instead of gradients.
- Must store T_{k} from $B_{k}=Z_{k} T_{k}$ to update most quantities.
- Can store B_{k} instead of Z_{k}.
- Drop columns from B_{k} when necessary.
- Half the storage of conventional limited-memory approaches.

Retains finite termination property for quadratic f
(both with and without reinitialization).

Bound-Constrained Optimization

Bound Constraints

Given $\ell, u \in \mathbb{R}^{n}$, solve

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } \ell \leq x \leq u .
$$

Focus on line-search methods that use the BFGS method:

- Projected-gradient [Byrd, Lu, Nocedal, Zhu (1995)]
- Projected-search [Bertsekas (1982)]

These methods are designed to move on and off constraints rapidly and identify the active set after a finite number of iterations.

Projected-Gradient Methods

Definitions

$$
\mathcal{A}(x)=\left\{i: x_{i}=\ell_{i} \text { or } x_{i}=u_{i}\right\}
$$

Define the projection $P(x)$ componentwise, where

$$
[P(x)]_{i}= \begin{cases}\ell_{i} & \text { if } x_{i}<\ell_{i} \\ u_{i} & \text { if } x_{i}>u_{i} \\ x_{i} & \text { otherwise }\end{cases}
$$

Given an iterate x_{k}, define the piecewise linear paths

$$
x_{-g_{k}}(\alpha)=P\left(x_{k}-\alpha g_{k}\right) \text { and } \quad x_{p_{k}}(\alpha)=P\left(x_{k}+\alpha p_{k}\right)
$$

Algorithm L-BFGS-B

Given x_{k} and $q_{k}(x)$, a typical iteration of L-BFGS-B looks like:

Move along projected path $x_{-g_{k}}(\alpha)$

Algorithm L-BFGS-B

Find x_{k}^{c}, the first point that minimizes $q_{k}(x)$ along $x_{-g_{k}}(\alpha)$

Algorithm L-BFGS-B

Find \widehat{x}, the minimizer of $q_{k}(x)$ with x_{i} fixed for every $i \in \mathcal{A}\left(x_{k}^{c}\right)$

Algorithm L-BFGS-B

Find \bar{x} by projecting \widehat{x} onto the feasible region

Algorithm L-BFGS-B

Wolfe line search along p_{k} with $\alpha_{\max }=1$ to ensure feasibility

Projected-Search Methods

Definitions

$$
\begin{aligned}
\mathcal{A}(x) & =\left\{i: x_{i}=\ell_{i} \text { or } x_{i}=u_{i}\right\} \\
\mathcal{W}(x) & =\left\{i:\left(x_{i}=\ell_{i} \text { and } g_{i}>0\right) \text { or }\left(x_{i}=u_{i} \text { and } g_{i}<0\right)\right\}
\end{aligned}
$$

Definitions

$$
\begin{aligned}
\mathcal{A}(x) & =\left\{i: x_{i}=\ell_{i} \text { or } x_{i}=u_{i}\right\} \\
\mathcal{W}(x) & =\left\{i:\left(x_{i}=\ell_{i} \text { and } g_{i}>0\right) \text { or }\left(x_{i}=u_{i} \text { and } g_{i}<0\right)\right\}
\end{aligned}
$$

Given a point x and vector p, the projected vector of p at x, $P_{x}(p)$, is defined componentwise, where

$$
\left[P_{x}(p)\right]_{i}= \begin{cases}0 & \text { if } i \in \mathcal{W}(x) \\ p_{i} & \text { otherwise }\end{cases}
$$

Given a subspace \mathcal{S}, the projected subspace of \mathcal{S} at x is defined as

$$
P_{x}(\mathcal{S})=\left\{P_{x}(p): p \in \mathcal{S}\right\}
$$

Projected-Search Methods

A typical projected-search method updates x_{k} as follows:

- Compute $\mathcal{W}\left(x_{k}\right)$
- Calculate p_{k} as the solution of

$$
\min _{p \in P_{x_{k}}\left(\mathbb{R}^{n}\right)} q_{k}\left(x_{k}+p\right)
$$

- Obtain x_{k+1} from an Armijo-like line search on $\psi(\alpha)=f\left(x_{p_{k}}(\alpha)\right)$

Projected-Search Methods

Given x_{k} and $f(x)$, a typical iteration looks like:

Projected-Search Methods

Projected-Search Methods

Armijo-like line search along $P\left(x_{k}+\alpha p_{k}\right)$

Quasi-Wolfe Line Search

Can't use Wolfe conditions: $\psi(\alpha)$ is a continuous, piecewise differentiable function with cusps where $x_{p_{k}}(\alpha)$ changes direction.

As $\psi(\alpha)=f\left(x_{p}(\alpha)\right)$ is only piecewise differentiable, it is not possible to know when an interval contains a Wolfe step.

Definition

Let $\psi_{-}^{\prime}(\alpha)$ and $\psi_{+}^{\prime}(\alpha)$ denote left- and right-derivatives of $\psi(\alpha)$.
Define a [strong] quasi-Wolfe step to be an Armijo-like step that satisfies at least one of the following conditions:

Definition

Let $\psi_{-}^{\prime}(\alpha)$ and $\psi_{+}^{\prime}(\alpha)$ denote left- and right-derivatives of $\psi(\alpha)$.
Define a [strong] quasi-Wolfe step to be an Armijo-like step that satisfies at least one of the following conditions:

- $\left|\psi_{-}^{\prime}(\alpha)\right| \leq \eta_{w}\left|\psi_{+}^{\prime}(0)\right|$

Definition

Let $\psi_{-}^{\prime}(\alpha)$ and $\psi_{+}^{\prime}(\alpha)$ denote left- and right-derivatives of $\psi(\alpha)$.
Define a [strong] quasi-Wolfe step to be an Armijo-like step that satisfies at least one of the following conditions:

- $\left|\psi_{-}^{\prime}(\alpha)\right| \leq \eta_{w}\left|\psi_{+}^{\prime}(0)\right|$
- $\left|\psi_{+}^{\prime}(\alpha)\right| \leq \eta_{w}\left|\psi_{+}^{\prime}(0)\right|$

Definition

Let $\psi_{-}^{\prime}(\alpha)$ and $\psi_{+}^{\prime}(\alpha)$ denote left- and right-derivatives of $\psi(\alpha)$.
Define a [strong] quasi-Wolfe step to be an Armijo-like step that satisfies at least one of the following conditions:

- $\left|\psi_{-}^{\prime}(\alpha)\right| \leq \eta_{w}\left|\psi_{+}^{\prime}(0)\right|$
- $\left|\psi_{+}^{\prime}(\alpha)\right| \leq \eta_{w}\left|\psi_{+}^{\prime}(0)\right|$
- $\psi_{-}^{\prime}(\alpha) \leq 0 \leq \psi_{+}^{\prime}(\alpha)$

Theory

Analogous conditions for the existence of the Wolfe step imply the existence of the quasi-Wolfe step.

Quasi-Wolfe line searches are ideal for projected-search methods.
If ψ is differentiable the quasi-Wolfe and Wolfe conditions are identical.

In rare cases, H_{k} cannot be updated after quasi-Wolfe step.

Reduced-Hessian Methods for Bound-Constrained Optimization

Motivation

Projected-search methods typically calculate p_{k} as the solution to

$$
\min _{p \in P_{x_{k}}\left(\mathbb{R}^{n}\right)} q_{k}\left(x_{k}+p\right)
$$

If N_{k} has orthonormal columns that span $P_{x_{k}}\left(\mathbb{R}^{n}\right)$:

$$
p_{k}=N_{k} q_{k} \text { where } q_{k} \text { solves }\left(N_{k}^{T} H_{k} N_{k}\right) q_{k}=-N_{k}^{T} g_{k}
$$

An RH method for bound-constrained optimization (RH-B) solves
where the orthonormal columns of Z_{k} span $P_{x_{k}}\left(\mathcal{G}_{k}\right)$.

Motivation

Projected-search methods typically calculate p_{k} as the solution to

$$
\min _{p \in P_{x_{k}}\left(\mathbb{R}^{n}\right)} q_{k}\left(x_{k}+p\right)
$$

If N_{k} has orthonormal columns that span $P_{x_{k}}\left(\mathbb{R}^{n}\right)$:

$$
p_{k}=N_{k} q_{k} \text { where } q_{k} \text { solves }\left(N_{k}^{T} H_{k} N_{k}\right) q_{k}=-N_{k}^{T} g_{k}
$$

An RH method for bound-constrained optimization (RH-B) solves

$$
p_{k}=Z_{k} q_{k} \text { where } q_{k} \text { solves }\left(Z_{k}^{T} H_{k} Z_{k}\right) q_{k}=-Z_{k}^{T} g_{k}
$$

where the orthonormal columns of Z_{k} span $P_{x_{k}}\left(\mathcal{G}_{k}\right)$.

Details

Builds on limited-memory RH method framework, plus:

- Update values dependent on B_{k} when $\mathcal{W}_{k} \neq \mathcal{W}_{k-1}$
- Use projected-search trappings (working set, projections, ...).
- Use line search compatible with projected-search methods.
- Update H_{k} with curvature in direction restricted to range $\left(Z_{k+1}\right)$.

Cost of Changing the Working Set

An RH-B method can be explicit or implicit. An explicit method stores and uses Z_{k} and an implicit method stores and uses B_{k}.

When $\mathcal{W}_{k} \neq \mathcal{W}_{k-1}$, all quantities dependent on B_{k} are updated:

- Dropping n_{d} indices: $\approx 21 m^{2} n_{d}$ flops if implicit
- Adding n_{a} indices: $\approx 24 m^{2} n_{a}$ flops if implicit
- Using an explicit method: $+6 m n\left(n_{a}+n_{d}\right)$ flops to update Z_{k}

Some Numerical Results

Results

LRH-B (v1.0) and LBFGS-B (v3.0)
LRH-B implemented in Fortran 2003; LBFGS-B in Fortran 77.
373 problems from CUTEst test set, with n between 1 and 192, 627 .
Termination: $\left\|P_{x_{k}}\left(g_{k}\right)\right\|_{\infty}<10^{-5}$ or 300 K itns or 1000 cpu secs.

Implementation

Algorithm LRH-B (v1.0):

- Limited-memory: restricted to m preceding search directions.
- Reinitialization: included if $n>\min (6, m)$.
- Lingering: excluded.
- Method type: implicit.
- Updates: B_{k}, T_{k}, R_{k} updated for all $\mathcal{W}_{k} \neq \mathcal{W}_{k-1}$.

Default parameters

Name	m	Failed
LBFGS-B	5	78
LRH-B	5	50

Name	m	Failed
LBFGS-B	10	78
LRH-B	10	49

Outstanding Issues

- Projected-search methods:
- When to update/factor?

Better to refactor when there are lots of changes to \mathcal{A}.

- Implement plane rotations via level-two BLAS.
- How complex should we make the quasi-Wolfe search?

Thank you!

References

D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints, SIAM J. Control Optim., 20:221-246, 1982.
R. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited-memory algorithm for bound constrained optimization, SIAM J. Sci. Comput. 16:1190-1208, 1995.
M. C. Fenelon, Preconditioned conjugate-gradient-type methods for large-scale unconstrained optimization, Ph.D. thesis, Department of Operations Research, Stanford University, Stanford, CA, 1981.
M. W. Ferry, P. E. Gill and E. Wong, A limited-memory reduced Hessian method for bound-constrained optimization, Report CCoM 18-01, Center for Computational Mathematics, University of California, San Diego, 2018 (to appear).
P. E. Gill and M. W. Leonard, Reduced-Hessian quasi-Newton methods for unconstrained optimization, SIAM J. Optim., 12:209-237, 2001.
P. E. Gill and M. W. Leonard, Limited-memory reduced-Hessian methods for unconstrained optimization, SIAM J. Optim., 14:380-401, 2003.
J. Morales and J. Nocedal, Remark on "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization", ACM Trans. Math. Softw., 38(1)7:1-7:4, 2011.
D. Siegel, Modifying the BFGS update by a new column scaling technique, Math. Program., 66:45-78, 1994.

