
Reduced-Hessian Methods for Constrained
Optimization

Philip E. Gill

University of California, San Diego

Joint work with:
Michael Ferry & Elizabeth Wong

11th US & Mexico Workshop on Optimization and its Applications
Huatulco, Mexico, January 8–12, 2018.

UC San Diego | Center for Computational Mathematics 1/45

Our honoree . . .

UC San Diego | Center for Computational Mathematics 2/45

Outline

1 Reduced-Hessian Methods for Unconstrained Optimization

2 Bound-Constrained Optimization

3 Quasi-Wolfe Line Search

4 Reduced-Hessian Methods for Bound-Constrained Optimization

5 Some Numerical Results

UC San Diego | Center for Computational Mathematics 3/45

Reduced-Hessian Methods
for Unconstrained Optimization

UC San Diego | Center for Computational Mathematics 4/45

Definitions

Minimize f : Rn 7→ R ∈ C 2 with quasi-Newton line-search method:

Given xk , let fk = f (xk), gk = ∇f (xk), and Hk ≈ ∇2f (xk).

Choose pk such that xk + pk minimizes the quadratic model

qk(x) = fk + gT
k (x − xk) + 1

2(x − xk)THk(x − xk)

If Hk is positive definite then pk satisfies

Hkpk = −gk (qN step)

UC San Diego | Center for Computational Mathematics 5/45

Definitions

Define xk+1 = xk + αkpk where αk is obtained from line search on

φk(α) = f (xk + αpk)

• Armijo condition:

φk(α) < φk(0) + ηAαφ
′
k(0), ηA ∈ (0, 12)

• (strong) Wolfe conditions:

φk(α) < φk(0) + ηAαφ
′
k(0), ηA ∈ (0, 12)

|φ′k(α)| ≤ ηW |φ′k(0)|, ηW ∈ (ηA, 1)

UC San Diego | Center for Computational Mathematics 6/45

α

f(xk + αpk)

Wolfe conditions

Quasi-Newton Methods

Updating Hk :

• H0 = σIn where σ > 0

• Compute Hk+1 as the BFGS update to Hk , i.e.,

Hk+1 = Hk −
1

sTk Hksk
Hksks

T
k Hk +

1

yTk sk
yky

T
k ,

where sk = xk+1 − xk , yk = gk+1 − gk , and yTk sk
approximates the curvature of f along pk .

• Wolfe condition guarantees that Hk can be updated.

One option to calculate pk :

• Store upper-triangular Cholesky factor Rk where RT
k Rk = Hk

UC San Diego | Center for Computational Mathematics 8/45

Quasi-Newton Methods

Updating Hk :

• H0 = σIn where σ > 0

• Compute Hk+1 as the BFGS update to Hk , i.e.,

Hk+1 = Hk −
1

sTk Hksk
Hksks

T
k Hk +

1

yTk sk
yky

T
k ,

where sk = xk+1 − xk , yk = gk+1 − gk , and yTk sk
approximates the curvature of f along pk .

• Wolfe condition guarantees that Hk can be updated.

One option to calculate pk :

• Store upper-triangular Cholesky factor Rk where RT
k Rk = Hk

UC San Diego | Center for Computational Mathematics 8/45

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gk = span(g0, g1, . . . , gk) and G⊥k be the orthogonal
complement of Gk in Rn.

Result

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If H0 = σI (σ > 0), then:

• pk ∈ Gk for all k .

• If z ∈ Gk and w ∈ G⊥k , then Hkz ∈ Gk and Hkw = σw .

UC San Diego | Center for Computational Mathematics 9/45

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gk = span(g0, g1, . . . , gk) and G⊥k be the orthogonal
complement of Gk in Rn.

Result

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If H0 = σI (σ > 0), then:

• pk ∈ Gk for all k .

• If z ∈ Gk and w ∈ G⊥k , then Hkz ∈ Gk and Hkw = σw .

UC San Diego | Center for Computational Mathematics 9/45

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gk = span(g0, g1, . . . , gk) and G⊥k be the orthogonal
complement of Gk in Rn.

Result

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If H0 = σI (σ > 0), then:

• pk ∈ Gk for all k .

• If z ∈ Gk and w ∈ G⊥k , then Hkz ∈ Gk and Hkw = σw .

UC San Diego | Center for Computational Mathematics 9/45

Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gk = span(g0, g1, . . . , gk) and G⊥k be the orthogonal
complement of Gk in Rn.

Result

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If H0 = σI (σ > 0), then:

• pk ∈ Gk for all k .

• If z ∈ Gk and w ∈ G⊥k , then Hkz ∈ Gk and Hkw = σw .

UC San Diego | Center for Computational Mathematics 9/45

Reduced-Hessian Methods

Significance of pk ∈ Gk :

• No need to minimize the quadratic model over the full space.

• Search directions lie in an expanding sequence of subspaces.

Significance of Hkz ∈ Gk and Hkw = σw :

• Curvature stored in Hk along any unit vector in G⊥k is σ.

• All nontrivial curvature information in Hk can be stored in a
smaller rk × rk matrix, where rk = dim(Gk).

UC San Diego | Center for Computational Mathematics 10/45

Reduced-Hessian Methods

Significance of pk ∈ Gk :

• No need to minimize the quadratic model over the full space.

• Search directions lie in an expanding sequence of subspaces.

Significance of Hkz ∈ Gk and Hkw = σw :

• Curvature stored in Hk along any unit vector in G⊥k is σ.

• All nontrivial curvature information in Hk can be stored in a
smaller rk × rk matrix, where rk = dim(Gk).

UC San Diego | Center for Computational Mathematics 10/45

Reduced-Hessian Methods

Given a matrix Bk ∈ Rn×rk , whose columns span Gk , let

• Bk = ZkTk be the QR decomposition of Bk ;

• Wk be a matrix whose orthonormal columns span G⊥k ;

• Qk =
(
Zk Wk

)
.

Then, Hkpk = −gk ⇔ (QT
kHkQk)QT

k pk = −QT
k gk , where

QT
kHkQk =

(
ZT
k HkZk ZT

k HkWk

W T
k HkZk W T

k HkWk

)
=

(
ZT
k HkZk 0

0 σIn−rk

)

QT
k gk =

(
ZT
k gk
0

)
.

UC San Diego | Center for Computational Mathematics 11/45

Reduced-Hessian Methods

Given a matrix Bk ∈ Rn×rk , whose columns span Gk , let

• Bk = ZkTk be the QR decomposition of Bk ;

• Wk be a matrix whose orthonormal columns span G⊥k ;

• Qk =
(
Zk Wk

)
.

Then, Hkpk = −gk ⇔ (QT
kHkQk)QT

k pk = −QT
k gk , where

QT
kHkQk =

(
ZT
k HkZk ZT

k HkWk

W T
k HkZk W T

k HkWk

)
=

(
ZT
k HkZk 0

0 σIn−rk

)

QT
k gk =

(
ZT
k gk
0

)
.

UC San Diego | Center for Computational Mathematics 11/45

Reduced-Hessian Methods

Given a matrix Bk ∈ Rn×rk , whose columns span Gk , let

• Bk = ZkTk be the QR decomposition of Bk ;

• Wk be a matrix whose orthonormal columns span G⊥k ;

• Qk =
(
Zk Wk

)
.

Then, Hkpk = −gk ⇔ (QT
kHkQk)QT

k pk = −QT
k gk , where

QT
kHkQk =

(
ZT
k HkZk ZT

k HkWk

W T
k HkZk W T

k HkWk

)
=

(
ZT
k HkZk 0

0 σIn−rk

)

QT
k gk =

(
ZT
k gk
0

)
.

UC San Diego | Center for Computational Mathematics 11/45

Reduced-Hessian Methods

A reduced-Hessian (RH) method obtains pk from

pk = Zkqk where qk solves ZT
k HZkqk = −ZT

k gk , (RH step)

which is equivalent to (qN step).

In practice, we use a Cholesky factorization RT
k Rk = ZT

k HkZk .

• The new gradient gk+1 is accepted iff ‖(I − ZkZ
T
k)gk+1‖ > ε.

• Store and update Zk , Rk , ZT
k pk , ZT

k gk , and ZT
k gk+1.

UC San Diego | Center for Computational Mathematics 12/45

Reduced-Hessian Methods

A reduced-Hessian (RH) method obtains pk from

pk = Zkqk where qk solves ZT
k HZkqk = −ZT

k gk , (RH step)

which is equivalent to (qN step).

In practice, we use a Cholesky factorization RT
k Rk = ZT

k HkZk .

• The new gradient gk+1 is accepted iff ‖(I − ZkZ
T
k)gk+1‖ > ε.

• Store and update Zk , Rk , ZT
k pk , ZT

k gk , and ZT
k gk+1.

UC San Diego | Center for Computational Mathematics 12/45

Hk = QkQ
T
k HkQkQ

T
k

=
(
Zk Wk

)(ZT
k HkZk 0

0 σIn−rk

)(
Zk

Wk

)

= Zk(ZT
k HkZk)ZT

k + σ(I − ZkZ
T
k).

⇒ any z such that ZT
k z = 0 satisfies Hkz = σz .

UC San Diego | Center for Computational Mathematics 13/45

Reduced-Hessian Method Variants

Reinitialization: If gk+1 6∈ Gk , the Cholesky factor Rk is updated as

Rk+1 ←
(
Rk 0
0
√
σk+1

)
,

where σk+1 is based on the latest estimate of the curvature, e.g.,

σk+1 =
yTk sk
sTk sk

.

Lingering: restrict search direction to a smaller subspace and allow
the subspace to expand only when f is suitably minimized on that
subspace.

UC San Diego | Center for Computational Mathematics 14/45

Reduced-Hessian Method Variants

Reinitialization: If gk+1 6∈ Gk , the Cholesky factor Rk is updated as

Rk+1 ←
(
Rk 0
0
√
σk+1

)
,

where σk+1 is based on the latest estimate of the curvature, e.g.,

σk+1 =
yTk sk
sTk sk

.

Lingering: restrict search direction to a smaller subspace and allow
the subspace to expand only when f is suitably minimized on that
subspace.

UC San Diego | Center for Computational Mathematics 14/45

Reduced-Hessian Method Variants

Limited-memory: instead of storing the full approximate Hessian,
keep information from only the last m steps (m� n).

Key differences:

• Form Zk from search directions instead of the gradients.

• Must store Tk from Bk = ZkTk to update most quantities.

• Drop columns from Bk when necessary.

UC San Diego | Center for Computational Mathematics 15/45

Reduced-Hessian Method Variants

Limited-memory: instead of storing the full approximate Hessian,
keep information from only the last m steps (m� n).

Key differences:

• Form Zk from search directions instead of the gradients.

• Must store Tk from Bk = ZkTk to update most quantities.

• Drop columns from Bk when necessary.

UC San Diego | Center for Computational Mathematics 15/45

Main idea:

Maintain Bk = ZkTk , where Bk is the m × n matrix

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

with m� n (e.g., m = 5).

Bk = ZkTk is not available until pk has been computed.

However, if Zk is a basis for span(pk−m+1, . . . , pk−1, pk)

then it is also a basis for span(pk−m+1, . . . , pk−1, gk),

i.e., only the triangular factor associated with the (common) basis
for each of these subspaces will be different.

UC San Diego | Center for Computational Mathematics 16/45

Main idea:

Maintain Bk = ZkTk , where Bk is the m × n matrix

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

with m� n (e.g., m = 5).

Bk = ZkTk is not available until pk has been computed.

However, if Zk is a basis for span(pk−m+1, . . . , pk−1, pk)

then it is also a basis for span(pk−m+1, . . . , pk−1, gk),

i.e., only the triangular factor associated with the (common) basis
for each of these subspaces will be different.

UC San Diego | Center for Computational Mathematics 16/45

At the start of iteration k, suppose we have the factors of

B
(g)
k =

(
pk−m+1 pk−m+2 · · · pk−1 gk

)

• Compute pk .

• Swap pk with gk to give the factors of

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

• Compute xk+1, gk+1, etc., using a Wolfe line search.

• Update and reinitialize the factor Rk .

• If gk+1 is accepted, compute the factors of

B
(g)
k+1 =

(
pk−m+2 pk−m+2 · · · pk gk+1

)

UC San Diego | Center for Computational Mathematics 17/45

At the start of iteration k, suppose we have the factors of

B
(g)
k =

(
pk−m+1 pk−m+2 · · · pk−1 gk

)

• Compute pk .

• Swap pk with gk to give the factors of

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

• Compute xk+1, gk+1, etc., using a Wolfe line search.

• Update and reinitialize the factor Rk .

• If gk+1 is accepted, compute the factors of

B
(g)
k+1 =

(
pk−m+2 pk−m+2 · · · pk gk+1

)

UC San Diego | Center for Computational Mathematics 17/45

At the start of iteration k, suppose we have the factors of

B
(g)
k =

(
pk−m+1 pk−m+2 · · · pk−1 gk

)

• Compute pk .

• Swap pk with gk to give the factors of

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

• Compute xk+1, gk+1, etc., using a Wolfe line search.

• Update and reinitialize the factor Rk .

• If gk+1 is accepted, compute the factors of

B
(g)
k+1 =

(
pk−m+2 pk−m+2 · · · pk gk+1

)

UC San Diego | Center for Computational Mathematics 17/45

At the start of iteration k, suppose we have the factors of

B
(g)
k =

(
pk−m+1 pk−m+2 · · · pk−1 gk

)

• Compute pk .

• Swap pk with gk to give the factors of

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

• Compute xk+1, gk+1, etc., using a Wolfe line search.

• Update and reinitialize the factor Rk .

• If gk+1 is accepted, compute the factors of

B
(g)
k+1 =

(
pk−m+2 pk−m+2 · · · pk gk+1

)

UC San Diego | Center for Computational Mathematics 17/45

At the start of iteration k, suppose we have the factors of

B
(g)
k =

(
pk−m+1 pk−m+2 · · · pk−1 gk

)

• Compute pk .

• Swap pk with gk to give the factors of

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

• Compute xk+1, gk+1, etc., using a Wolfe line search.

• Update and reinitialize the factor Rk .

• If gk+1 is accepted, compute the factors of

B
(g)
k+1 =

(
pk−m+2 pk−m+2 · · · pk gk+1

)

UC San Diego | Center for Computational Mathematics 17/45

At the start of iteration k, suppose we have the factors of

B
(g)
k =

(
pk−m+1 pk−m+2 · · · pk−1 gk

)

• Compute pk .

• Swap pk with gk to give the factors of

Bk =
(
pk−m+1 pk−m+2 · · · pk−1 pk

)

• Compute xk+1, gk+1, etc., using a Wolfe line search.

• Update and reinitialize the factor Rk .

• If gk+1 is accepted, compute the factors of

B
(g)
k+1 =

(
pk−m+2 pk−m+2 · · · pk gk+1

)

UC San Diego | Center for Computational Mathematics 17/45

Summary of key differences:

• Form Zk from search directions instead of gradients.

• Must store Tk from Bk = ZkTk to update most quantities.

• Can store Bk instead of Zk .

• Drop columns from Bk when necessary.

• Half the storage of conventional limited-memory approaches.

Retains finite termination property for quadratic f

(both with and without reinitialization).

UC San Diego | Center for Computational Mathematics 18/45

Summary of key differences:

• Form Zk from search directions instead of gradients.

• Must store Tk from Bk = ZkTk to update most quantities.

• Can store Bk instead of Zk .

• Drop columns from Bk when necessary.

• Half the storage of conventional limited-memory approaches.

Retains finite termination property for quadratic f

(both with and without reinitialization).

UC San Diego | Center for Computational Mathematics 18/45

Bound-Constrained Optimization

UC San Diego | Center for Computational Mathematics 19/45

Bound Constraints

Given `, u ∈ Rn, solve

minimize
x∈Rn

f (x) subject to ` ≤ x ≤ u.

Focus on line-search methods that use the BFGS method:

• Projected-gradient [Byrd, Lu, Nocedal, Zhu (1995)]

• Projected-search [Bertsekas (1982)]

These methods are designed to move on and off constraints rapidly
and identify the active set after a finite number of iterations.

UC San Diego | Center for Computational Mathematics 20/45

Projected-Gradient Methods

UC San Diego | Center for Computational Mathematics 21/45

Definitions

A(x) = {i : xi = `i or xi = ui}

Define the projection P(x) componentwise, where

[P(x)]i =





`i if xi < `i ,

ui if xi > ui ,

xi otherwise.

Given an iterate xk , define the piecewise linear paths

x−gk (α) = P(xk − αgk) and xpk (α) = P(xk + αpk)

UC San Diego | Center for Computational Mathematics 22/45

Algorithm L-BFGS-B

Given xk and qk(x), a typical iteration of L-BFGS-B looks like:

xk−gk

Move along projected path x−gk (α)

UC San Diego | Center for Computational Mathematics 23/45

Algorithm L-BFGS-B

Given xk and qk(x), a typical iteration of L-BFGS-B looks like:

xk−gk

xck

Find xck , the first point that minimizes qk(x) along x−gk (α)

UC San Diego | Center for Computational Mathematics 23/45

Algorithm L-BFGS-B

Given xk and qk(x), a typical iteration of L-BFGS-B looks like:

xk−gk

xck

x̂

Find x̂ , the minimizer of qk(x) with xi fixed for every i ∈ A(xck)

UC San Diego | Center for Computational Mathematics 23/45

Algorithm L-BFGS-B

Given xk and qk(x), a typical iteration of L-BFGS-B looks like:

xk−gk

xck

x̂

x̄

Find x̄ by projecting x̂ onto the feasible region

UC San Diego | Center for Computational Mathematics 23/45

Algorithm L-BFGS-B

Given xk and qk(x), a typical iteration of L-BFGS-B looks like:

xk−gk

xck

x̂

pk

x̄

Wolfe line search along pk with αmax = 1 to ensure feasibility

UC San Diego | Center for Computational Mathematics 23/45

Projected-Search Methods

UC San Diego | Center for Computational Mathematics 24/45

Definitions

A(x) = {i : xi = `i or xi = ui}

W(x) = {i : (xi = `i and gi > 0) or (xi = ui and gi < 0)}

Given a point x and vector p, the projected vector of p at x ,
Px(p), is defined componentwise, where

[Px(p)]i =

{
0 if i ∈ W(x),

pi otherwise.

Given a subspace S, the projected subspace of S at x is defined as

Px(S) = {Px(p) : p ∈ S}.

UC San Diego | Center for Computational Mathematics 25/45

Definitions

A(x) = {i : xi = `i or xi = ui}

W(x) = {i : (xi = `i and gi > 0) or (xi = ui and gi < 0)}

Given a point x and vector p, the projected vector of p at x ,
Px(p), is defined componentwise, where

[Px(p)]i =

{
0 if i ∈ W(x),

pi otherwise.

Given a subspace S, the projected subspace of S at x is defined as

Px(S) = {Px(p) : p ∈ S}.

UC San Diego | Center for Computational Mathematics 25/45

Projected-Search Methods

A typical projected-search method updates xk as follows:

• Compute W(xk)

• Calculate pk as the solution of

min
p∈Pxk

(Rn)
qk(xk + p)

• Obtain xk+1 from an Armijo-like line search on
ψ(α) = f (xpk (α))

UC San Diego | Center for Computational Mathematics 26/45

Projected-Search Methods

Given xk and f (x), a typical iteration looks like:

pk
xk

UC San Diego | Center for Computational Mathematics 27/45

Projected-Search Methods

Given xk and f (x), a typical iteration looks like:

pk
xk

UC San Diego | Center for Computational Mathematics 27/45

Projected-Search Methods

Given xk and f (x), a typical iteration looks like:

pk
xk

Armijo-like line search along P(xk + αpk)

UC San Diego | Center for Computational Mathematics 27/45

Quasi-Wolfe Line Search

UC San Diego | Center for Computational Mathematics 28/45

Can’t use Wolfe conditions: ψ(α) is a continuous, piecewise
differentiable function with cusps where xpk (α) changes direction.

As ψ(α) = f
(
xp(α)

)
is only piecewise differentiable, it is not

possible to know when an interval contains a Wolfe step.

UC San Diego | Center for Computational Mathematics 29/45

Definition

Let ψ′−(α) and ψ′+(α) denote left- and right-derivatives of ψ(α).

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

• |ψ′−(α)| ≤ ηW |ψ′+(0)|

• |ψ′+(α)| ≤ ηW |ψ′+(0)|

• ψ′−(α) ≤ 0 ≤ ψ′+(α)

UC San Diego | Center for Computational Mathematics 30/45

Definition

Let ψ′−(α) and ψ′+(α) denote left- and right-derivatives of ψ(α).

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

• |ψ′−(α)| ≤ ηW |ψ′+(0)|

• |ψ′+(α)| ≤ ηW |ψ′+(0)|

• ψ′−(α) ≤ 0 ≤ ψ′+(α)

UC San Diego | Center for Computational Mathematics 30/45

Definition

Let ψ′−(α) and ψ′+(α) denote left- and right-derivatives of ψ(α).

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

• |ψ′−(α)| ≤ ηW |ψ′+(0)|

• |ψ′+(α)| ≤ ηW |ψ′+(0)|

• ψ′−(α) ≤ 0 ≤ ψ′+(α)

UC San Diego | Center for Computational Mathematics 30/45

Definition

Let ψ′−(α) and ψ′+(α) denote left- and right-derivatives of ψ(α).

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

• |ψ′−(α)| ≤ ηW |ψ′+(0)|

• |ψ′+(α)| ≤ ηW |ψ′+(0)|

• ψ′−(α) ≤ 0 ≤ ψ′+(α)

UC San Diego | Center for Computational Mathematics 30/45

Theory

Analogous conditions for the existence of the Wolfe step imply the
existence of the quasi-Wolfe step.

Quasi-Wolfe line searches are ideal for projected-search methods.

If ψ is differentiable the quasi-Wolfe and Wolfe conditions are
identical.

In rare cases, Hk cannot be updated after quasi-Wolfe step.

UC San Diego | Center for Computational Mathematics 31/45

Reduced-Hessian Methods for
Bound-Constrained Optimization

UC San Diego | Center for Computational Mathematics 32/45

Motivation

Projected-search methods typically calculate pk as the solution to

min
p∈Pxk

(Rn)
qk(xk + p)

If Nk has orthonormal columns that span Pxk (Rn):

pk = Nkqk where qk solves (NT
kHkNk)qk = −NT

k gk

An RH method for bound-constrained optimization (RH-B) solves

pk = Zkqk where qk solves (ZT
k HkZk)qk = −ZT

k gk

where the orthonormal columns of Zk span Pxk (Gk).

UC San Diego | Center for Computational Mathematics 33/45

Motivation

Projected-search methods typically calculate pk as the solution to

min
p∈Pxk

(Rn)
qk(xk + p)

If Nk has orthonormal columns that span Pxk (Rn):

pk = Nkqk where qk solves (NT
kHkNk)qk = −NT

k gk

An RH method for bound-constrained optimization (RH-B) solves

pk = Zkqk where qk solves (ZT
k HkZk)qk = −ZT

k gk

where the orthonormal columns of Zk span Pxk (Gk).

UC San Diego | Center for Computational Mathematics 33/45

Details

Builds on limited-memory RH method framework, plus:

• Update values dependent on Bk when Wk 6=Wk−1

• Use projected-search trappings (working set, projections, ...).

• Use line search compatible with projected-search methods.

• Update Hk with curvature in direction restricted to
range(Zk+1).

UC San Diego | Center for Computational Mathematics 34/45

Cost of Changing the Working Set

An RH-B method can be explicit or implicit. An explicit method
stores and uses Zk and an implicit method stores and uses Bk .

When Wk 6=Wk−1, all quantities dependent on Bk are updated:

• Dropping nd indices: ≈ 21m2nd flops if implicit

• Adding na indices: ≈ 24m2na flops if implicit

• Using an explicit method: +6mn(na + nd) flops to update Zk

UC San Diego | Center for Computational Mathematics 35/45

Some Numerical Results

UC San Diego | Center for Computational Mathematics 36/45

Results

LRH-B (v1.0) and LBFGS-B (v3.0)

LRH-B implemented in Fortran 2003; LBFGS-B in Fortran 77.

373 problems from CUTEst test set, with n between 1 and 192, 627.

Termination: ‖Pxk (gk)‖∞ < 10−5 or 300K itns or 1000 cpu secs.

UC San Diego | Center for Computational Mathematics 37/45

Implementation

Algorithm LRH-B (v1.0):

• Limited-memory: restricted to m preceding search directions.

• Reinitialization: included if n > min(6,m).

• Lingering: excluded.

• Method type: implicit.

• Updates: Bk , Tk , Rk updated for all Wk 6=Wk−1.

UC San Diego | Center for Computational Mathematics 38/45

Default parameters

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations for 374 UC/BC problems

LBFGS-B m = 5

LRH-B m = 10

0 2 4 6 8 10

Times for 374 UC/BC problems

LBFGS-B m = 5

LRH-B m = 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Name m Failed

LBFGS-B 5 78

LRH-B 10 49

UC San Diego | Center for Computational Mathematics 39/45

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations for 374 UC/BC problems

LBFGS-B m = 5

LRH-B m = 5

0 2 4 6 8 10

Times for 374 UC/BC problems

LBFGS-B m = 5

LRH-B m = 5

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Name m Failed

LBFGS-B 5 78

LRH-B 5 50

UC San Diego | Center for Computational Mathematics 40/45

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations for 374 UC/BC problems

LBFGS-B m = 10

LRH-B m = 10

0 2 4 6 8 10

Times for 374 UC/BC problems

LBFGS-B m = 10

LRH-B m = 10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Name m Failed

LBFGS-B 10 78

LRH-B 10 49

UC San Diego | Center for Computational Mathematics 41/45

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations for 374 UC/BC problems

LBFGS-B m = 5

LBFGS-B m = 10

LRH-B m = 5

LRH-B m = 10

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LBFGS-B m = 5

LBFGS-B m = 10

LRH-B m = 5

LRH-B m = 10

Times for 374 UC/BC problems

UC San Diego | Center for Computational Mathematics 42/45

Outstanding Issues

• Projected-search methods:

• When to update/factor?

Better to refactor when there are lots of changes to A.

• Implement plane rotations via level-two BLAS.

• How complex should we make the quasi-Wolfe search?

UC San Diego | Center for Computational Mathematics 43/45

Thank you!

UC San Diego | Center for Computational Mathematics 44/45

References
D. P. Bertsekas, Projected Newton methods for optimization problems with simple
constraints, SIAM J. Control Optim., 20:221–246, 1982.

R. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited-memory algorithm for bound
constrained optimization, SIAM J. Sci. Comput. 16:1190–1208, 1995.

M. C. Fenelon, Preconditioned conjugate-gradient-type methods for large-scale
unconstrained optimization, Ph.D. thesis, Department of Operations Research,
Stanford University, Stanford, CA, 1981.

M. W. Ferry, P. E. Gill and E. Wong, A limited-memory reduced Hessian method for
bound-constrained optimization, Report CCoM 18-01, Center for Computational
Mathematics, University of California, San Diego, 2018 (to appear).

P. E. Gill and M. W. Leonard, Reduced-Hessian quasi-Newton methods for
unconstrained optimization, SIAM J. Optim., 12:209–237, 2001.

P. E. Gill and M. W. Leonard, Limited-memory reduced-Hessian methods for
unconstrained optimization, SIAM J. Optim., 14:380–401, 2003.

J. Morales and J. Nocedal, Remark on “Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound constrained optimization”, ACM
Trans. Math. Softw., 38(1)7:1–7:4, 2011.

D. Siegel, Modifying the BFGS update by a new column scaling technique,
Math. Program., 66:45–78, 1994.

UC San Diego | Center for Computational Mathematics 45/45

	Reduced-Hessian Methods for Unconstrained Optimization
	Bound-Constrained Optimization
	Quasi-Wolfe Line Search
	Reduced-Hessian Methods for Bound-Constrained Optimization
	Some Numerical Results

