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Definitions

Minimize f : R” — R € C? with quasi-Newton line-search method:
Given xy, let fy = f(Xk), gk = Vf(Xk), and Hy ~ v2f(Xk).
Choose py such that xx + px minimizes the quadratic model
_ T, 1 T
k(%) = fic + gic (x — X)) + 5(x = xi) "Hi(x — x«)
If Hy is positive definite then py satisfies

Hkpk = —8k (gN step)
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Definitions

Define xx+1 = xx + axpx where oy is obtained from line search on
gbk(a) = f(Xk + Ozpk)

e Armijo condition:
k(@) < ¢k(0) + na(0), 74 € (0, 3)
e (strong) Wolfe conditions:
or(@) < ¢k(0) + n,2¢(0), 4 € (0,3)
Bk (@) < nw|d(0)], Mw € (1a; 1)
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Wolfe conditions




Quasi-Newton Methods
Updating H:
e Hyp =ol, where 0 >0

e Compute Hy1 as the BFGS update to Hy, i.e.,

1 1
Hi1=He - Hysisd Hi + T YiVe »

-
Sk Hiesi Yi Sk

where sy = Xk4+1 — Xk, Yk = 8k+1 — 8k, and ykTsk
approximates the curvature of f along p.

e Wolfe condition guarantees that Hy can be updated.
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Quasi-Newton Methods

Updating H:
e Hyp =ol, where 0 >0
e Compute Hy1 as the BFGS update to Hy, i.e.,

1

H =H — ——
k+1 k T
s, Hys,

1

T T

Hisise Hic + ——vievi
Yk Sk

where sy = Xk4+1 — Xk, Yk = 8k+1 — 8k, and ykTsk
approximates the curvature of f along p.

e Wolfe condition guarantees that Hy can be updated.

One option to calculate p:

e Store upper-triangular Cholesky factor Ry where R,Z—Rk =H,
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Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gx = span(go, &1, - - -, g) and Gi- be the orthogonal
complement of G in R".
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Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gx = span(go, &1, - - -, &) and QkL be the orthogonal
complement of G in R".

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If Hy = o/ (¢ > 0), then:

UC San Diego | Center for Computational Mathematics



Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gx = span(go, &1, - - -, &) and QkL be the orthogonal
complement of G in R".

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If Hy = o/ (¢ > 0), then:

o px € Gy for all k.
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Reduced-Hessian Methods

(Fenelon, 1981 and Siegel, 1992)

Let Gx = span(go, &1, - - -, &) and QkL be the orthogonal
complement of G in R".

Consider a quasi-Newton method with BFGS update applied to a
general nonlinear function. If Hy = o/ (¢ > 0), then:

o px € Gy for all k.

e lfz€ G, and w € gki, then H z € G, and Hw =ow.
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Reduced-Hessian Methods

Significance of py € Gy:

e No need to minimize the quadratic model over the full space.

e Search directions lie in an expanding sequence of subspaces.
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Reduced-Hessian Methods

Significance of py € Gy:

e No need to minimize the quadratic model over the full space.

e Search directions lie in an expanding sequence of subspaces.

Significance of Hyz € G and Hyw = ow:
e Curvature stored in Hj along any unit vector in gkl is 0.

e All nontrivial curvature information in Hj can be stored in a
smaller ry X rx matrix, where r, = dim(Gy).
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Reduced-Hessian Methods

Given a matrix By € R™ " whose columns span Gy, let
e By = Z, Ty be the QR decomposition of By;

e W, be a matrix whose orthonormal columns span QkL;

o Qu=(Zx Wi).
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Reduced-Hessian Methods

Given a matrix By € R™ " whose columns span Gy, let
e By = Z, Ty be the QR decomposition of By;

e W, be a matrix whose orthonormal columns span gkL;

o Qu=(Zx Wi).

Then, Hkpk = —8k = (Q,Z—Hka)QZPk = _sz—gk,
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Reduced-Hessian Methods

Given a matrix By € R™ " whose columns span Gy, let
e By = Z, Ty be the QR decomposition of By;

e W, be a matrix whose orthonormal columns span gkL;
o Qu=(Zx Wi).
Then,  Hipk = —gk < (Q/H,Q)Q/lp, = —Q[g. where

ZIHz, ZIHW,\ (Z[HZzZ, 0
WIH.z, WIHW,| 0 Tlyr,

ZTg
Qlg = < ko k) .

QkTHka = (
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Reduced-Hessian Methods

A reduced-Hessian (RH) method obtains py from
px = Zkqx where gy solves ZJHZ, q, = —Z'g,, (RH step)

which is equivalent to (gN step).
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Reduced-Hessian Methods

A reduced-Hessian (RH) method obtains py from
px = Zkqx where gy solves ZJHZ, q, = —Z'g,, (RH step)
which is equivalent to (gN step).

In practice, we use a Cholesky factorization RkTRk = ZkTHka.

e The new gradient gyy1 is accepted iff [|(/ — Z,Z] )g,,1I| > €.

e Store and update Z,, Ry, Z/p,, Z]g,. and Z/g, ;.

UC San Diego | Center for Computational Mathematics



Hie = QuQ HQQf

_ ZIZ—Hka 0 Zk
- (Zk Wk) < 0 U/n—rk Wk

= Z(Z! HZ)Z] +o(l — 2,2]).

= any z such that Zsz = 0 satisfies Hxz = oz.
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Reduced-Hessian Method Variants

Reinitialization: If gx+1 & Gk, the Cholesky factor Ry is updated as

Ry 0
Rk 1< <
M 0 okt1)’
where o1 is based on the latest estimate of the curvature, e.g.,

-
_ Yk Sk
Sk Sk

UC San Diego | Center for Computational Mathematics



Reduced-Hessian Method Variants

Reinitialization: If gx+1 & Gk, the Cholesky factor Ry is updated as

Ry 0
Rk 1< (
M 0 okt1)’
where o1 is based on the latest estimate of the curvature, e.g.,

-
_ Yk Sk
Sk Sk

Lingering: restrict search direction to a smaller subspace and allow
the subspace to expand only when f is suitably minimized on that
subspace.
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Reduced-Hessian Method Variants

Limited-memory: instead of storing the full approximate Hessian,
keep information from only the last m steps (m < n).
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Reduced-Hessian Method Variants

Limited-memory: instead of storing the full approximate Hessian,
keep information from only the last m steps (m < n).

Key differences:
e Form Zj from search directions instead of the gradients.
e Must store Ty from By, = Z, T to update most quantities.

e Drop columns from By when necessary.
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Main idea:

Maintain By = Zx Ty, where By is the m x n matrix

B = (Pk—m+1 Pk-mt2 '+ Pk-1 Pk)

with m < n (e.g., m=5).

UC San Diego | Center for Computational Mathematics



Main idea:

Maintain By = Zx Ty, where By is the m x n matrix

B = (Pk—m+1 Pk-mt2 '+ Pk-1 Pk)
with m < n (e.g., m=5).
Bx = Zk Ty is not available until p, has been computed.

However, if Zy is a basis for span(pk—m+1, - - - Pk—1, Pk)
then it is also a basis for  span(px—m+t1,---,Pk—1,8k)

i.e., only the triangular factor associated with the (common) basis
for each of these subspaces will be different.
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At the start of iteration k, suppose we have the factors of

Bl((g):(Pk—erl Pk—m+2 - Pk-1 gk)
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At the start of iteration k, suppose we have the factors of
B;Eg) = (Pk=m+1 Pk—mt2 *** Pk-1 8k)

e Compute py.
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At the start of iteration k, suppose we have the factors of
B;Eg) = (Pk=m+1 Pk—mt2 *** Pk-1 8k)

e Compute py.

e Swap pi with gk to give the factors of

Bk = (Pk—m+1 Pk—m+t2 *** Pk-1 Pk)
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At the start of iteration k, suppose we have the factors of
B;Eg) = (Pk=m+1 Pk—mt2 *** Pk-1 8k)
e Compute py.
e Swap pi with gk to give the factors of

Bk = (Pk—m+1 Pk—m+t2 *** Pk-1 Pk)

e Compute xk11, gki+1, etc., using a Wolfe line search.
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At the start of iteration k, suppose we have the factors of

Bl((g):(Pk—erl Pk—m+2 - Pk-1 gk)

Compute py.

e Swap pi with gk to give the factors of

Bk = (Pk—m+1 Pk—m+t2 *** Pk-1 Pk)

Compute Xxi11, gk+1, etc., using a Wolfe line search.

Update and reinitialize the factor Ry.
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At the start of iteration k, suppose we have the factors of

Bl((g):(Pk—erl Pk—m+2 - Pk-1 gk)

Compute py.

e Swap pi with gk to give the factors of

Bk = (Pk—m+1 Pk—m+t2 *** Pk-1 Pk)

Compute Xxi11, gk+1, etc., using a Wolfe line search.

Update and reinitialize the factor Ry.

If gkt1 is accepted, compute the factors of

B,((i)lz(Pkferz Pk—mi+2 “** Pk 8ktl)
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Summary of key differences:
e Form Zj from search directions instead of gradients.

e Must store Ty from By = Z, Ty to update most quantities.

Can store By instead of Z,.

Drop columns from Bj when necessary.

Half the storage of conventional limited-memory approaches.
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Summary of key differences:
e Form Zj from search directions instead of gradients.

e Must store Ty from By = Z, Ty to update most quantities.

Can store By instead of Z,.

Drop columns from Bj when necessary.

Half the storage of conventional limited-memory approaches.

Retains finite termination property for quadratic f

(both with and without reinitialization).
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Bound-Constrained Optimization
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Bound Constraints

Given ¢, u € R", solve

minimize f(x) subject to ¢ < x < u.
xER"

Focus on line-search methods that use the BFGS method:
¢ Projected-gradient [Byrd, Lu, Nocedal, Zhu (1995)]
e Projected-search [Bertsekas (1982)]

These methods are designed to move on and off constraints rapidly
and identify the active set after a finite number of iterations.
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Projected-Gradient Methods
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Definitions

.A(X) = {iIXi :ﬁ,' or X = u,-}

Define the projection P(x) componentwise, where

0 it xp < 4,
[P(X)]i = Qui if x> u;,
Xx; otherwise.

Given an iterate xy, define the piecewise linear paths

X_g () = P(xx — agk) and xp, (a) = P(xk + apy)
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Algorithm L-BFGS-B

Given xi and qk(x), a typical iteration of L-BFGS-B looks like:

Lk

Move along projected path x_g, ()
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Algorithm L-BFGS-B

Lk

Find xg, the first point that minimizes gx(x) along x_g, (@)
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Algorithm L-BFGS-B

T
— 9k

Find X, the minimizer of qx(x) with x; fixed for every i € A(xf)
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Algorithm L-BFGS-B

T
— 9k
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Algorithm L-BFGS-B

Wolfe line search along px with amax = 1 to ensure feasibility
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Projected-Search Methods
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Definitions

‘A(X) :{i:XIZEI or X; = Ui}

W(x)={i:(x;=+¢ and g >0) or (x;=u; and g; <0)}
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Definitions

Ax)={i:xi=¥; or xi=u}
W(x)={i:(xi=¢ and g >0) or (x;i=u; and g; <0)}

Given a point x and vector p, the projected vector of p at x,
P«(p), is defined componentwise, where

0 if ieW(x),

pi otherwise.

[Px(p)]i = {

Given a subspace S, the projected subspace of S at x is defined as

P«(S) = {Px(p) : p € S}.
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Projected-Search Methods

A typical projected-search method updates x, as follows:
o Compute W(x)

e Calculate py as the solution of

min  qk(xk + p
PEP (R") ( )

e Obtain xx11 from an Armijo-like line search on

P(a) = %, ()

UC San Diego | Center for Computational Mathematics



Projected-Search Methods

Given x, and f(x), a typical iteration looks like:

Ty
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Projected-Search Methods

Ty
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Projected-Search Methods

Armijo-like line search along P(xx + ap)
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Quasi-Wolfe Line Search
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Can't use Wolfe conditions: () is a continuous, piecewise
differentiable function with cusps where x,, () changes direction.

As () = f(xp(cx)) is only piecewise differentiable, it is not
possible to know when an interval contains a Wolfe step.

UC San Diego | Center for Computational Mathematics



Definition

Let ¢’ («) and ¢/ («) denote left- and right-derivatives of ().

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:
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Definition

Let ¢’ («) and ¢/ («) denote left- and right-derivatives of ().

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

o [l ()] < nwlvi(0)]
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Definition

Let ¢’ («) and ¢/ («) denote left- and right-derivatives of ().

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

o [l ()] < nwlvi(0)]
o [YL(e)| < nwl(0)]
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Definition

Let ¢’ («) and ¢/ («) denote left- and right-derivatives of ().

Define a [strong] quasi-Wolfe step to be an Armijo-like step that
satisfies at least one of the following conditions:

o [l ()] < nwlvi(0)]
o [YL(e)| < nwl(0)]
e ¢ (a) <0 <9l(a)
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Theory

Analogous conditions for the existence of the Wolfe step imply the
existence of the quasi-Wolfe step.

Quasi-Wolfe line searches are ideal for projected-search methods.

If v is differentiable the quasi-Wolfe and Wolfe conditions are
identical.

In rare cases, H, cannot be updated after quasi-Wolfe step.
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Reduced-Hessian Methods for
Bound-Constrained Optimization
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Motivation

Projected-search methods typically calculate pj as the solution to

min qx(xk + p
PEPx, (R™) ( )

If Nj has orthonormal columns that span Py (R"):

pk = Niqi where gy solves (N H Ny ) g = —N{ gy
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Motivation

Projected-search methods typically calculate pj as the solution to

min qx(xk + p
PEPx, (R™) ( )

If Nj has orthonormal columns that span Py (R"):
pk = Niqy where gy solves (NJH, N, )q, = —N,/g;

An RH method for bound-constrained optimization (RH-B) solves
pk = Zkqk where gy solves (Z/H,Z\)a, = —Z/g,

where the orthonormal columns of Zj span Py, (Gy).
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Details

Builds on limited-memory RH method framework, plus:

e Update values dependent on By when W) # Wy _1
e Use projected-search trappings (working set, projections, ...).
e Use line search compatible with projected-search methods.

e Update Hy with curvature in direction restricted to
range(Zx41)-
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Cost of Changing the Working Set

An RH-B method can be explicit or implicit. An explicit method
stores and uses Z, and an implicit method stores and uses By.

When Wy # Wi_1, all quantities dependent on By are updated:

e Dropping ng indices: ~ 21m?ny flops if implicit
e Adding n, indices: ~ 24m?n, flops if implicit

e Using an explicit method: +6mn(n, + ny) flops to update Zx
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Some Numerical Results
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Results

LRH-B (v1.0) and LBFGS-B (v3.0)
LRH-B implemented in Fortran 2003; LBFGS-B in Fortran 77.
373 problems from CUTEst test set, with n between 1 and 192, 627.

Termination: ||Px, (gk)|lco < 107> or 300K itns or 1000 cpu secs.
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Implementation

Algorithm LRH-B (v1.0):

e Limited-memory: restricted to m preceding search directions.

Reinitialization: included if n > min(6, m).

e Lingering: excluded.

Method type: implicit.

Updates: Bk, Tk, Rx updated for all Wy # Wy_1.
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Default parameters

0.4

0.3

0.2

0.1

LBFGS-Bm =5
LRH-B  m = 10

Function evaluations for 374 UC/BC problems

0.8 1

0.7+

0.4

LBFGS-Bm =5
LRH-B m =10

Times for 374 UC/BC problems

er for Compu

Name

m | Failed

LBFGS-B
LRH-B
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5 78
10 49
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1 1
0.9 o9l
08 08t
07 07
0.6 0.6
0.5 0.5
0.4 0.4
LBFGS-Bm =5 ——— LBFGS-Bm =5
03 LRH-B m =5 03 LRH-B m =5
0.2 0.2
Function evaluations for 374 UC/BC problems Times for 374 UC/BC problems
0.1 0.1
0 2 4 6 8 10 0 2 E 6 8 10
Name m ‘ Failed
LBFGS-B 5 78
LRH-B 5 50
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LRH-B m =10

Function evaluations for 374 UC/BC problems

LBFGS-B m = 10
LRH-B  m = 10

Times for 374 UC/BC problems

Name

m ‘ Failed

LBFGS-B
LRH-B
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QOutstanding Issues

e Projected-search methods:
e When to update/factor?
Better to refactor when there are lots of changes to A.

e Implement plane rotations via level-two BLAS.

e How complex should we make the quasi-Wolfe search?
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Thank you!
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