How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization

Frank E. Curtis, Lehigh University

joint work with

Daniel P. Robinson, Johns Hopkins University

U.S.-Mexico Workshop on Optimization and its Applications

8 January 2018

Thanks, Don!

Outline		

Motivation

Contemporary Analyses

Partitioning the Search Space

Behavior of Regularization Methods

Summary & Perspectives

Motivation		
Outline		
Untille		

Motivation

Contemporary Analyses

Partitioning the Search Space

Behavior of Regularization Methods

Summary & Perspectives

Motivation		
History		

Nonlinear optimization has had parallel developments

Worlds are (finally) colliding!

Worst-case complexity for nonconvex optimization

Here is how we do it now:

Assuming Lipschitz continuity of derivatives...

... upper bound on # of iterations until $\|\nabla f(x_k)\|_2 \leq \epsilon$?

Gradient descent	Newton / trust region	Cubic regularization
$O(\epsilon^{-2})$	$O(\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-3/2})$

Motivation			
Self-examin	ation		

 But ...

- ▶ Is this the best way to *characterize* our algorithms?
- ▶ Is this the best way to *represent* our algorithms?

Motivation			
Self-examir	nation		

But...

- ▶ Is this the best way to *characterize* our algorithms?
- Is this the best way to represent our algorithms?

People listen! Cubic regularization...

- ▶ Griewank (1981)
- Nesterov & Polyak (2006)
- ▶ Weiser, Deuflhard, Erdmann (2007)
- ▶ Cartis, Gould, Toint (2011), the ARC method
- ... is a framework to which researchers have been attracted...
 - Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
 - Carmon, Duchi (2017)
 - ▶ Kohler, Lucchi (2017)
 - Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!

Motivation			
Purpose of	f this talk		

- ▶ global convergence
- ▶ worst-case complexity, contemporary type + our approach
- ▶ local convergence rate

Motivation			
Purpose of	f this talk		

- ▶ global convergence
- ▶ worst-case complexity, contemporary type + our approach
- ▶ local convergence rate

We're admitting: Our approach does not give the complete picture.

But we believe it *is* useful!

Motivation			
Purpose of	this talk		

- global convergence
- ▶ worst-case complexity, contemporary type + our approach
- ▶ local convergence rate

We're admitting: Our approach does not give the complete picture.

But we believe it is useful!

Nonconvexity is difficult in every sense!

- ▶ Can we accept a characterization strategy with some (literal) holes?
- ▶ Or should we be purists, even if we throw out the baby with the bathwater...

	Contemporary Analyses		
0			
Outline			

Motivation

Contemporary Analyses

Partitioning the Search Space

Behavior of Regularization Methods

Summary & Perspectives

	Contemporary Analyses		
Simple se	tting		
- simple se			

Consider the iteration

$$x_{k+1} \leftarrow x_k - \frac{1}{L}g_k$$
 for all $k \in \mathbb{N}$.

A contemporary complexity analysis considers the set

$$\mathcal{G}(\epsilon_g) := \{ x \in \mathbb{R}^n : \|g(x)\|_2 \le \epsilon_g \}$$

and aims to find an upper bound on the cardinality of

$$\mathcal{K}_g(\epsilon_g) := \{ k \in \mathbb{N} : x_k \notin \mathcal{G}(\epsilon_g) \}.$$

 $g_k := \nabla f(x_k), \ g := \nabla f$

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization

Using $s_k = -\frac{1}{L}g_k$ and the upper bound

$$f_{k+1} \le f_k + g_k^T s_k + \frac{1}{2} L \|s_k\|_2^2,$$

one finds with $f_{\inf} := \inf_{x \in \mathbb{R}^n} f(x)$ that

$$\begin{aligned} f_k - f_{k+1} &\geq \frac{1}{2L} \|g_k\|_2^2 \\ \implies \quad (f_0 - f_{\inf}) &\geq \frac{1}{2L} |\mathcal{K}_g(\epsilon_g)| \epsilon_g^2 \\ \implies \quad |\mathcal{K}_g(\epsilon_g)| &\leq 2L(f_0 - f_{\inf}) \epsilon_g^{-2}. \end{aligned}$$

	Contemporary Analyses		
"Nico" f			
inice j			

But what if f is "nice"?

...e.g., satisfying the Polyak-Lojasiewicz condition for $c \in (0, \infty)$, i.e.,

$$f(x) - f_{\inf} \leq \frac{1}{2c} \|g(x)\|_2^2$$
 for all $x \in \mathbb{R}^n$.

Now consider the set

$$\mathcal{F}(\epsilon_f) := \{ x \in \mathbb{R}^n : f(x) - f_{\inf} \le \epsilon_f \}$$

and consider an upper bound on the cardinality of

$$\mathcal{K}_f(\epsilon_f) := \{k \in \mathbb{N} : x_k \notin \mathcal{F}(\epsilon_f)\}.$$

Using $s_k = -\frac{1}{L}g_k$ and the upper bound

$$f_{k+1} \le f_k + g_k^T s_k + \frac{1}{2} L ||s_k||_2^2,$$

one finds that

$$f_k - f_{k+1} \ge \frac{1}{2L} ||g_k||_2^2$$

$$\ge \frac{c}{L} (f_k - f_{inf})$$

$$\implies (1 - \frac{c}{L})(f_k - f_{inf}) \ge f_{k+1} - f_{inf}$$

$$\implies (1 - \frac{c}{L})^k (f_0 - f_{inf}) \ge f_k - f_{inf}$$

$$\implies |\mathcal{K}_f(\epsilon_f)| \le \log\left(\frac{f_0 - f_{inf}}{\epsilon_f}\right) \left(\log\left(\frac{L}{L - c}\right)\right)^{-1}$$

	Contemporary Analyses		
For the fi	rst step		

In the "general nonconvex" analysis...

... the expected decrease for the first step is much more pessimistic:

general nonconvex: $f_0 - f_1 \ge \frac{1}{2L}\epsilon_g^2$ PL condition: $(1 - \frac{c}{L})(f_0 - f_{inf}) \ge f_1 - f_{inf}$

... and it remains more pessimistic throughout!

Upper bounds on $|\mathcal{K}_f(\epsilon_f)|$ versus $|\mathcal{K}_g(\epsilon_g)|$

Let
$$f(x) = \frac{1}{2}x^2$$
, meaning that $g(x) = x$.

- Let $\epsilon_f = \frac{1}{2}\epsilon_g^2$, meaning that $\mathcal{F}(\epsilon_f) = \mathcal{G}(\epsilon_g)$.
- Let $x_0 = 10$, c = 1, and L = 2. (Similar pictures for any L > 1.)

Upper bounds on $|\mathcal{K}_f(\epsilon_f)|$ versus $|\{k \in \mathbb{N} : \frac{1}{2} ||g_k||_2^2 > \epsilon_g\}|$

Let
$$f(x) = \frac{1}{2}x^2$$
, meaning that $\frac{1}{2}g(x)^2 = \frac{1}{2}x^2$.

- Let $\epsilon_f = \epsilon_g$, meaning that $\mathcal{F}(\epsilon_f) = \mathcal{G}(\epsilon_g)$.
- Let $x_0 = 10$, c = 1, and L = 2. (Similar pictures for any L > 1.)

	Contemporary Analyses	Regularization Methods	Summary
Bad worst-	case!		

Worst-case complexity bounds in the general nonconvex case are very pessimistic.

- ▶ The analysis immediately admits a large gap when the function is nice.
- ▶ The "essentially tight" examples for the worst-case bounds are... weird.¹

FIG. 2.1. The function $f^{(1)}$ (top left) and its derivatives of order one (top right), two (bottom left), and three (bottom right) on the first 16 intervals.

¹Cartis, Gould, Toint (2010)

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization

	Contemporary Analyses		
Plea			

Let's not have these be the problems that dictate how we

- characterize our algorithms and
- represent our algorithms to the world!

	Partitioning	
Outline		

Motivation

Contemporary Analyses

Partitioning the Search Space

Behavior of Regularization Methods

Summary & Perspectives

	Partitioning	
Motivation		

We want a characterization strategy that

- ▶ attempts to capture behavior in *actual practice*
- ▶ i.e., is not "bogged down" by pedogogical examples
- ▶ can be applied consistently across different classes of functions
- shows more than just the worst of the worst case

	Partitioning	
Motivation		

We want a characterization strategy that

- ▶ attempts to capture behavior in *actual practice*
- ▶ i.e., is not "bogged down" by pedogogical examples
- ▶ can be applied consistently across different classes of functions
- shows more than just the worst of the worst case

Our idea is to

- partition the search space (dependent on f and x_0)
- ▶ analyze how an algorithm behaves over different regions
- characterize an algorithm's behavior by region

For some functions, there will be holes, but for some of interest there are none!

	Partitioning	
Intuition		

Think about an arbitrary point in the search space, i.e.,

$$\mathcal{L} := \{ x \in \mathbb{R}^n : f(x) \le f(x_0) \}.$$

- If $||g(x)||_2 \gg 0$, then "a lot" of progress can be made.
- If $\min(\operatorname{eig}(\nabla^2 f(x))) \ll 0$, then "a lot" of progress can also be made.

		Partitioning	
Accumptio	10		

Assumption 1

- ▶ f is \bar{p} -times continuously differentiable
- f is bounded below by $f_{inf} := \inf_{x \in \mathbb{R}^n} f(x)$
- for all $p \in \{1, \ldots, \overline{p}\}$, there exists $L_p \in (0, \infty)$ such that

$$f(x+s) \leq \underbrace{f(x) + \sum_{j=1}^{p} \frac{1}{j!} \nabla^{j} f(x)[s]^{j}}_{t_{p}(x,s)} + \frac{L_{p}}{p+1} \|s\|_{2}^{p+1}$$

*p*th-order term reduction

Definition 2

For each $p \in \{1, \ldots, \overline{p}\}$, define the function

$$m_p(x,s) = \frac{1}{p!} \nabla^p f(x)[s]^p + \frac{r_p}{p+1} ||s||_2^{p+1}.$$

Letting $s_{m_n}(x) := \arg\min_{x \in \mathbb{R}^n}$, the reduction in the pth-order term from x is

$$\Delta m_p(x) = m_p(x, 0) - m_p(x, s_{m_p}(x)) \ge 0.$$

*Exact definition of r_p is not complicated, but we'll skip it here

	Partitioning	
Regions		

We propose to partition the search space, given $(\kappa, f_{ref}) \in (0, 1) \times [f_{inf}, f(x_0))$, into

$$\mathcal{R}_{1} := \{ x \in \mathcal{L} : \Delta m_{1}(x) \geq \kappa(f(x) - f_{\mathrm{ref}}) \},$$
$$\mathcal{R}_{p} := \{ x \in \mathcal{L} : \Delta m_{p}(x) \geq \kappa(f(x) - f_{\mathrm{ref}}) \} \setminus \left(\bigcup_{j=1}^{p-1} \mathcal{R}_{j} \right) \text{ for all } p \in \{2, \dots, \bar{p}\},$$
and $\overline{\mathcal{R}} := \mathcal{L} \setminus \left(\bigcup_{j=1}^{\bar{p}} \mathcal{R}_{j} \right).$

*We don't need $f_{ref} = f_{inf}$, but, for simplicity, think of it that way here

Functions satisfying Polyak-Lojasiewicz

Theorem 3

A continuously differentiable f with a Lipschitz continuous gradient satisfies the Polyak-Lojasiewicz condition if and only if $\mathcal{R}_1 = \mathcal{L}$ for any $x_0 \in \mathbb{R}^n$.

Hence, if we prove something about the behavior of an algorithm over \mathcal{R}_1 , then

- \blacktriangleright we know how it behaves if f satisfies PL and
- ▶ we know how it behaves at any point satisfying the PL inequality.

Functions satisfying a strict-saddle-type property

Theorem 4

If f is twice-continuously differentiable with Lipschitz continuous gradient and Hessian functions such that, at all $x \in \mathcal{L}$ and for some $\zeta \in (0, \infty)$, one has

$$\max\{\|\nabla f(x)\|_{2}^{2}, -\lambda_{\min}(\nabla^{2} f(x))^{3}\} \ge \zeta(f(x) - f_{inf}),$$

then $\mathcal{R}_1 \cup \mathcal{R}_2 = \mathcal{L}$.

		Regularization Methods	
Outline			

Motivation

Contemporary Analyses

Partitioning the Search Space

Behavior of Regularization Methods

Summary & Perspectives

Let $s_{w_p}(x)$ be a minimum norm global minimizer of the regularized Taylor model

$$w_p(x,s) = t_p(x,s) + \frac{l_p}{p+1} ||s||_2^{p+1}$$

Theorem 5

If $\{x_k\}$ is generated by the iteration

$$x_{k+1} \leftarrow x_k + s_{w_p}(x),$$

then, with $\epsilon_f \in (0, f(x_0) - f_{ref})$, the number of iterations in

$$\mathcal{R}_p \cap \{x \in \mathbb{R}^n : f(x) - f_{ref} \ge \epsilon_f\}$$

is bounded above by

$$\left\lceil \log\left(\frac{f(x_0) - f_{ref}}{\epsilon_f}\right) \left(\log\left(\frac{1}{1 - \kappa}\right)\right)^{-1} \right\rceil = \mathcal{O}\left(\log\left(\frac{f(x_0) - f_{ref}}{\epsilon_f}\right)\right)$$

Let RG and RN represent regularized gradient and Newton, respectively.

Theorem 6 With $\bar{p} \ge 2$, let

$$\mathcal{K}_1(\epsilon_g) := \{k \in \mathbb{N} : \|\nabla f(x_k)\|_2 > \epsilon_g\}$$

and
$$\mathcal{K}_2(\epsilon_H) := \{k \in \mathbb{N} : \lambda_{\min}(\nabla^2 f(x_k)) < -\epsilon_H\}.$$

Then, the cardinalities of $\mathcal{K}_1(\epsilon_g)$ and $\mathcal{K}_2(\epsilon_H)$ are of the order...

Algorithm	$ \mathcal{K}_1(\epsilon_g) $	$ \mathcal{K}_2(\epsilon_H) $	
RG	$\mathcal{O}\left(\frac{l_1(f(x_0)-f_{inf})}{\epsilon_a^2}\right)$	∞	
RN	$\mathcal{O}\left(rac{l_2^{1/2}(f(x_0)-f_{inf})}{\epsilon_g^{3/2}} ight)$	$\mathcal{O}\left(rac{l_2^2(f(x_0)-f_{inf})}{\epsilon_H^3} ight)$	

Characterization: Our approach

Theorem 7

The numbers of iterations in \mathcal{R}_1 and \mathcal{R}_2 with $f_{ref} = f_{inf}$ are of the order...

Algorithm	\mathcal{R}_1	\mathcal{R}_2
RG	$\mathcal{O}\left(\log\left(rac{f(x_0)-f_{inf}}{\epsilon_f} ight) ight)$	∞
RN	$\mathcal{O}\left(\frac{l_2^2(f(x_0) - f_{inf})}{r_1^3}\right) + \mathcal{O}\left(\log\left(\frac{f(x_0) - f_{inf}}{\epsilon_f}\right)\right)$	$\mathcal{O}\left(\log\left(\frac{f(x_0)-f_{inf}}{\epsilon_f}\right)\right)$

There is an initial phase, as seen in Nesterov & Polyak (2006)

Characterization: Our approach

Theorem 7

The numbers of iterations in \mathcal{R}_1 and \mathcal{R}_2 with $f_{ref} = f_{inf}$ are of the order...

Algorithm	\mathcal{R}_1	\mathcal{R}_2
RG	$\mathcal{O}\left(\log\left(rac{f(x_0)-f_{inf}}{\epsilon_f} ight) ight)$	∞
RN	$\mathcal{O}\left(\frac{l_2^2(f(x_0) - f_{inf})}{r_1^3}\right) + \mathcal{O}\left(\log\left(\frac{f(x_0) - f_{inf}}{\epsilon_f}\right)\right)$	$\mathcal{O}\left(\log\left(\frac{f(x_0)-f_{inf}}{\epsilon_f}\right)\right)$

There is an initial phase, as seen in Nesterov & Polyak (2006)

A ∞ can appear, but one could consider probabilistic bounds, too

		Summary
o		
Outline		

Motivation

Contemporary Analyses

Partitioning the Search Space

Behavior of Regularization Methods

Summary & Perspectives

- global convergence
- ▶ worst-case complexity, contemporary type + our approach
- ▶ local convergence rate

Our idea is to

- partition the search space (dependent on f and x_0)
- ▶ analyze how an algorithm behaves over different regions
- characterize an algorithm's behavior by region

For some functions, there are holes, but for others the characterization is complete.