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Numerical Results

We compare our Finite Difference L-BFGS Method  (FD-LM) to
Model interpolation trust region method (MB) of Conn, Scheinberg, 
Vicente.

Their method, DFOtr, is:
a simple implementation not designed for fast execution
does not include a geometry phase

Our goal is not to determine which method “wins”. Rather
1. Show that the FD-LM method is robust
2. Show that FD-LM is not wasteful in function evaluations
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Adaptive Finite Difference L-BFGS Method

 

Estimate noise ε f
Compute h by forward or central differences  [(4-8) function evaluations]
Compute gk
While convergence test not satisfied:

d = −Hkgk [L-BFGS procedure]
(x+ , f+ , flag) =  LineSearch(xk , fk ,gk ,dk , fs )
IF flag=1     [line search failed]

     (x+ , f+ ,h) = Recovery(xk , fk ,gk ,dk ,maxiter )
endif

   xk+1 = x+ , fk+1 = f+
Compute gk+1        [finite differences using h]
sk = xk+1 − xk , yk = gk+1 − gk

    Discard (sk , yk )  if  sk
T yk ≤ 0

k = k +1
   endwhile
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Test problems

Plotting  f (xk )−φ*   vs  no. of  f  evaluations

We show results for 4 representative problems
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Numerical Results – Stochastic Additive Noise

100 200 300 400 500 600

Number of function evaluations

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

F
(
x
)
-
F
*

s271

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

50 100 150 200 250 300

Number of function evaluations

10
-3

10
-2

10
-1

10
0

10
1

10
2

F
(
x
)
-
F
*

s334

Stochastic Additive Noise:1e-02

DFOtr

FDLM (FD)

FDLM (CD)

100 200 300 400 500 600

Number of function evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

F
(
x
)
-
F
*

s271

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

50 100 150 200 250 300

Number of function evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

F
(
x
)
-
F
*

s334

Stochastic Additive Noise:1e-08

DFOtr

FDLM (FD)

FDLM (CD)

f (x) = φ(x)+ ε(x) ε(x) ~U(−ξ,ξ ) ξ ∈[10−8 ,…,10−1]



7

Numerical Results – Stochastic Additive Noise (continued)
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Numerical Results – Stochastic Additive Noise – Performance Profiles
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Numerical Results – Stochastic Multiplicative Noise – Performance 
Profiles

1 2 4

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ = 10

-5

DFOtr
FDLM (FD)
FDLM (CD)

1 2 4 8

Performance Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ = 10

-5

DFOtr
FDLM (FD)
FDLM (CD)



10

Numerical Results – Hybrid Method – Recovery Mechanism

• As Jorge mentioned in Part I, our algorithm has a recovery 
mechanism

• This procedure is very important for the stable 
performance of the method

• Principle recovery mechanism is to re-estimate h
• HYBRID METHOD: If h is acceptable, then we switch 

from Forward to Central differences  
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Numerical Results – Hybrid FC Method – Stochastic Additive Noise
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Numerical Results – Hybrid Method FC – Stochastic Multiplicative 
Noise
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Numerical Results – Conclusions

• Both methods are fairly reliable
• FD-LM method not wasteful in terms of function evaluations
• No method dominates
• Central difference appears to be more reliable, but is twice as 

expensive per iteration
• Hybrid approach shows promise
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Convergence analysis

1. What can we prove about the algorithm proposed here?
2. We first note that there is a theory for the Implicit Filtering Method of 

Kelley – which is a finite difference BFGS method
• He establishes deterministic convergence guarantees to the solution
• Possible because it is assumed that noise can be diminished as 

needed at every iteration
• Similar to results on Sampling methods for stochastic objctives

3. In our analysis we assume that noise does not go to zero
• We prove convergence to a neighborhood of the solution whose 

radius depends on the noise level in the function
• Results of this type were pioneered by Nedic-Bertsekas for 

incremental gradient method with constant steplengths
4. We prove two sets of results for strongly convex functions

• Fixed steplength
• Armijo line search

5. Up to now, little analysis of line search with noise
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Discussion

1. The algorithm proposed here is complex, particularly if the recovery
mechanism is included

2. The effect that noisy function evaluations and finite difference gradient 
approximations have on the line search are difficult to analyze

3. In fact: the study of stochastic line searches is one of our current 
research projects 

4. How should results be stated:
• in expectation?
• in probability?
• what assumptions on the noise are realistic?
• some results in the literature assume the true function value        is 

available
• This field is emerging

φ(x)
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Context of our analysis

1. We will bypass these thorny issues by assuming that
• Noise in the function and gradient are bounded

• And consider a general gradient method with errors

xk+1 = xk −α kHkgk

• gk  is any approximation to the gradient
• could stand for a finite difference approximation or some other
• treatment is general
• to highlight the novel aspects of this analysis we assume Hk=I

‖ε(x)‖≤ Cf ‖e(x)‖≤ Cg
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Fixed Steplength Analysis

Iteration  xk+1 = xk −αgk

 Assume µI ≺∇2φ(xk )≺ LI

 ‖e(x)‖≤Cg

Theorem.   If α <1/ L  then for all k
          φ(xk+1 −φ

N ) ≤ (1−αµ)[φ(xk )−φ
N ]

φN ≡ φ* +
Cg

2

2µ
 best possible objective value

Recall f (x) = φ(x)+ ε(x)
Define    gk = ∇φ(xk )+ e(xk )

φk −φ
* ≤ (1−αµ)k (φ0 −φ

N )+
Cg
2

2µ

Therefore,
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Idea behind the proof
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Line Search

Our algorithm uses a line search
Move away from fixed steplengths and exploit the power of line searches
Very little work on noisy line searches
How should sufficient decrease be defined?

Introduce new Armijo condition:

where α = max{1,τ ,τ 2 ,…}
and εA > 2Cf

f (xk +αdk ) ≤ f (xk )+ c1αgk
Tdk + εA
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Line Search Analysis

New Armijo condition:

where α = max{1,τ ,τ 2 ,…}
and εA > 2Cf

f (xk +αdk ) ≤ f (xk )+ c1αgk
Tdk + εA

Because of relaxation term Armijo is always satisfied for alpha <<1.
But how long will the step be?

Consider 2 sets of iterates:
Case 1:  Gradient error is small relative to gradient.

Step of 1/L is accepted, and good progress is made.

Case 2: Gradient error is large relative to gradient.
Step could be poor, but size of step is only of order Cg
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Line Search Analysis

 Assume µI ≺∇2φ(xk )≺ LI

Iteration  xk+1 = xk −α kgk

  ‖e(x)‖≤Cg and ‖ε(x)‖≤Cf

and φN = φ* +
1

1− ρ
[
c1τ (1− β )2Cg

2

Lβ 2 + εA + 2Cf ]

Theorem: Above algorithm with relaxed Armijo with c1 <1/ 2 gives
φ(xk+1)−φN ≤ ρ[φ(xk )−φN ]

where ρ = 1− 2µc1τ (1− β )2

L

Here β  is a free parameter in (0,1− 2c1

1+ 2c1

]
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THANK YOU.


