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Optimization Problem

min
x∈Rd

F (x) = Eζ [f (x ; ζ)]

Structural Risk Minimization min
x∈Rd

F (x) =

∫
f (x ; z , y)dP(z , y)

Empirical Risk Minimization min
x∈Rd

R(x) =
1

n

n∑
i=1

Fi (x)

Stochastic Gradient is a popular first order method for solving these
problems

Many stochastic first order variance reduced methods have been
proposed for finite sum problem
SAG[Schmidt et al. 2016], SAGA[Defazio et al. 2014], SVRG[Johnson and Zhang 2013]

Require either storage or computation of full gradient

Achieve linear convergence for strongly convex functions
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Adaptive Sampling Methods

xk+1 = xk − αk∇FSk (xk), ∇FSk (xk) =
1

|Sk |
∑
i∈Sk

∇Fi (xk),

where the set Sk ⊂ {1, 2, . . .} indexes data points (y i , z i ) drawn at
random from the distribution P

Noise in the steps is controlled by sample sizes

These methods can take advantage of parallel frameworks

If sample sizes are increased at geometric rate, R-Linear convergence
for strongly convex functions
[Byrd et al. 2012] [Friedlander and Schmidt 2012] [Pasupathy et al. 2015]
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1 Adaptive Sampling Tests
Norm test
Inner Product Test

2 Convergence Analysis
Orthogonal test
Linear Convergence

3 Practical Implementation
Step-Length Strategy
Parameter Selection

4 Numerical Experiments

5 Summary



Norm Test

‖∇FSk (xk)−∇F (xk)‖ ≤ θn‖∇F (xk)‖, for some θn ∈ [0, 1).

E[‖∇Fi (xk)−∇F (xk)‖2]

|Sk |
≤ θ2n‖∇F (xk)‖2

Byrd et al. [2012] proposed this test to control the sample sizes

Cartis and Scheinberg [2016] ensured this condition is satisfied in
probability and analyzed global convergence properties

Hashemi et al. [2014] similar test in simulation optimization settings

This test is designed to get more than just descent directions

Sample gradients are unnecessarily close to the true gradients

Sample sizes are increased at much faster rates than the desired rates
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Inner Product Test

First-Order Descent Condition

∇FSk (xk)T∇F (xk) > 0

Holds in Expectation

E
[
∇FSk (xk)T∇F (xk)

]
= ‖∇F (xk)‖2 > 0

For descent condition to hold at most iterations, we impose bounds on the
variance

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Test is designed to achieve descent directions sufficiently often

Samples sizes required to satisfy this condition are smaller than those
required for norm condition
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Comparison

∇F

(a)

Norm Test

‖g(x)−∇F (x)‖ ≤ θn‖∇F (x)‖

∇F

(b)

Inner Product Test∣∣g(x)T∇F (x)− ‖∇F (x)‖2
∣∣ ≤ θip‖∇F (x)‖2

Figure: Given a gradient ∇F the shaded areas denote the set of vectors satisfying
the deterministic (a) Norm test (b) Inner Product test
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Comparison

Lemma

Let |Sip|, |Sn| represent the minimum number of samples required to
satisfy the inner product test and norm test at any given iterate x and any
given θip = θn < 1. Then we have

|Sip|
|Sn|

= β(x) ≤ 1,

where

β(x) =
E[‖∇Fi (x)‖2 cos2(γi )]− ‖∇F (x)‖2

E[‖∇Fi (x)‖2]− ‖∇F (x)‖2
,

and γi is the angle made by ∇Fi (x) with ∇F (x).
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Test Approximation

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Computing true gradient is expensive

Approximate population variance with sample variance and true
gradient with sampled gradient

Vari∈Sk (∇Fi (xk)T∇FSk (xk))

|Sk |
≤ θ2ip‖∇FSk (xk)‖4,

Vari∈Sk

(
∇Fi (xk)T∇FSk

(xk)
)

=
1

|Sk | − 1

∑
i∈Sk

(
∇Fi (xk)T∇FSk

(xk)− ‖∇FSk
(xk)‖2

)2
Whenever condition is not satisfied, increase sample size to satisfy the
condition

Backup

Raghu Bollapragada (NU) Adaptive Sampling Methods 10/27US - Mexico Workshop - 2018 10 / 27



Test Approximation

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Computing true gradient is expensive

Approximate population variance with sample variance and true
gradient with sampled gradient

Vari∈Sk (∇Fi (xk)T∇FSk (xk))

|Sk |
≤ θ2ip‖∇FSk (xk)‖4,

Vari∈Sk

(
∇Fi (xk)T∇FSk

(xk)
)

=
1

|Sk | − 1

∑
i∈Sk

(
∇Fi (xk)T∇FSk

(xk)− ‖∇FSk
(xk)‖2

)2
Whenever condition is not satisfied, increase sample size to satisfy the
condition

Backup

Raghu Bollapragada (NU) Adaptive Sampling Methods 10/27US - Mexico Workshop - 2018 10 / 27



Test Approximation

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Computing true gradient is expensive

Approximate population variance with sample variance and true
gradient with sampled gradient

Vari∈Sk (∇Fi (xk)T∇FSk (xk))

|Sk |
≤ θ2ip‖∇FSk (xk)‖4,

Vari∈Sk

(
∇Fi (xk)T∇FSk

(xk)
)

=
1

|Sk | − 1

∑
i∈Sk

(
∇Fi (xk)T∇FSk

(xk)− ‖∇FSk
(xk)‖2

)2
Whenever condition is not satisfied, increase sample size to satisfy the
condition

Backup

Raghu Bollapragada (NU) Adaptive Sampling Methods 10/27US - Mexico Workshop - 2018 10 / 27



Test Approximation

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Computing true gradient is expensive

Approximate population variance with sample variance and true
gradient with sampled gradient

Vari∈Sk (∇Fi (xk)T∇FSk (xk))

|Sk |
≤ θ2ip‖∇FSk (xk)‖4,

Vari∈Sk

(
∇Fi (xk)T∇FSk

(xk)
)

=
1

|Sk | − 1

∑
i∈Sk

(
∇Fi (xk)T∇FSk

(xk)− ‖∇FSk
(xk)‖2

)2
Whenever condition is not satisfied, increase sample size to satisfy the
condition

Backup

Raghu Bollapragada (NU) Adaptive Sampling Methods 10/27US - Mexico Workshop - 2018 10 / 27



Test Approximation

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Computing true gradient is expensive

Approximate population variance with sample variance and true
gradient with sampled gradient

Vari∈Sk (∇Fi (xk)T∇FSk (xk))

|Sk |
≤ θ2ip‖∇FSk (xk)‖4,

Vari∈Sk

(
∇Fi (xk)T∇FSk

(xk)
)

=
1

|Sk | − 1

∑
i∈Sk

(
∇Fi (xk)T∇FSk

(xk)− ‖∇FSk
(xk)‖2

)2

Whenever condition is not satisfied, increase sample size to satisfy the
condition

Backup

Raghu Bollapragada (NU) Adaptive Sampling Methods 10/27US - Mexico Workshop - 2018 10 / 27



Test Approximation

E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
|Sk |

≤ θ2ip‖∇F (xk)‖4, θip ∈ [0, 1)

Computing true gradient is expensive

Approximate population variance with sample variance and true
gradient with sampled gradient

Vari∈Sk (∇Fi (xk)T∇FSk (xk))

|Sk |
≤ θ2ip‖∇FSk (xk)‖4,

Vari∈Sk

(
∇Fi (xk)T∇FSk

(xk)
)

=
1

|Sk | − 1

∑
i∈Sk

(
∇Fi (xk)T∇FSk

(xk)− ‖∇FSk
(xk)‖2

)2
Whenever condition is not satisfied, increase sample size to satisfy the
condition

Backup

Raghu Bollapragada (NU) Adaptive Sampling Methods 10/27US - Mexico Workshop - 2018 10 / 27



Overview

1 Adaptive Sampling Tests
Norm test
Inner Product Test

2 Convergence Analysis
Orthogonal test
Linear Convergence

3 Practical Implementation
Step-Length Strategy
Parameter Selection

4 Numerical Experiments

5 Summary



Orthogonal Test

Although the Inner Product test is practical, convergence cannot be
established because it allows sample gradients that are arbitrarily long
relative to ‖∇F (xk)‖
No restriction on near orthogonality of sample gradient and gradient

Component of sample gradient orthogonal to gradient is 0 in
expectation

We control the variance in the orthogonal components of sampled
gradients

E
[∥∥∥∇Fi (xk)− ∇Fi (xk )

T∇F (xk )
‖∇F (xk )‖2

∇F (xk)
∥∥∥2]

|Sk |
≤ ν2‖∇F (xk)‖2, ν > 0
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Linear Convergence

Theorem

Suppose that F is twice continuously differentiable and that there exist constants 0 < µ ≤ L
such that

µI � ∇2F (x) � LI , ∀x ∈ Rd .

Let {xk} be the iterates generated by subsampled gradient method with any x0, where |Sk | is
chosen such that inner product test and orthogonal test are satisfied at each iteration for any
given θip > 0 and ν > 0. Then, if the steplength satisfies

αk = α =
1

(1 + θ2ip + ν2)L
,

we have that
E[F (wk)− F (w∗)] ≤ ρk(F (x0)− F (x∗)),

where

ρ = 1− µ

L

1

(1 + θ2ip + ν2)

Convex Non-Convex
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Step-Length Selection

xk+1 = xk − αk∇FSk (xk)

Stochastic gradient is employed with diminishing stepsizes

Exact line search can be performed to determine the stepsize but it is
too expensive

Constant stepsize can be employed but one needs to know the
Lipschitz constant of the problem

αk = 1/L

We propose to estimate the Lipschitz constant as we proceed,
resulting in adaptive stepsizes
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Step-Length Selection

Algorithm 1 Estimating Lipschitz constant

Input: Lk−1 > 0, some η > 1

1: Compute parameter ζk > 1
2: Set Lk = Lk−1/ζk ; . Decrease the Lipschitz constant

3: Compute Fnew = Fsk

(
xk − 1

Lk
∇Fsk (xk)

)
4: while Fnew > Fsk (xk)− 1

2Lk
‖∇Fsk (xk)‖2 do . sufficient decrease

5: Set Lk = ηLk−1 . Increase the Lipschitz constant

6: Compute Fnew = Fsk

(
xk − 1

Lk
∇Fsk (xk)

)
7: end while

Beck and Teboulle [2009] proposed this algorithm to estimate Lipschitz constant
in deterministic settings

Scmidt et al. [2016] adapted this algorithm to stochastic algorithms such as SAG
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Aggressive Steps Heuristic

It is well known and easy to show that

E[F (xk+1)]− F (xk) ≤ −αk‖F (xk)‖2 +
α2
kL

2
E[‖∇FSk (xk)‖2]

Thus, we can obtain a decrease in the true objective, in expectation, if

Lα2
k

2

(
E[‖∇FSk (xk)−∇F (xk)‖2] + ‖∇F (xk)‖2

)
≤ αk‖∇F (xk)‖2
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Aggressive Steps Heuristic

Lα2
k

2

(
E[‖∇FSk (xk)−∇F (xk)‖2] + ‖∇F (xk)‖2

)
≤ αk‖∇F (xk)‖2

Using, αk = 1/Lk , assuming Lk−1 ≥ L, and sample approximations

Lk ≥
Lk−1

2

(
Var (∇Fi (xk))

|Sk |‖∇FSk (xk)‖2
+ 1

)
,

where Var (∇Fi (xk)) = 1
|Sk |−1

∑
i∈Sk ‖∇Fi (xk)−∇FSk (xk)‖2.

Therefore,

ζk = max

1,
2

Var(∇Fi (xk ))
|Sk |‖∇FSk

(xk )‖2
+ 1


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Parameter Selection

∇FSk (xk)T∇F (xk)− ‖∇F (xk)‖2(
σ√
|Sk |

) ∼ N (0, 1),

where σ2 = E
[(
∇Fi (xk)T∇F (xk)− ‖∇F (xk)‖2

)2]
is the true variance.

Parameter θip is directly proportional to probability of getting a
descent direction

θip = 0.7 corresponds to 0.9 probability

θip = 0.9 works well in practice

Orthogonal test is seldom active in practice and we choose
ν = tan(80o) = 5.84 for all problems
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Results: Constant Step-Length Strategy

R(x) =
1

n

n∑
i=1

log(1 + exp(−z ixT y i )) +
λ

2
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Figure: Norm Test vs. Inner Product Test. Synthetic Dataset (n = 7000)
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Results: Adaptive Step-Length Strategy
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Summary

Adaptive sampling methods are alternate methods for noise reduction

These methods can lead to speed ups when implemented in parallel
environments

We propose a practical inner product test which is better at
controlling the sample sizes than the existing norm test

These methods can use adaptive stepsizes and second-order
information can be incorporated

Currently working on practical sampling tests to control sample sizes
in stochastic quasi-Newton methods
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Backup Mechanism

Sample approximations are not accurate when samples are very small
(say 1, 5 , 10)

Our tests may not be accurate in controlling the sample sizes in such
situations

Need more accurate approximations in such scenarios

gavg
def
=

1

r

k∑
j=k−r+1

∇FSj (xj)

r should be chosen such that the iterates in the summation are close
enough and there are enough samples for gavg to be accurate
(r = 10).

If ‖gavg‖ < γ‖∇FSk (xk)‖, for some γ ∈ (0, 1) then we use gavg
instead of ∇FSk (xk) in the tests.
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Convex Functions

Theorem

(General Convex Objective.) Suppose that F is twice continuously differentiable and convex,
and that there exists a constant L > 0 such that

∇2F (x) � LI , ∀x ∈ Rd .

Let {xk} be the iterates generated by subsampled gradient method with any x0, where |Sk | is
chosen such that inner product test and orthogonal test are satisfied at each iteration for any
given θip > 0 and ν > 0. Then, if the steplength satisfies

αk = α <
1

(1 + θ2ip + ν2)L
,

we have for any positive integer T ,

min
0≤k≤T−1

E [F (xk)]− F ∗ ≤ 1

2αcT
‖x0 − x∗‖2,

where the constant c > 0 is given by c = 1− Lα(1 + θ2ip + ν2).
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Non-Convex Functions

Theorem

(Nonconvex Objective.) Suppose that F is twice continuously differentiable and bounded
below, and that there exist a constant L > 0 such that

∇2F (x) � LI , ∀x ∈ Rd .

Let {xk} be the iterates generated by subsampled gradient method with any x0, where |Sk | is
chosen such that inner product test and orthogonal test are satisfied at each iteration for any
given θip > 0 and ν > 0. Then, if the steplength satisfies

αk = α ≤ 1

(1 + θ2ip + ν2)L
,

we have that
lim
k→∞

E[‖∇F (xk)‖2]→ 0.

Moreover, for any positive integer T we have that

min
0≤k≤T−1

E[‖∇F (xk)‖2] ≤ 2

αT
(F (x0)− Fmin).
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Results: Constant Step-Length Strategy
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Figure: Covertype Dataset (n = 581012)
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Figure: Real-Sim Dataset (n = 65078)
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Results: Constant Step-Length Strategy
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Figure: RCV1 Dataset (n = 20242)
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Figure: Mushrooms Dataset (n = 8124)
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Results: Constant Step-Length Strategy
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Figure: Sido Dataset (n = 12678)
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Figure: Ijcnn Dataset (n = 35000)
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Results: Constant Step-Length Strategy
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Figure: Gisette Dataset (n = 6000)
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Figure: MNIST Dataset (n = 60000)
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Results: Adaptive Step-Length Strategy

0 20 40 60 80 100

Effective Gradient Evaluations

10 -3

10 -2

10 -1

10 0

R
(
x
)
 
-
 
R
*

covtype,θ=0.90

Aug. Inner Product test
Norm Test

500 1000 1500 2000 2500

Iterations

0

2

4

6

8

10

12

14

16

18

(
%
)
 
B
a
t
c
h
S
i
z
e
s

covtype,θ=0.90

Aug. Inner Product test
Norm Test

0 500 1000 1500 2000 2500 3000

Iterations

10 -1

10 0

10 1

10 2

S
t
e
p
s
i
z
e
s

covtype,θ=0.90

Aug. Inner Product test
Norm Test
Optimal Constant Steplength

Figure: Covertype Dataset (n = 581012)
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Figure: Real-Sim Dataset (n = 65078)
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Results: Adaptive Step-Length Strategy
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Figure: RCV1 Dataset (n = 20242)
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Figure: Mushrooms Dataset (n = 8124)
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Results: Adaptive Step-Length Strategy
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Figure: Sido Dataset (n = 12678)
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Figure: Ijcnn Dataset (n = 35000)
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Results: Adaptive Step-Length Strategy
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Figure: Gisette Dataset (n = 6000)
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Figure: MNIST Dataset (n = 60000)
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