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Motivation

Many real-life networks are
e |arge-scale
e composed of agents with local information
e agents willing to collaborate without sharing their private data

This motivated huge interest in designing decentralized methods for
optimization of multi-agent systems
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e agents willing to collaborate without sharing their private data

This motivated huge interest in designing decentralized methods for
optimization of multi-agent systems

Examples:

Routing and congestion control in wired and wireless networks

e parameter estimation in sensor networks

multi-agent cooperative control and coordination

processing distributed big-data in (online) machine learning
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e N'={1,..., N} processing nodes on a time-varying Gt = (N, £?)
* Node i can transmit data to j at time ¢ only if (i,j) € £
e o(x) : strongly convex (& > 0)
o wi(x) = pi(z) + fi(z) locally known (1 £ mingep p1; > 0)

* fi: convex + Lipschitz continuous gradient (constant L;)
* p; : convex (possibly non-smooth) + efficient prox-map
* prox, () £ argmingcg. {pi(§) + 31§ — [3}
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Examples

e Constrained Lasso

min {Al|zf| + [|Ca — d|3: Az <b}, K=-RE
reR™

e distributed data: C; € R™*™ and d; € R™ for i € N
C= [Ci]iEN € Rmxn7 d= [di]iGN S Rm) m = ZiGN mg

* p(x) = W’\|||x||1 + ||Ciz — d;||3 merely convex (m; < n)
* o(x) = > ,cp wilz) strongly convex when rank(C) = n (m > n)




Examples

e Constrained Lasso

min {Afll + | Ca — d|3: Az <b}, K=-RY

e distributed data: C; € R™*™ and d; € R™ for i € N
C = [Ciliexy € R™", d=[dilien ER™, m=3,cymi

* p(x) = W’\|||x||1 + ||Ciz — d;||3 merely convex (m; < n)
* o(x) = > ,cp wilz) strongly convex when rank(C) = n (m > n)

e Closest point in the intersection

min Z |z —Z|3 st Gi(z) € —K;, i €N.

Nien Xi
Tre ieN ZZ‘EN




Related Work - Constrained

e Chang, Nedich, Scaglione'14: primal-dual method
— mingen,vx; F (ien fil)) st Yien gi(r) <0
— F and f; smooth, X; compact, and time-varying directed G

— no rate result, can handle non-smooth constraints
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e Nufiez, Cortés'1s: min ) ;cnr wi(&i, ) s.t. Y ien gi(&i,x) <0
— ; and g; convex; time-varying directed G
- O(1/Vk) rate for L(EF, 7", 3*) — L(€",a*,y")

— no error bounds on infeasibility, and suboptimality
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e Aybat, Yazdandoost Hamedani'16: primal-dual method
—min) ;o @i(z) st. Aiw—b; €Ky, it e N
— time-varying undirected and directed G
— O(1/k) ergodic rate for infeasibility, and suboptimality

— Convergence of the primal-dual iterate sequence (without rate)

e Chang'16: (primal-dual method)
- minmie,’yi Zie/\/’ pZ(IL‘z) + fz(ClZL‘l) s.t. Zie/\f Ai:EZ' =b
— fi smooth and strongly convex; time-varying undirected G

— O(1/k) ergodic rate
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Notation

e ||.||: Euclidean norm
® 0s(.): Support function of set S,

05(0) = sup,es (0, w)

e Ps(w) = argmin{||v — w|| : v € 8}: Projection onto S
¢ ds(w) = ||Ps(w) — w||: Distance function
e K*: Dual cone of K,
e K°: Polar cone of IC,

Ke&2{0eR™: (§,w) <0 Yw e K},

e ®: Kronecker product

e II: Cartesian product
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Preliminaries: Primal-dual Algorithm (PDA)

PDA for convex-concave saddle-point problem by Chambolle and Pock'16

)rcrg% ma))}( L(x,y) = ®(x) + (Tx,y) — h(y),

e &(x) £ p(x) + f(x) strongly convex (u > 0), h convex, T linear map

PDA:
y" !« argmin h(y <T(x +n*(x" *Xk_l))7Y>+Dk(y7yk)7

y

M argmin p(x) + f(x") + <Vf(xk), X — xk> + <Tx, yk+l> + —Hx —x",

27k
e Dy is Bregman distance function Dy(y,y) > ﬁ”y —yl?

Theorem: If 7% k¥ 7% > 0 such that - — > L + ||T||?<F,
Kk = gFHpktl and pF+l > Tk( aer — p) for all k> 0 then

Lxy) — L065) < - (grle X+ D)) vy

where Ny = Y0 50 — O(1/K7) and (X, 55) £ Nt R | 5 (xF, yb).




Extension to nonlinear constraints
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e Jacobian VG is Lipschitz continuous (L)
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Extension to nonlinear constraints

Consider a more general convex-concave saddle-point problem

min ma;)( L(x,y) 2 ®(x)+ (G(x),y) — h(y),

xEX y€
e G is KC-convex, Lipschitz continuous (C¢)
e Jacobian VG is Lipschitz continuous (L)

General PDA

Y argminh(y) — (G(") + 0" (") - GTY),y) + Dely, y")

y

. 1
X4 argmin p(x) + F(<") + (TF0), x = x0) + (TG y™ ) + - x|

Theorem: If 7%, k¥ 7% > 0 such that & — > L+ 203" + Le [y,
Kk = KFHIpk+L and phtl > 7%( k1+1 — ) for all k > 0 then

_ 1

£R) ~ 065 < (Gl x4 Doty ) e
L
<0

where (x,y5) £ Nt 330 1%( ".yF) and Nk = S0, & = O(1/K7)

e



Extension to nonlinear constraints

We also obtain the following bounds:

1, ., K1 .
lx =P < 0T (gl =+ Doy )

N 1
Iy I < Iyl + \/w (gl =271 + Doty.5))

and 75 /KB = O(1/K?).
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Extension to nonlinear constraints

We also obtain the following bounds:

1, ., K1 .
lx =P < 0T (gl =+ Doy )

N 1
Iy I < Iyl + \/w (gl =271 + Doty.5))

and 75 /KB = O(1/K?).

Specific stepsize sequence:

Initialization: 7n° =0, x* =1
For k> 0:

™ =

1
203 + Lol + L+ 4

g = 1k, kEHL = i ket




Comparison with related works

e Our proximal gradient primal-dual Alg.
* mingcy maxycy ®(x) + (G(x),y) — h(y)
* ® composite strongly convex, h convex, G is K-convex, Lipschitz, such
that VG is Lipschitz continuous
. L(xK,y) — L(x,5) < O(1/K?)
-« [lx* —xK|? < O(1/K2) and [ly* | < O(1)
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Comparison with related works

e mirror-prox for miny maxy ¢(x,y) (Nemirovski'04)
* ¢(x,y) is convex in x and concave in y,
* V¢ is Lipschitz continuous in (x,y)
« 6(%X,y) - 0(x,5%) < O(1/K)
e primal-dual algorithm with linesearch (Malitsky and Pock'16)
* minygcy maxycy ®(x) + (I'x,y) — h(y)
* & and h* are convex and at least one is strongly convex
* Proximal primal and dual steps with linesearch determining stepsizes and
accelerating parameter
. L(xK,y) - L(x,5) < O(1/K?)
e Accelerated primal-dual algorithm (Chen, Lan and Ouyang'13)
* mingey maxyey @(x) + (I'x,y) — h(y)
* & convex function with Lipshcitz continuous gradient, h convex and T
linear map

* Proximal-gradient steps with several accelerating steps
o LXK y)— L(x, %) <O(1/K?+1/K)

12



Decentralized Consensus Optimization

P4 x) ©3 I)

Compute an optimal solution for

(P): mxin o(z) = Z vi(z) st. x € ﬂ X;

iEN iEN

o1() p2(2)
e N'={1,..., N} processing nodes on a time-varying G* = (N, &)
e o(x) : strongly convex (> 0)
o wi(z) £ pi(z) + fi(x) locally known (p = min;ep ;> 0)

o X 2 {x:Gi(x) € —K;} locally known, K; closed convex cone.
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® p=minjen pi =0
Define the consensus cone C:
e C2{x=[zxiliey eR"™WI: Iz eR"st. 2, =2 VieN}
o f(x) =Y ,cn fi(zi) is strongly convex on C

Lemma: Let f,(x) = f(x) + $d2(x). Then f, is strongly convex with

_ — 2
Méw_ﬂw;_a) il

4 T2 T _ Z'L’NL?
for any a > Z|N|L?*, where L = |/ =55—.
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Methodology: Time-varying Topology

Suppose f strongly convex, and f;'s merely convex, i.e.,
o f() = e fi(z) strongly convex (ji > 0)
® p=minjen pi =0
Define the consensus cone C:
e C2{x=[zxiliey eR"™WI: Iz eR"st. 2, =2 VieN}
o f(x) =Y ,cn fi(zi) is strongly convex on C

Lemma: Let f,(x) = f(x) + $d2(x). Then f, is strongly convex with

_ — 2
Méw_ﬂw;_a) il

T T ZL Lz2
for any o > %\N|L2, where L =/ =45

Note: The result in (Shi et al.15) uses mixing matrices (static G)




Methodology: Time-varying Topology

Let p(x) & 3, cn pil@i),  f(x)

= Yien filz),

fa(x)

A

fx) +

dg(x)




Methodology: Time-varying Topology

Let p(x) £ Xicn pil@i). F(X) 2 Lien filzi),  fa(x) £ f(x) + §d2(x)
e x; € R™: local copy of z at i € N, and x = [z;]en € ROV




Methodology: Time-varying Topology

Let p(x) £ Xicn pil@i). F(X) 2 Lien filzi),  fa(x) £ f(x) + §d2(x)
e x; € R™: local copy of z at i € N, and x = [z;]en € ROV

o A\, 2 MaXy, 2/ cdom g; lz—2'||, A2 maxjenA; < oo

15



Methodology: Time-varying Topology

Let p(x) £ Xicn pil@i). F(X) 2 Lien filzi),  fa(x) £ f(x) + §d2(x)
e x; € R™: local copy of z at i € N, and x = [z;]en € ROV

o A\, 2 MaXy, 2/ cdom g; lz—2'||, A2 maxjenA; < oo

o Bo2{zeR™: |z| <2A}, B2IicaBy, C2CNB

15



Methodology: Time-varying Topology
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e x; € R™: local copy of z at i € N, and x = [z;]en € ROV
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e x; € R™: local copy of z at i € N, and x = [z;]en € ROV

o A\, 2 MaXy, 2/ cdom g; lz—2'||, A2 maxjenA; < oo

o Bo2{zeR™: |z| <2A}, B2IicaBy, C2CNB
e For any o > 0, an equivalent formulation:

min > .o pi() + fi() min p(x) + fa(x)
mfn Gi K.oieN —  XEec€

e Saddle Point Formulation:
min max L(x,y) 2 p(x) + fa(¥) + (X, x) =05 (A)
+ > {0i, Gi(x)) — o—x, (65)

1EN
y=1[0T AT|T, 6 = [0i]icn € R™ and A = [\]ien € R*WVI
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Methodology: Time-varying Topology

e Implementing PDA on the saddle-point formulation:

, - 1
0; !« argmino_x, (6:) — (Gi(xi) + 0" (Gi(al) — Gi(ai ™)), 0:) + 5 10 = 0: 13

0;

A argmin oy A) = (Xk + nk(Xk - inl), A+ 2%”)‘ - Ak“%a
A Y

X" argmin p(x) + (Vo (x"), x) + (VG(x")x, 0"71) + (x, A1) + %HX —x"|?

X
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e Implementing PDA on the saddle-point formulation:

, - 1
0; !« argmino_x, (6:) — (Gi(xi) + 0" (Gi(al) — Gi(ai ™)), 0:) + 5 10 = 0: 13

0;
A argmin oy A) = (Xk + nk(Xk - inl), A+ 2%”)‘ - Ak“%a
A Y

X argmin p(x) + (V£ (), %)+ (VG005 + (e A 4 L xE P

X

Note: X, x updates require 7c(w) = 1 @ 37 >, wi and Pr{w) = Pi(Pe(w))
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AR argmin oz (A) - Xt =X A+ ﬁ”)\ — 23,
A
S argmin p(a0) + (¥ (), ) 4+ (VGE,05) 4+ e, M) 4+ Lo

X

Note: X, x updates require Pc(w) = 1 @ + > ien wi and Px(w) = Ps(Pe(w))
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A
S argmin p(a0) + (¥ (), ) 4+ (VGE,05) 4+ e, M) 4+ Lo

X

Note: X, x updates require Pc(w) = 1 @ + > ien wi and Px(w) = Ps(Pe(w))
e \ update: A\FFT =~k (w’“ — Pg(&;"’)), wh & %;J\ +xF 4 pF(xk - xF1)
e x update: Vf,(x*) = f(x*) + a(x¥ — Pc(x"))

e Approximate averaging operator R*(w) = [RF(w)]ien s:t.
[Pe(w) = R¥(w)|| = O(B%[|w|)) Yw for some 3 € (0,1), increasing {qx}r>0
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;" argmin o, (6:) — (Gila) + 0" (Gilad) = Gi(w ™), 0) + 5 16: = 0712
AR argmin oz (A) - Xt =X A+ ﬁ”)\ — 23,
A
S argmin p(a0) + (¥ (), ) 4+ (VGE,05) 4+ e, M) 4+ Lo

Note: X, x updates require Pc(w) = 1 @ + > ien wi and Px(w) = Ps(Pe(w))
e \ update: A\FFT =~k (w’“ — Pg(&)’")), wh & %;J\ +xF 4 pF(xk - xF1)
e x update: Vf,(x*) = f(x*) + a(x¥ — Pc(x"))
e Approximate averaging operator R*(w) = [RF(w)]ien s:t.
[Pe(w) = R¥(w)|| = O(B%[|w|)) Yw for some 3 € (0,1), increasing {qx}r>0

AR+ 7k (wk — Pg (Rk(wk))) , o xFTL prox7.;€p<x’c — TkSk> ,

s" ¢ Vf(xF) + VG(x")TO ! + A 4o (xF — RF(xF))
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Methodology: Time-varying Topology

If x>0, then a <= 0 and p < p; else, a > %ZieNL% and g < pg

Algorithm DPDA-TV ( x°,0° a,8,v, 11 )
Initialization: x~! + x9, s «+ 0,

5,7v>0, Y« v, pe (0, max{y, pa}l, 100, K« 52z i€N

2
G

Step k: (k>0,i€N)
L0 Py (0F + 55 (Gulal) + 0 (Gilah) = Gi(wE1)) ),
2. wf 4= S AF ol 4+t (af - a1,
3. ML Rk — kP, ( RE(w”) ),
5. 5% VAilak) + TG (BT + A 4 a ok — REGER)),
4 k+1
5

7
R Lan

Sl prox,,, (ak - hsh),
kt1yk+1 - gh+1 ypdate by step-size condition rule

Ui

17




Methodology: Time-varying Topology

If o > 0, then a «— 0 and p < y; else, a > %EiGNL% and p < fiq

e Step-size condition: given § > 0, choose 7%, 1*, k¥ +* > 0 such that

1 1
k1 k _ k+1 k. k41
P2t (i on)s o Lok ack e Lalof ) 2 9 40)

k2 k k
2K CG<5 kAL S K E+1
k. —

~y

e A possible way of choosing:

=2 v
nk+L nkH

Initialization: 170 0, 'yo — 7, k) — Yors
2C¢,

For k> 0:
K 1
Y*(2 + 8) + Limax + a4+ Lg max;en |07

1

k 1
) < ~ 1%

( k )

k+1 k ~ k+1 k_ k+1 k+1 k41
R ARV B e e A A

2CZ,

We have n* € (0,1), 7% = ©(1/k), v¥ = O(k), v* = O(k)

18



Main result

Theorem: Let A’ = 0, 8° = 0. Suppose step-size condition holds.
qr > [(5+4¢)log, 3(k + 1)] communication rounds at iteration-k.

Then x¥ — x* such that x* = 1|y @ 2*, ie., 27 = 2" fori e N.
Y i

Within O(K log; 5(/<)) communication rounds,
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. . — * — AK
Infeasiblity: dc(%%) + 3;cp 107]1d—x; (Gl(xf()) < ij,\)
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Main result

Theorem: Let A’ = 0, 8° = 0. Suppose step-size condition holds.
qr > [(5+4¢)log, 3(k + 1)] communication rounds at iteration-k.

Then x¥ — x* such that x* = 1|y @ 2*, ie., 27 = 2" fori e N.
Y i

Within O(K log; 5(/<)) communication rounds,

Dual iterate bound: |05 < ||07]| + /25 A(K), VieN
G

AL where o(x) = p(x) + f(x)
Infeasiblity: de(x) + Sie 107 ldx, (Gi(x])) <

i Nk

Suboptimality: |p(x) — o(x*)| <

Solution error: ||xX — x*||2 < 290 T A(K)
o A(K)=0(Xf, B%-1k*) and supgs; A(/) < 0o
o Ni=0O(K?), 75 /4% = O(1/K?) and k5 /y5 = O(1)

Note: For static undirected G, g, = 1, A(K) < VA o5 S ien 109 — 6712

270
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Approximate Averaging Operator R*(-)

We adopt the following information exchange models
Undirected G* = (N, £): Nedich & Ozdaglar'09 and Chen & Ozdaglar'12
Directed G* = (N, £Y): Nedich & Olshevsky'15
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Directed G* = (N, £Y): Nedich & Olshevsky'15

In one communication round, every node talks to its neighbors

e communication among neighbors occurs instantaneously

Synchronous nodes: one communication round in every unit time

qr: # of communication rounds within the k-th DPDA iteration

ti: # of communication rounds before the k-th DPDA iteration
Vvt e RVIXIVT be a mixing matrix for Gt = (N, £):
sVieN, Vi=0 o j¢N

* Yjent Viiah can be computed at i € A with local communication

Whs £ Viyt=1 Vst for t > s + 1
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RF¥(-) for directed communication networks

RF(w) = [Rf(W)lien st. [[Pe(w) = RE(w)|| = O(B%|wl) Vw, k>0
Definition:

o N A i e N (iyj) € EFU{i} and d! & [N

« N E{jeN: (i) €YU}

o Ve RWIHNT st VI =1/d! for j € N;"™ and 0 otherwise.
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RF¥(-) for directed communication networks

RF(w) = [Rf(W)lien st. [[Pe(w) = RE(w)|| = O(B%|wl) Vw, k>0
Definition:

o N A i e N (iyj) € EFU{i} and d! & [N

« N L (eN: (i) € UL}

o Ve RWIHNT st VI =1/d! for j € N;"™ and 0 otherwise.

Assumption I M >1st. (N,E ) is strongly connected for k > 1,
k+1)M 1
Erm = Uiy, &t

Lemma: 35 € (0,1) and I" > 0 s.t. for any t > s > 0 and W = [wj]ien

- 1
H(diag (W) ' W @ I,,) w — il > wif <TE7°||w|

ieN

Hence, RF(w) £ (diag (Wt’“+’Jk"tk1|N|)71Wt"‘+q“tk L, w
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Numerical Experiments

Distributed Isotonic LASSO:

X € RMN‘, C= [CZ]Z@\/’ S Rm\/\/|><n'
d = [di)iens € RV and 4 € RP—1x7

A
Ci i — d ? + § Tifl1,
['51]7€N€C 2 Z || || |N‘ 1€N|| Hl

AL1<0 ieN ieN
en=200m=n+2
Random C; with standard Gaussian entries, d; = C;(z° + €)
€ € R™ random with Gaussian of zero mean and std. deviation 1073
Random z° € R~

T
2°=| U[-10,0° , 0,0, ..., 0,, U[0,10]°
——
first 5 components n—11 last 5 components

ascending order
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Numerical Experiments

® Go = (N, &) small-world network
o G! = (N, &) generated by sampling 80% of £ s.t. M =5

Effect of Network Topology (time-varying undirected):

10 10

''''''''''''''''''' N =10, & =15 S —— v = 10, |8, = 1B
.......... =[N =10, |&] = 4B — W] =10, |&] = 4B

T ; |A/] = 40, |&,| = 60 |] TS SO |M] =40, |E.] =80 ||

DR S — N =40, €] = 180 G s N =40, |&| = 180

= . :

e

[

M

N

-1

=3

w

%

o]

B

0 500 1000 1500 2000 0 500 1000 1500 2000
k : iteration counter k : iteration counter




Numerical Experiments

Compared against DPDA-D (Aybat et al'16) — O(1/k) ergodic rate
e Time-varying undirected Network: G, = (N, &), |IN| =10, |E,| = 45
o Gl = (N, &) generated by sampling 80% of £, s.t. M =5

T 10 ;
T DPDAD: | —x' ||/ ||| feen e DPDAD
..... o mEDATY |l LA L e Ty
0 DPDA-TV. [|€% —x*||/[|x*]| |
= =
g 102 b T:f;:
@ =
o ~—
= 5 :2
® 10° ™ W g
3 o R A ;:g’ ................
o L
S 5 TR
10" e i 1e° e e
-5 -4
10 ; i ; 10 ; i ;
500 1000 1500 2000 500 1000 1500 2000

k : iteration counter

k : iteration counter
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Numerical Experiments

Compared against DPDA-D (Aybat et al.'16) — O(1/k) ergodic rate
e Time-varying directed Network: G; = (N, &), IN| =12, |&y] = 24
* G\ = (N, &) generated by sampling 80% of &;s.t. M =5
(Nedich et al’'17)

10" = 0
[——DPDAD: || —x*[|/Ix*| ——DPDA-D
——-DPDA-TV: [|€* — =*||/|Ix"| ——-DPDA-TV
10" ; DEDA-TV: || — x*||/|x"|| 10" : 4
3 =
S z\‘ = N "\
50 g0
14 =
= P NG = 2
8 DR
S . % s
o <
4 o E e
- 10° S ——
"
500 1000 1500 200¢ o 0 500 1000 1500 2000
k : iteration counter k : teration counter
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