
An overview of mixed-precision methods in scientific computing

Matteo Croci

Center for Optimization and Statistical Learning Seminar.
Northwestern University, 6 October 2022

Overview

1. Introduction and background

2. Optimization

3. Numerical linear algebra

4. Numerical solution of partial differential equations

5. Conclusions

Note: too broad a field to include everything. I will present a few examples per topic.

1/33

1. Introduction and background

Main references:

• A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, et al. A survey
of numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal
of High Performance Computing Applications, 35(4):344–369, 2021

• N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica,
31:347–414, 2022

• M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation,
error analysis and applications. Royal Society Open Science, 9:211631, 2022

• M. P. Connolly, N. J. Higham, and T. Mary. Stochastic rounding and its probabilistic backward
error analysis. SIAM Journal on Scientific Computing, 43(1):566–585, 2021

• N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002

1/33

Reduced- and mixed-precision algorithms

Reduced- and mixed-precision algorithms

Reduced-precision algorithms

Reduced-precision algorithms obtain an as accurate solution as possible given the
precision while avoiding catastrophic rounding error accumulation.

Mixed-precision algorithms

Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced-precision while retaining good accuracy.

• This is now a very active field of investigation1 with many new developments led
mainly by the numerical linear algebra and machine learning communities.

• Many new RP/MP algorithms in scientific computing and data science.

• There is still much to discover on the topic.

1Review articles: [Abdelfattah et al. 2021], [Higham and Mary 2021], [C. et al. 2021].

3/33

Reduced- and mixed-precision algorithms

Reduced-precision algorithms

Reduced-precision algorithms obtain an as accurate solution as possible given the
precision while avoiding catastrophic rounding error accumulation.

Mixed-precision algorithms

Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced-precision while retaining good accuracy.

• This is now a very active field of investigation1 with many new developments led
mainly by the numerical linear algebra and machine learning communities.

• Many new RP/MP algorithms in scientific computing and data science.

• There is still much to discover on the topic.

1Review articles: [Abdelfattah et al. 2021], [Higham and Mary 2021], [C. et al. 2021].

3/33

Reduced- and mixed-precision algorithms

Reduced-precision algorithms

Reduced-precision algorithms obtain an as accurate solution as possible given the
precision while avoiding catastrophic rounding error accumulation.

Mixed-precision algorithms

Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced-precision while retaining good accuracy.

• This is now a very active field of investigation1 with many new developments led
mainly by the numerical linear algebra and machine learning communities.

• Many new RP/MP algorithms in scientific computing and data science.

• There is still much to discover on the topic.

1Review articles: [Abdelfattah et al. 2021], [Higham and Mary 2021], [C. et al. 2021].

3/33

Floating point formats

Format unit roundoff u Range

bfloat16 (half) 2−8 ≈ 3.91× 10−3 10±38

fp16 (half) 2−11 ≈ 4.88× 10−4 10±5

fp32 (single) 2−24 ≈ 5.96× 10−8 10±38

fp64 (double) 2−53 ≈ 1.11× 10−16 10±308

Important: don’t just focus on u, range is an extremely important factor. Scaling and
squeezing techniques are central for a correct reduced-precision implementation.

Recent trend in scientific computing: u is getting larger: all major chip
manufacturers (AMD, ARM, NVIDIA, Intel, ...) have commercialized chips (CPUs,
GPUs, TPUs, FPGAs, ...) supporting low-precision computations.

Half vs double max speedups: ×4 on CPUs, ×32 on A100 NVIDIA GPUs.

4/33

Round to nearest

xk x xk+1

ϑ(xk+1 − xk),

ϑ ∈ [0, 1].

if ϑ < 0.5

if ϑ > 0.5

fl(x) = x(1 + δ), with |δ| ≤ u.

5/33

Stochastic rounding (review article [C. et al. 2022])

xk x xk+1

ϑ(xk+1 − xk),

ϑ ∈ [0, 1].

with probability 1− ϑ
with probability ϑ

sr(x) = x(1 + δ(ω)), |δ| ≤ 2u, and E[sr(x)] = x, E[δi|δ1, . . . , δi−1] = E[δi] = 0.

Limited (yet growing) hardware support. Many new applications in Sci. Comp. and ML.

6/33

2. Optimization

Note: Not my field of expertise. Post-seminar discussions are welcome!

Main references:

• N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul. Mixed precision training with 8-bit floating
point. arXiv preprint arXiv:1905.12334, 2019

• F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech DNNs. In Fifteenth annual conference of the
international speech communication association. Microsoft, 2014

• Y. Xie, R. H. Byrd, and J. Nocedal. Analysis of the BFGS method with errors. SIAM Journal on
Optimization, 30(1):182–209, 2020

• F. Tisseur. Newton’s method in floating point arithmetic and iterative refinement of generalized
eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 22(4):1038–1057, 2001

• C. Kelley. Newton’s method in mixed precision. SIAM Review, 64(1):191–211, 2022

6/33

Reduced- and mixed-precision first-order methods in machine learning
• The machine learning community has been the main driver of experimentation in

this field and GPU tensor cores really help making this efficient.

• “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

• Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

• 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].

• From a theoretical point of view: many open questions.

https://developer.nvidia.com/automatic-mixed-precision.

7/33

https://developer.nvidia.com/automatic-mixed-precision

Reduced- and mixed-precision first-order methods in machine learning
• The machine learning community has been the main driver of experimentation in

this field and GPU tensor cores really help making this efficient.

• “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

• Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

• 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].

• From a theoretical point of view: many open questions.

https://developer.nvidia.com/automatic-mixed-precision.

7/33

https://developer.nvidia.com/automatic-mixed-precision

Reduced- and mixed-precision first-order methods in machine learning
• The machine learning community has been the main driver of experimentation in

this field and GPU tensor cores really help making this efficient.

• “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

• Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

• 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].

• From a theoretical point of view: many open questions.

https://developer.nvidia.com/automatic-mixed-precision.

7/33

https://developer.nvidia.com/automatic-mixed-precision

Reduced- and mixed-precision first-order methods in machine learning
• The machine learning community has been the main driver of experimentation in

this field and GPU tensor cores really help making this efficient.

• “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

• Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

• 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].

• From a theoretical point of view: many open questions.

https://developer.nvidia.com/automatic-mixed-precision.

7/33

https://developer.nvidia.com/automatic-mixed-precision

Reduced- and mixed-precision first-order methods in machine learning
• The machine learning community has been the main driver of experimentation in

this field and GPU tensor cores really help making this efficient.

• “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

• Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

• 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].

• From a theoretical point of view: many open questions.

https://developer.nvidia.com/automatic-mixed-precision.

7/33

https://developer.nvidia.com/automatic-mixed-precision

Reduced-precision second-order optimization ⊆ optimization with noise?

Limited results in the optimization literature are specific to rounding errors. However,
there is work on optimization with noise (see e.g. [Xie, Byrd & Nocedal 2020]).

What I’d be curious to know: To what extent does the existing theory apply to
inexact arithmetic? What are the implementation challenges?

Need to consider:

• Noisy function and derivative evaluations:

f̂(x) = f(x) + εf (x), with |ε0(x)| ≤ ε0, ∀x.
∇̂if(x) = ∇if(x) + εi(x), with ‖εi(x)‖ ≤ εi, ∀x, i = 1, 2.

• Inexact Newton system solves, linesearch, local models, subproblems, ...

How does the relative size of the errors affect convergence?
Which steps can I perform more or less accurately?

8/33

Reduced-precision second-order optimization ⊆ optimization with noise?

Limited results in the optimization literature are specific to rounding errors. However,
there is work on optimization with noise (see e.g. [Xie, Byrd & Nocedal 2020]).

What I’d be curious to know: To what extent does the existing theory apply to
inexact arithmetic? What are the implementation challenges?

Need to consider:

• Noisy function and derivative evaluations:

f̂(x) = f(x) + εf (x), with |ε0(x)| ≤ ε0, ∀x.
∇̂if(x) = ∇if(x) + εi(x), with ‖εi(x)‖ ≤ εi, ∀x, i = 1, 2.

• Inexact Newton system solves, linesearch, local models, subproblems, ...

How does the relative size of the errors affect convergence?
Which steps can I perform more or less accurately?

8/33

Reduced-precision second-order optimization ⊆ optimization with noise?

Limited results in the optimization literature are specific to rounding errors. However,
there is work on optimization with noise (see e.g. [Xie, Byrd & Nocedal 2020]).

What I’d be curious to know: To what extent does the existing theory apply to
inexact arithmetic? What are the implementation challenges?

Need to consider:

• Noisy function and derivative evaluations:

f̂(x) = f(x) + εf (x), with |ε0(x)| ≤ ε0, ∀x.
∇̂if(x) = ∇if(x) + εi(x), with ‖εi(x)‖ ≤ εi, ∀x, i = 1, 2.

• Inexact Newton system solves, linesearch, local models, subproblems, ...

How does the relative size of the errors affect convergence?
Which steps can I perform more or less accurately?

8/33

Designing mixed-precision optimization methods - some thoughts

• Stochastic rounding may be useful if theory assumes zero-mean independent errors.

• Designing routines for reduced-/mixed-precision derivative evaluations may be
problem-dependent and not straightforward in general.

• Barring underflow/overflow rounding errors are typically linear in u so noise
constants are easy to estimate if evaluation routines are type-flexible.

• Mixed-precision NLA methods can be applied and incorporated, e.g. in Newton
linear system solves, quasi-Newton updates, trust-region subproblems, ...

9/33

Designing mixed-precision optimization methods - some thoughts

• Stochastic rounding may be useful if theory assumes zero-mean independent errors.

• Designing routines for reduced-/mixed-precision derivative evaluations may be
problem-dependent and not straightforward in general.

• Barring underflow/overflow rounding errors are typically linear in u so noise
constants are easy to estimate if evaluation routines are type-flexible.

• Mixed-precision NLA methods can be applied and incorporated, e.g. in Newton
linear system solves, quasi-Newton updates, trust-region subproblems, ...

9/33

Designing mixed-precision optimization methods - some thoughts

• Stochastic rounding may be useful if theory assumes zero-mean independent errors.

• Designing routines for reduced-/mixed-precision derivative evaluations may be
problem-dependent and not straightforward in general.

• Barring underflow/overflow rounding errors are typically linear in u so noise
constants are easy to estimate if evaluation routines are type-flexible.

• Mixed-precision NLA methods can be applied and incorporated, e.g. in Newton
linear system solves, quasi-Newton updates, trust-region subproblems, ...

9/33

Designing mixed-precision optimization methods - some thoughts

• Stochastic rounding may be useful if theory assumes zero-mean independent errors.

• Designing routines for reduced-/mixed-precision derivative evaluations may be
problem-dependent and not straightforward in general.

• Barring underflow/overflow rounding errors are typically linear in u so noise
constants are easy to estimate if evaluation routines are type-flexible.

• Mixed-precision NLA methods can be applied and incorporated, e.g. in Newton
linear system solves, quasi-Newton updates, trust-region subproblems, ...

9/33

Newton’s method in floating-point arithmetic [Tisseur 2001], [Kelley 2022]

Results from [Kelley 2022]. Analysis for “vanilla” Newton: no linesearch.

Assumptions:

1. Std assumptions for Newton local q-quadratic convergence. Lipschitz Hessian.

2. A backward error bound holds for linear solves (e.g. LU factorization is used).

Newton step:

x̂k+1 = x̂k − (∇2f(x̂k) + ε2(x̂k) + εs(x̂k))−1(∇f(x̂k) + ε1(x̂k)) + εa(x̂k),

‖ε1(x)‖ ≤ ε1, (gradient error), ‖ε2(x)‖ ≤ ε2, (Hessian error), ∀x,
‖εa(x)‖ ≤ εa, (update error), ‖εs(x)‖ ≤ εs, (linear solve error), ∀x.

Theorem (Kelley 2022)

Under the above assumptions, the error ek = x̂k − x∗ satisfies

‖ek+1‖ = O
(
‖ek‖2 + (ε2 + εs)‖ek‖+ ε1 + εa

)

10/33

Newton’s method in floating-point arithmetic [Tisseur 2001], [Kelley 2022]

Results from [Kelley 2022]. Analysis for “vanilla” Newton: no linesearch.

Assumptions:

1. Std assumptions for Newton local q-quadratic convergence. Lipschitz Hessian.

2. A backward error bound holds for linear solves (e.g. LU factorization is used).

Newton step:

x̂k+1 = x̂k − (∇2f(x̂k) + ε2(x̂k) + εs(x̂k))−1(∇f(x̂k) + ε1(x̂k)) + εa(x̂k),

‖ε1(x)‖ ≤ ε1, (gradient error), ‖ε2(x)‖ ≤ ε2, (Hessian error), ∀x,
‖εa(x)‖ ≤ εa, (update error), ‖εs(x)‖ ≤ εs, (linear solve error), ∀x.

Theorem (Kelley 2022)

Under the above assumptions, the error ek = x̂k − x∗ satisfies

‖ek+1‖ = O
(
‖ek‖2 + (ε2 + εs)‖ek‖+ ε1 + εa

)

10/33

Newton’s method in floating-point arithmetic [Tisseur 2001], [Kelley 2022]

Results from [Kelley 2022]. Analysis for “vanilla” Newton: no linesearch.

Assumptions:

1. Std assumptions for Newton local q-quadratic convergence. Lipschitz Hessian.

2. A backward error bound holds for linear solves (e.g. LU factorization is used).

Newton step:

x̂k+1 = x̂k − (∇2f(x̂k) + ε2(x̂k) + εs(x̂k))−1(∇f(x̂k) + ε1(x̂k)) + εa(x̂k),

‖ε1(x)‖ ≤ ε1, (gradient error), ‖ε2(x)‖ ≤ ε2, (Hessian error), ∀x,
‖εa(x)‖ ≤ εa, (update error), ‖εs(x)‖ ≤ εs, (linear solve error), ∀x.

Theorem (Kelley 2022)

Under the above assumptions, the error ek = x̂k − x∗ satisfies

‖ek+1‖ = O
(
‖ek‖2 + (ε2 + εs)‖ek‖+ ε1 + εa

)

10/33

Newton’s method in floating-point arithmetic [Tisseur 2001], [Kelley 2022]

Results from [Kelley 2022]. Analysis for “vanilla” Newton: no linesearch.

Assumptions:

1. Std assumptions for Newton local q-quadratic convergence. Lipschitz Hessian.

2. A backward error bound holds for linear solves (e.g. LU factorization is used).

Newton step:

x̂k+1 = x̂k − (∇2f(x̂k) + ε2(x̂k) + εs(x̂k))−1(∇f(x̂k) + ε1(x̂k)) + εa(x̂k),

‖ε1(x)‖ ≤ ε1, (gradient error), ‖ε2(x)‖ ≤ ε2, (Hessian error), ∀x,
‖εa(x)‖ ≤ εa, (update error), ‖εs(x)‖ ≤ εs, (linear solve error), ∀x.

Theorem (Kelley 2022)

Under the above assumptions, the error ek = x̂k − x∗ satisfies

‖ek+1‖ = O
(
‖ek‖2 + (ε2 + εs)‖ek‖+ ε1 + εa

)

10/33

Mixed-precision Newton

Theorem (Kelley 2022)

Under the above assumptions, the error ek = x̂k − x∗ satisfies

‖ek+1‖ = O
(
‖ek‖2 + (ε2 + εs)‖ek‖+ ε1 + εa

)
Note: Inexact Hessian and linear solves impact convergence rate, but not limiting
accuracy. Gradient and update errors do not harm rate, but affect limiting accuracy.

Warning: hidden constants proportional to ‖∇2f(x∗)−1‖, κ(∇2f), and problem size.

Typical mixed-precision strategy: high-precision gradient evaluations and update and
low-precision Hessian evaluation/approximation and inversion so that, e.g.

ε1, εa = O(u2); ε2, εs = O(u) =⇒ ‖ek+1‖ ≈ O
(
‖ek‖2 + u2

)
.

Since the reduction in the rate occurs when ‖ek‖ ≤ O(u) for which ‖ek+1‖= O(u2).

11/33

Mixed-precision Newton

Theorem (Kelley 2022)

Under the above assumptions, the error ek = x̂k − x∗ satisfies

‖ek+1‖ = O
(
‖ek‖2 + (ε2 + εs)‖ek‖+ ε1 + εa

)
Note: Inexact Hessian and linear solves impact convergence rate, but not limiting
accuracy. Gradient and update errors do not harm rate, but affect limiting accuracy.

Warning: hidden constants proportional to ‖∇2f(x∗)−1‖, κ(∇2f), and problem size.

Typical mixed-precision strategy: high-precision gradient evaluations and update and
low-precision Hessian evaluation/approximation and inversion so that, e.g.

ε1, εa = O(u2); ε2, εs = O(u) =⇒ ‖ek+1‖ ≈ O
(
‖ek‖2 + u2

)
.

Since the reduction in the rate occurs when ‖ek‖ ≤ O(u) for which ‖ek+1‖= O(u2).

11/33

3. Numerical linear algebra

Two topics:

1. Mixed-precision iterative refinement.

2. Mixed-precision Krylov subspace methods.

Review articles (citing all mentioned references):

• A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, et al. A survey
of numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal
of High Performance Computing Applications, 35(4):344–369, 2021

• N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica,
31:347–414, 2022

11/33

Mixed-precision iterative refinement for Ax = b [Langou et al. 2006], [Carson & Higham 2017-18]

Apply mixed-precision Newton to Ax− b = 0. Use two precisions u, u2.

Mixed-precision iterative refinement

Solve Ax0 = b using LU factorization in precision u and store the LU factors.
For k = 1, 2, . . .

1. Compute residual rk = b−Axk at precision u2.

2. Solve Adk = rk at precision u by re-using the LU factors.

3. xk+1 = xk + dk at precision u2.

Since ‖e0‖ = O(u) the previous theorem gives that

‖e1‖ = O(‖e0‖2 + u‖e0‖+ u2) = O(u2).

Advantages: LU factorization performed only once in low precision. Limiting accuracy
dictated by u2 provided κ∞(A) is small enough.

12/33

Mixed-precision iterative refinement for Ax = b [Langou et al. 2006], [Carson & Higham 2017-18]

Apply mixed-precision Newton to Ax− b = 0. Use two precisions u, u2.

Mixed-precision iterative refinement

Solve Ax0 = b using LU factorization in precision u and store the LU factors.
For k = 1, 2, . . .

1. Compute residual rk = b−Axk at precision u2.

2. Solve Adk = rk at precision u by re-using the LU factors.

3. xk+1 = xk + dk at precision u2.

Since ‖e0‖ = O(u) the previous theorem gives that

‖e1‖ = O(‖e0‖2 + u‖e0‖+ u2) = O(u2).

Advantages: LU factorization performed only once in low precision. Limiting accuracy
dictated by u2 provided κ∞(A) is small enough.

12/33

Mixed-precision iterative refinement for Ax = b [Langou et al. 2006], [Carson & Higham 2017-18]

Apply mixed-precision Newton to Ax− b = 0. Use two precisions u, u2.

Mixed-precision iterative refinement

Solve Ax0 = b using LU factorization in precision u and store the LU factors.
For k = 1, 2, . . .

1. Compute residual rk = b−Axk at precision u2.

2. Solve Adk = rk at precision u by re-using the LU factors.

3. xk+1 = xk + dk at precision u2.

Since ‖e0‖ = O(u) the previous theorem gives that

‖e1‖ = O(‖e0‖2 + u‖e0‖+ u2) = O(u2).

Advantages: LU factorization performed only once in low precision. Limiting accuracy
dictated by u2 provided κ∞(A) is small enough.

12/33

Mixed-precision iterative refinement for Ax = b [Langou et al. 2006], [Carson & Higham 2017-18]

Apply mixed-precision Newton to Ax− b = 0. Use two precisions u, u2.

Mixed-precision iterative refinement

Solve Ax0 = b using LU factorization in precision u and store the LU factors.
For k = 1, 2, . . .

1. Compute residual rk = b−Axk at precision u2.

2. Solve Adk = rk at precision u by re-using the LU factors.

3. xk+1 = xk + dk at precision u2.

Since ‖e0‖ = O(u) the previous theorem gives that

‖e1‖ = O(‖e0‖2 + u‖e0‖+ u2) = O(u2).

Advantages: LU factorization performed only once in low precision. Limiting accuracy
dictated by u2 provided κ∞(A) is small enough.

12/33

GMRES-IR [Carson & Higham 2017-18, Amestoy et al. 2021]

Now use three precisions: ul ≥ u ≥ u2. In [Amestoy et al. 2021] they use five.

GMRES-IR

Solve Ax0 = b using LU factorization in precision ul and store the LU factors.
For k = 1, 2, . . .

1. Compute residual rk = b−Axk at precision u2.

2. Solve Adk = rk at precision u by using GMRES with U−1L−1 as preconditioner
and matrix-vector products performed at precision u2.

3. xk+1 = xk + dk at precision u.

Result:

• Provided that κ∞(A)� u−1 we obtain a limiting accuracy of O(u) where the
hidden constant is independent from κ∞(A).

• This approach is efficient since again the LU factorization is performed only once
and in low precision, and GMRES typically converges in a handful of iterations.

• GMRES-IR is more robust to ill-conditioning than LU-based iterative refinement.

13/33

GMRES-IR [Carson & Higham 2017-18, Amestoy et al. 2021]

Now use three precisions: ul ≥ u ≥ u2. In [Amestoy et al. 2021] they use five.

GMRES-IR

Solve Ax0 = b using LU factorization in precision ul and store the LU factors.
For k = 1, 2, . . .

1. Compute residual rk = b−Axk at precision u2.

2. Solve Adk = rk at precision u by using GMRES with U−1L−1 as preconditioner
and matrix-vector products performed at precision u2.

3. xk+1 = xk + dk at precision u.

Result:

• Provided that κ∞(A)� u−1 we obtain a limiting accuracy of O(u) where the
hidden constant is independent from κ∞(A).

• This approach is efficient since again the LU factorization is performed only once
and in low precision, and GMRES typically converges in a handful of iterations.

• GMRES-IR is more robust to ill-conditioning than LU-based iterative refinement.

13/33

Mixed-precision iterative refinement in the literature

Mixed-precision iterative refinement is at the heart of many recent mixed-precision
developments in numerical linear algebra, including:

• Sparse approximate factorizations (e.g. replace LU with a sparse approximation),
cf. [Amestoy et al. 2022].

• Least square problems (see e.g. [Carson et al. 2020]).

• Eigenvalue problems (see e.g. [Tisseur 2001]).

• Multigrid (see e.g. [Tamstorf et al. 2021] and [McCormick et al. 2021]).

• Krylov subspace methods, cf. [Anzt et al. 2010, Lindquist et al. 2021].

14/33

Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strakoš 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.

Three approaches: (see review articles for more details and info):

1. Iterative refinement. Use lower precision in inner solver.

2. MP preconditioning. Apply/implement preconditioner in low precision.

3. MP iterative methods. Adaptively change precision of inner products/matvecs.

15/33

Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strakoš 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.

Three approaches: (see review articles for more details and info):

1. Iterative refinement. Use lower precision in inner solver.

2. MP preconditioning. Apply/implement preconditioner in low precision.

3. MP iterative methods. Adaptively change precision of inner products/matvecs.

15/33

Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strakoš 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.

Three approaches: (see review articles for more details and info):

1. Iterative refinement. Use lower precision in inner solver.

2. MP preconditioning. Apply/implement preconditioner in low precision.

3. MP iterative methods. Adaptively change precision of inner products/matvecs.

15/33

Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strakoš 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.

Three approaches: (see review articles for more details and info):

1. Iterative refinement. Use lower precision in inner solver.

2. MP preconditioning. Apply/implement preconditioner in low precision.

3. MP iterative methods. Adaptively change precision of inner products/matvecs.

15/33

Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strakoš 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.

Three approaches: (see review articles for more details and info):

1. Iterative refinement. Use lower precision in inner solver.

2. MP preconditioning. Apply/implement preconditioner in low precision.

3. MP iterative methods. Adaptively change precision of inner products/matvecs.

15/33

4. Numerical solution of partial differential equations

Main references:

• M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation,
error analysis and applications. Royal Society Open Science, 9:211631, 2022

• M. Klöwer, S. Hatfield, M. Croci, P. D. Düben, and T. N. Palmer. Fluid simulations accelerated
with 16 bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16.
Journal of Advances in Modeling Earth Systems, 2021

• M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical
solution of the heat equation in low precision. IMA Journal of Numerical Analysis, 2022. URL
https://doi.org/10.1093/imanum/drac012

• M. Croci and G. R. de Souza. Mixed-precision explicit stabilized Runge–Kutta methods for
single-and multi-scale differential equations. Journal of Computational Physics, 2022

15/33

https://doi.org/10.1093/imanum/drac012

4a. Towards climate simulations in half precision
Joint with: M. Klöwer and T. N. Palmer (University of Oxford),

S. Hatfield and P. D. Düben (European Centre for Medium-Range Weather Forecasts).

Algorithm type: reduced-precision (half).

Main references:

• M. Klöwer, S. Hatfield, M. Croci, P. D. Düben, and T. N. Palmer. Fluid simulations accelerated
with 16 bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16.
Journal of Advances in Modeling Earth Systems, 2021

15/33

Towards climate simulations in half precision [Klöwer et al. 2021]

Shallow-water eqs for 2D oceanic flow:
v̇ + v · ∇v + ẑ × v = −∇η + ∆2v − v + F ,

η̇ +∇ · (vh) = 0,

q̇ + v · ∇q = −τ(q − q0).

Numerical scheme: explicit 4th-order
timestepping on a staggered grid.

Techniques used for fp16 simulations:

• Scaling and squeezing.

• Kahan compensated summation.

• Performed using A64FX chips on
Fugaku (1st in TOP500).

Note: all other results in this part of the talk use precision emulation in software.

16/33

4b. Solving parabolic PDEs in half precision
Joint with: M. B. Giles (University of Oxford)

Algorithm type: reduced-precision (half), using stochastic rounding.

Main references:

• M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical
solution of the heat equation in low precision. IMA Journal of Numerical Analysis, 2022. URL
https://doi.org/10.1093/imanum/drac012

• M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation,
error analysis and applications. Royal Society Open Science, 9:211631, 2022

16/33

https://doi.org/10.1093/imanum/drac012

RtN might cause stagnation

xk+1xk xk + ∆x

17/33

RtN might cause stagnation

xk+1xk xk + ∆x

17/33

SR is resilient to stagnation

xk+1xk xk + ∆x

17/33

Interesting results by Milan Klöwer (University of Oxford)

Note: not just due to stagnation, SR decorrelates errors and causes error cancellation!

18/33

RtN vs SR

Why is RtN in low precision bad for parabolic PDEs?

a) Stagnation:

• RtN always stagnates for sufficiently small ∆t.

b) Global error:

• RtN rounding errors are strongly correlated and grow rapidly until stagnation.

SR fixes all these issues!

19/33

a) Stagnation (heat equation, left 1D, right 2D)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Û
∞

double (same as exact)

SR, all initial conditions

RtN, u0 = 1

RtN, u0 = 3/2− |x− 1/2|
RtN, u0 = 1 + noise

RtN, u0 = 1 + sin(8πx)

RtN computations are discretization and initial condition dependent. SR works!

20/33

b) Global rounding errors [C. and Giles 2020]
Let εn ∈ RK be the vector containing all rounding errors introduced at time step n.
Define the global rounding error En = Ûn −Un. It can be shown that

En+1 = SEn + εn.

Traditional results for ODEs [Henrici 1962-1963, Arató 1983]: εn is O(∆t2).

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, |εni | = O(u) for all n, i.

SR: the εni are zero-mean, independent in space and mean-independent in time.

Mode Norm 1D 2D 3D

RtN L2,∞ O(u∆t−1) O(u∆t−1) O(u∆t−1)

SR E[|| · ||2∞]1/2 O(u∆t−1/4`(∆t)1/2) O(u`(∆t)) O(u`(∆t)1/2)

SR E[|| · ||2L2]1/2 O(u∆t−1/4) O(u`(∆t)1/2) O(u)

Asymptotic global rounding error blow-up rates; `(∆t) = | log(∆t)|.

21/33

b) Global rounding errors [C. and Giles 2020]
Let εn ∈ RK be the vector containing all rounding errors introduced at time step n.
Define the global rounding error En = Ûn −Un. It can be shown that

En+1 = SEn + εn.

Traditional results for ODEs [Henrici 1962-1963, Arató 1983]: εn is O(∆t2).

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, |εni | = O(u) for all n, i.

SR: the εni are zero-mean, independent in space and mean-independent in time.

Mode Norm 1D 2D 3D

RtN L2,∞ O(u∆t−1) O(u∆t−1) O(u∆t−1)

SR E[|| · ||2∞]1/2 O(u∆t−1/4`(∆t)1/2) O(u`(∆t)) O(u`(∆t)1/2)

SR E[|| · ||2L2]1/2 O(u∆t−1/4) O(u`(∆t)1/2) O(u)

Asymptotic global rounding error blow-up rates; `(∆t) = | log(∆t)|.

21/33

b) Global rounding errors (2D heat equation)

10−4 10−3 10−2

∆t

100

101

102

103

re
la
ti
ve

er
ro
r

∞ norm

RtN-FE

SR-FE

RtN-BE

SR-BE

O(∆t−1)

O(| log(∆t)|)

10−4 10−3 10−2

∆t

100

101

102

103

re
la
ti
ve

er
ro
r

L2 norm

RtN-FE

SR-FE

RtN-BE

SR-BE

O(∆t−1)

O(| log(∆t)|1/2)

Global error (delta form, 2D)

Note: relative error = error × (u||UN ||)−1

22/33

4c. Mixed-precision explicit Runge-Kutta methods
Joint with: G. Rosilho De Souza (USI Lugano).

Algorithm type: mixed-precision (double/bfloat16) using round-to-nearest.

Main reference:

• M. Croci and G. R. de Souza. Mixed-precision explicit stabilized Runge–Kutta methods for
single-and multi-scale differential equations. Journal of Computational Physics, 2022

22/33

Framework and objective

We consider mixed-precision explicit RK schemes for the solution of ODEs in the form

y′(t) = f(t,y(t)), y(0) = y0,

where f(t,y) is sufficiently smooth, and from now on set f = f(y(t)) for simplicity.

Objective

Evaluate f in low-precision as much as possible without affecting accuracy or stability.

Note: in this part of the talk we only use RtN.

23/33

Absolute stability
Dahlquist’s test problem: y′ = λy, y(0) = 1.
s-stage RK method yn = Rs(z)

n, where z = ∆tλ = x+ iy. Stable if |Rs(z)| < 1.

24/33

Linear stability for RK methods (in practice)

25/33

Linear stability for RKC (in practice, s = 128, u = 2−8)

26/33

Order-preserving mixed-precision RK methods

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is q-order-preserving (q ∈ {1, . . . , p}), if it
converges with order q under the above assumption.

We saw that RP methods do not converge, hence they are not order-preserving.

Our idea: store solution in high precision and use only q high-precision function
evaluations to obtain a q-order-preserving mixed-precision RK method.

We can construct q-order preserving RK methods for any q for linear problems, and for
q = 1, 2 for nonlinear problems. We can prove both stability and convergence.

Note: We mainly focused on stabilized methods since they are low-order, but use a lot
of function evaluations to maximize stability.

27/33

Order-preserving mixed-precision RK methods

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is q-order-preserving (q ∈ {1, . . . , p}), if it
converges with order q under the above assumption.

We saw that RP methods do not converge, hence they are not order-preserving.

Our idea: store solution in high precision and use only q high-precision function
evaluations to obtain a q-order-preserving mixed-precision RK method.

We can construct q-order preserving RK methods for any q for linear problems, and for
q = 1, 2 for nonlinear problems. We can prove both stability and convergence.

Note: We mainly focused on stabilized methods since they are low-order, but use a lot
of function evaluations to maximize stability.

27/33

Order-preserving mixed-precision RK methods

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is q-order-preserving (q ∈ {1, . . . , p}), if it
converges with order q under the above assumption.

We saw that RP methods do not converge, hence they are not order-preserving.

Our idea: store solution in high precision and use only q high-precision function
evaluations to obtain a q-order-preserving mixed-precision RK method.

We can construct q-order preserving RK methods for any q for linear problems, and for
q = 1, 2 for nonlinear problems. We can prove both stability and convergence.

Note: We mainly focused on stabilized methods since they are low-order, but use a lot
of function evaluations to maximize stability.

27/33

Linear problems, i.e. f(y) = Ay

Consider the exact solution at t = ∆t and its corresponding p-th order RK
approximation:

y(∆t) = exp(∆tA)y0 =

∞∑
j=0

(∆tA)j

j!
y0,

y1 =

p∑
j=0

(∆tA)j

j!
y0 +O(∆tp+1).

Giving a local error of τ = ∆t−1||y(∆t)− y1|| = O(∆tp).

Evaluating the scheme in finite precision yields:

ŷ1 = ε+ y0 +

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)

)
y0 +O(∆tp+1).

28/33

Linear problems, i.e. f(y) = Ay

Consider the exact solution at t = ∆t and its corresponding p-th order RK
approximation:

y(∆t) = exp(∆tA)y0 =

∞∑
j=0

(∆tA)j

j!
y0,

y1 =

p∑
j=0

(∆tA)j

j!
y0 +O(∆tp+1).

Giving a local error of τ = ∆t−1||y(∆t)− y1|| = O(∆tp).

Evaluating the scheme in finite precision yields:

ŷ1 = ε+ y0 +

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)

)
y0 +O(∆tp+1).

28/33

Linear problems

τ = ∆−1||ŷ1 − y1|| = ∆t−1

∣∣∣∣∣∣
∣∣∣∣∣∣ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∣∣∣∣∣∣
∣∣∣∣∣∣+O(∆tp).

Let us consider the following scenarios:

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!

2. Exact vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy and
loss of convergence.

3. First q ≥ 1 matvecs exact. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

29/33

Linear problems

τ = ∆−1||ŷ1 − y1|| = ∆t−1

∣∣∣∣∣∣
∣∣∣∣∣∣ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∣∣∣∣∣∣
∣∣∣∣∣∣+O(∆tp).

Let us consider the following scenarios:

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!

2. Exact vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy and
loss of convergence.

3. First q ≥ 1 matvecs exact. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

29/33

Linear problems

τ = ∆−1||ŷ1 − y1|| = ∆t−1

∣∣∣∣∣∣
∣∣∣∣∣∣ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∣∣∣∣∣∣
∣∣∣∣∣∣+O(∆tp).

Let us consider the following scenarios:

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!

2. Exact vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy and
loss of convergence.

3. First q ≥ 1 matvecs exact. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

29/33

Linear problems

τ = ∆−1||ŷ1 − y1|| = ∆t−1

∣∣∣∣∣∣
∣∣∣∣∣∣ε+

p∑
j=1

∆tj

j!

(
j∏

k=1

(A+ ∆Ak)−Aj

)
y0

∣∣∣∣∣∣
∣∣∣∣∣∣+O(∆tp).

Let us consider the following scenarios:

1. We have ε = O(u) and we get τ = O(u∆t−1 + ∆tp). Rapid error growth!

2. Exact vector operations: ε = 0 so τ = O(u+ ∆tp). O(u) limiting accuracy and
loss of convergence.

3. First q ≥ 1 matvecs exact. Now ε = 0 and ∆Ak = 0 for k = 1, . . . , q, so
τ = O(u∆tq + ∆tp). Recover q-th order convergence!

29/33

Numerical results - convergence (3D heat eqn)

10−5 10−4

∆t

10−14

10−12

10−10

10−8

10−6

10−4

10−2

er
ro
r
(L

∞
n
or
m
)

mixed-precision RK4

RK4, q = 0

RK4, q = 1

RK4, q = 2

RK4, q = 3

O(1)

O(∆t1)

O(∆t2)

O(∆t3)

Heat eqn 3D - time discretization error

The transition from order p to order q happens roughly when ∆t = O(||A||−1u
1

p−q)

30/33

Numerical results - convergence
1D Brussellator model for chemical autocatalytic reactions (with Dirichlet BCs):{

u̇ = α∆ u+ u2 v−(b+ 1) u+a
v̇ = α∆ v− u2 v +b u

10−2

∆t

10−3

10−2

10−1

100

101

102

re
la
ti
ve

er
ro
r
(L

∞
n
or
m
)

RKC1 (s = 16)

double

mixed

low

O(∆t)

Brussellator - time discretization error

10−3 10−2

∆t

10−6

10−4

10−2

100

102

re
la
ti
ve

er
ro
r
(L

∞
n
or
m
)

RKC2 (s = 16)

double

mixed

low

O(∆t2)

Brussellator - time discretization error

31/33

Numerical results - convergence
Nonlinear diffusion model, 1D 4-Laplace diffusion operator (with Dirichlet BCs):

u̇ = ∇ · (‖∇ u ‖22∇ u) + f

10−4 10−3

∆t

10−7

10−6

10−5

10−4

10−3

10−2

10−1

re
la
ti
ve

ti
m
e
d
is
cr
.
er
ro
r
(L

∞
n
or
m
)

RKC1 (s = 32)

double

OP mixed

std. mixed

O(∆t)

10−4

∆t

10−10

10−8

10−6

10−4

10−2

re
la
ti
ve

ti
m
e
d
is
cr
.
er
ro
r
(L

∞
n
or
m
)

RKC2 (s = 32)

double

OP mixed

std. mixed

O(∆t2)

32/33

4. Conclusions

32/33

Outlook

To sum up

• Reduced-/mixed-precision algorithms require a careful implementation, but can
bring significant memory, cost, and energy savings.

• Many new reduced and mixed-precision algorithms for scientific computing and
data science were developed in recent years. Hardware support is growing.

• Advice for new developers: find which operations are more costly or more
sensitive to rounding errors before designing a mixed-precision method.

• Advice for new practitioners: keep GPU and FPGA applications in mind as that’s
where most savings can currently be obtained.

Thank you for listening!

Papers, slides, and more info at: https://croci.github.io

Email: matteo.croci@austin.utexas.edu

33/33

https://croci.github.io
matteo.croci@austin.utexas.edu

Outlook

To sum up

• Reduced-/mixed-precision algorithms require a careful implementation, but can
bring significant memory, cost, and energy savings.

• Many new reduced and mixed-precision algorithms for scientific computing and
data science were developed in recent years. Hardware support is growing.

• Advice for new developers: find which operations are more costly or more
sensitive to rounding errors before designing a mixed-precision method.

• Advice for new practitioners: keep GPU and FPGA applications in mind as that’s
where most savings can currently be obtained.

Thank you for listening!

Papers, slides, and more info at: https://croci.github.io

Email: matteo.croci@austin.utexas.edu

33/33

https://croci.github.io
matteo.croci@austin.utexas.edu

References I

[1] A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, et al. A survey of
numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal of High
Performance Computing Applications, 35(4):344–369, 2021.

[2] N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica, 31:
347–414, 2022.

[3] M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation, error
analysis and applications. Royal Society Open Science, 9:211631, 2022.

[4] M. P. Connolly, N. J. Higham, and T. Mary. Stochastic rounding and its probabilistic backward error
analysis. SIAM Journal on Scientific Computing, 43(1):566–585, 2021.

[5] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

[6] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul. Mixed precision training with 8-bit floating point. arXiv
preprint arXiv:1905.12334, 2019.

[7] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech DNNs. In Fifteenth annual conference of the international speech
communication association. Microsoft, 2014.

[8] Y. Xie, R. H. Byrd, and J. Nocedal. Analysis of the BFGS method with errors. SIAM Journal on
Optimization, 30(1):182–209, 2020.

[9] F. Tisseur. Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue
problems. SIAM Journal on Matrix Analysis and Applications, 22(4):1038–1057, 2001.

[10] C. Kelley. Newton’s method in mixed precision. SIAM Review, 64(1):191–211, 2022.

33/33

References II

[11] M. Klöwer, S. Hatfield, M. Croci, P. D. Düben, and T. N. Palmer. Fluid simulations accelerated with 16
bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16. Journal of Advances in
Modeling Earth Systems, 2021.

[12] M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical solution of
the heat equation in low precision. IMA Journal of Numerical Analysis, 2022. URL
https://doi.org/10.1093/imanum/drac012.

[13] M. Croci and G. R. de Souza. Mixed-precision explicit stabilized Runge–Kutta methods for single-and
multi-scale differential equations. Journal of Computational Physics, 2022.

[14] E. Carson and N. J. Higham. Accelerating the solution of linear systems by iterative refinement in three
precisions. SIAM Journal on Scientific Computing, 40(2):A817–A847, 2018.

[15] E. Carson and N. J. Higham. A new analysis of iterative refinement and its application to accurate solution
of ill-conditioned sparse linear systems. SIAM Journal on Scientific Computing, 39(6):A2834–A2856, 2017.

[16] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra. Exploiting the performance of 32
bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative refinement for linear systems).
In SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pages 50–50. IEEE, 2006.

[17] E. Carson, N. J. Higham, and S. Pranesh. Three-precision GMRES-based iterative refinement for least
squares problems. SIAM Journal on Scientific Computing, 42(6):A4063–A4083, 2020.

[18] P. Amestoy, A. Buttari, N. J. Higham, J.-Y. l’Excellent, T. Mary, and B. Vieuble. Combining sparse
approximate factorizations with mixed precision iterative refinement. 2022. URL
eprints.maths.manchester.ac.uk/2845/.

33/33

https://doi.org/10.1093/imanum/drac012
eprints.maths.manchester.ac.uk/2845/

References III

[19] R. Tamstorf, J. Benzaken, and S. F. McCormick. Discretization-error-accurate mixed-precision multigrid
solvers. SIAM Journal on Scientific Computing, 43(5):S420–S447, 2021.

[20] S. F. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-precision multigrid
solvers. SIAM Journal on Scientific Computing, 43(5):S392–S419, 2021.

[21] H. Anzt, V. Heuveline, and B. Rocker. Mixed precision iterative refinement methods for linear systems:
Convergence analysis based on Krylov subspace methods. In International Workshop on Applied Parallel
Computing, pages 237–247. Springer, 2010.

[22] N. Lindquist, P. Luszczek, and J. Dongarra. Accelerating restarted GMRES with mixed precision arithmetic.
IEEE Transactions on Parallel and Distributed Systems, 33(4):1027–1037, 2021.

[23] G. Meurant and Z. Strakoš. The Lanczos and conjugate gradient algorithms in finite precision arithmetic.
Acta Numerica, 15:471–542, 2006.

[24] S. Gratton, E. Simon, D. Titley-Peloquin, and P. Toint. Exploiting variable precision in GMRES. arXiv
preprint arXiv:1907.10550, 2019.

[25] M. Arioli and I. S. Duff. Using FGMRES to obtain backward stability in mixed precision. Electronic
Transactions on Numerical Analysis, 33:31–44, 2009.

[26] J. G. Verwer, W. H. Hundsdorfer, and B. P. Sommeijer. Convergence properties of the
Runge-Kutta-Chebyshev method. Numerische Mathematik, 57:157–178, 1990.

33/33

	Introduction and background
	Optimization
	Numerical linear algebra
	Numerical solution of partial differential equations
	Conclusions
	References

