An overview of mixed-precision methods in scientific computing

MATTEO CROCI

Center for Optimization and Statistical Learning Seminar.
Northwestern University, 6 October 2022

The University of Texas at Austin
Oden Institute for Computational
Engineering and Sciences



Overview

1. Introduction and background

2. Optimization

3. Numerical linear algebra

4. Numerical solution of partial differential equations
5. Conclusions

Note: too broad a field to include everything. | will present a few examples per topic.



1. Introduction and background

Main references:

® A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, et al. A survey
of numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal
of High Performance Computing Applications, 35(4):344-369, 2021

® N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica,
31:347-414, 2022

M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation,
error analysis and applications. Royal Society Open Science, 9:211631, 2022

® M. P. Connolly, N. J. Higham, and T. Mary. Stochastic rounding and its probabilistic backward
error analysis. SIAM Journal on Scientific Computing, 43(1):566-585, 2021

® N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002
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Reduced- and mixed-precision algorithms

Reduced-precision algorithms

Reduced-precision algorithms obtain an as accurate solution as possible given the
precision while avoiding catastrophic rounding error accumulation.

'Review articles: [Abdelfattah et al. 2021], [Higham and Mary 2021], [C. et al. 2021].
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Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced-precision while retaining good accuracy.
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Reduced- and mixed-precision algorithms

Reduced-precision algorithms

Reduced-precision algorithms obtain an as accurate solution as possible given the
precision while avoiding catastrophic rounding error accumulation.

Mixed-precision algorithms

Mixed-precision algorithms combine low- and high-precision computations in order to
benefit from the performance gains of reduced-precision while retaining good accuracy.

e This is now a very active field of investigation! with many new developments led
mainly by the numerical linear algebra and machine learning communities.

® Many new RP/MP algorithms in scientific computing and data science.
® There is still much to discover on the topic.

'Review articles: [Abdelfattah et al. 2021], [Higham and Mary 2021], [C. et al. 2021].



Floating point formats

Format unit roundoff u Range

bfloat16 (half) 278 ~3.91x10°% 10%38
fp16 (half) 271 ~4.88x107*  10%°

fp32 (single) 272 ~5.96 x 1078  10+38
fp64 (double) 2793 ~1.11 x 10716 10+308

Important: don't just focus on u, range is an extremely important factor. Scaling and
squeezing techniques are central for a correct reduced-precision implementation.

Recent trend in scientific computing: u is getting larger: all major chip
manufacturers (AMD, ARM, NVIDIA, Intel, ...) have commercialized chips (CPUs,
GPUs, TPUs, FPGASs, ...) supporting low-precision computations.

Half vs double max speedups: x4 on CPUs, x32 on A100 NVIDIA GPUs.



Round to nearest

if ¥ <0.5

if ¥ >0.5

Tk T Th+1

HTp1 — T,

9 € [0, 1].

fi(x) =x(1+9), with [0] <wu.
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Stochastic rounding (review article [C. et al. 2022])

with probability 1 — ¢

with probability ¢

Tk T Th+1

HTpg1 — T,

v € [0,1].

sr(z) =xz(1+6(w)), [0] <2u, and E[sr(x)] =z, E[|d,...,d0-1]=E[s] =0.

Limited (yet growing) hardware support. Many new applications in Sci. Comp. and ML.
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2. Optimization

Note: Not my field of expertise. Post-seminar discussions are welcome!

Main references:

® N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul. Mixed precision training with 8-bit floating
point. arXiv preprint arXiv:1905.12334, 2019

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech DNNs. In Fifteenth annual conference of the
international speech communication association. Microsoft, 2014

® Y. Xie, R. H. Byrd, and J. Nocedal. Analysis of the BFGS method with errors. SIAM Journal on
Optimization, 30(1):182-209, 2020

® F. Tisseur. Newton's method in floating point arithmetic and iterative refinement of generalized
eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 22(4):1038-1057, 2001

C. Kelley. Newton’s method in mixed precision. SIAM Review, 64(1):191-211, 2022
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Reduced- and mixed-precision first-order methods in machine learning

® The machine learning community has been the main driver of experimentation in
this field and GPU tensor cores really help making this efficient.

TRAINING LAYER AUTOMATIC MIXED PRECISION ACCELERATED BY GPU

CONV3

6 Norm?2
& Pool2

FP32

Operation

.
E Normt ;
& Poolt @ - FP16 @

Operation

Run On Tensor Cores

https://developer.nvidia.com/automatic-mixed-precision.
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e “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

e Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].
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Reduced- and mixed-precision first-order methods in machine learning
® The machine learning community has been the main driver of experimentation in
this field and GPU tensor cores really help making this efficient.

e “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

e Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

® 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].
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Reduced- and mixed-precision first-order methods in machine learning
® The machine learning community has been the main driver of experimentation in
this field and GPU tensor cores really help making this efficient.

e “Easy” to implement: a single line of code allows to switch to single/half
mixed-precision in TensorFlow.

e Stochastic rounding has been successfully employed to squeeze stochastic gradient
descent into quarter precision, see [Mellempudi et al. 2019].

® 1-bit Precision has been employed in sign gradient descent, cf. [Seide et al. 2014].
® From a theoretical point of view: many open questions.
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Reduced-precision second-order optimization C optimization with noise?

Limited results in the optimization literature are specific to rounding errors. However,
there is work on optimization with noise (see e.g. [Xie, Byrd & Nocedal 2020]).
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Limited results in the optimization literature are specific to rounding errors. However,
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What I'd be curious to know: To what extent does the existing theory apply to
inexact arithmetic? What are the implementation challenges?
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Reduced-precision second-order optimization C optimization with noise?

Limited results in the optimization literature are specific to rounding errors. However,
there is work on optimization with noise (see e.g. [Xie, Byrd & Nocedal 2020]).

What I'd be curious to know: To what extent does the existing theory apply to
inexact arithmetic? What are the implementation challenges?

Need to consider:
® Noisy function and derivative evaluations:

f@) = f(@) +&f(), with |eo()| < 2o, Ve

Vif(z) = V'f(z) +&i(x), with |lei(z)| < &, Ve, i =1,2.

® |nexact Newton system solves, linesearch, local models, subproblems, ...

How does the relative size of the errors affect convergence?
Which steps can | perform more or less accurately?
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Designing mixed-precision optimization methods - some thoughts

® Stochastic rounding may be useful if theory assumes zero-mean independent errors.
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Designing mixed-precision optimization methods - some thoughts

e Stochastic rounding may be useful if theory assumes zero-mean independent errors.

® Designing routines for reduced-/mixed-precision derivative evaluations may be
problem-dependent and not straightforward in general.

® Barring underflow/overflow rounding errors are typically linear in u so noise
constants are easy to estimate if evaluation routines are type-flexible.

® Mixed-precision NLA methods can be applied and incorporated, e.g. in Newton
linear system solves, quasi-Newton updates, trust-region subproblems, ...

9/33



Newton's method in floating-point arithmetic [Tisseur 2001], [Kelley 2022]
Results from [Kelley 2022]. Analysis for “vanilla” Newton: no linesearch.
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Newton's method in floating-point arithmetic [Tisseur 2001], [Kelley 2022]
Results from [Kelley 2022]. Analysis for “vanilla” Newton: no linesearch.
Assumptions:

1. Std assumptions for Newton local g-quadratic convergence. Lipschitz Hessian.
2. A backward error bound holds for linear solves (e.g. LU factorization is used).

Newton step:
Bp1 = & — (V2 F(@5) + e2(@n) + es(@r)) (VI (1) + 1(21)) + £aldr),

llei(x)|| <e1, (gradient error), |le2(x)]|
T

)
)|| < e2, (Hessian error), Ve,
lea(@)]| < €a, (update error), [les(2)]| <

s, (linear solve error), V.

Theorem (Kelley 2022)

Under the above assumptions, the error e, = ), — x™* satisfies

lex+1ll = O (llexll* + (e2 + &s)llexll + €1+ a)
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Mixed-precision Newton

Theorem (Kelley 2022)

Under the above assumptions, the error e, = x;, — x* satisfies

lexs1ll = O (llexll® + (e2 +€s)llexll + €1 + €a)

Note: Inexact Hessian and linear solves impact convergence rate, but not limiting
accuracy. Gradient and update errors do not harm rate, but affect limiting accuracy.

Warning: hidden constants proportional to ||V2f(z*)~!||, k(V2f), and problem size.



Mixed-precision Newton

Theorem (Kelley 2022)

Under the above assumptions, the error e, = x;, — x* satisfies
lexsall = O (lexl® + (62 + &5)llex ]| + 1 + €a)

Note: Inexact Hessian and linear solves impact convergence rate, but not limiting
accuracy. Gradient and update errors do not harm rate, but affect limiting accuracy.

Warning: hidden constants proportional to ||V2f(z*)~!||, k(V2f), and problem size.

Typical mixed-precision strategy: high-precision gradient evaluations and update and
low-precision Hessian evaluation/approximation and inversion so that, e.g.

e1,60 = O(u’); e2,6s=0(u) = |lensl = O (llexl* +?).

Since the reduction in the rate occurs when |[|ex|| < O(u) for which |lexi1]|= O(u?).



3. Numerical linear algebra

Two topics:
1. Mixed-precision iterative refinement.
2. Mixed-precision Krylov subspace methods.
Review articles (citing all mentioned references):
® A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, et al. A survey
of numerical linear algebra methods utilizing mixed-precision arithmetic. The International Journal

of High Performance Computing Applications, 35(4):344-369, 2021

® N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta Numerica,
31:347-414, 2022



Mixed-precision iterative refinement for Az = b [Langou et al. 2006], [Carson & Higham 2017-18]
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Apply mixed-precision Newton to Az — b = 0. Use two precisions u, u?.

Mixed-precision iterative refinement

Solve Axg = b using LU factorization in precision u and store the LU factors.
For k=1,2,...
2

1. Compute residual r, = b — Ax;, at precision u*.

2. Solve Adj, = 7y at precision u by re-using the LU factors.

3. @py1 = ) + di at precision u?.

Since |leg|| = O(u) the previous theorem gives that

le]l = Olleoll® + ulleo|| +u?) = O(u?).



Mixed-precision iterative refinement for Az = b [Langou et al. 2006], [Carson & Higham 2017-18]

Apply mixed-precision Newton to Az — b = 0. Use two precisions u, u?.

Mixed-precision iterative refinement

Solve Axg = b using LU factorization in precision u and store the LU factors.
For k=1,2,...
1. Compute residual 7, = b — Ax;, at precision u?.

2. Solve Adj, = 7y at precision u by re-using the LU factors.

3. @py1 = ) + di at precision u?.

Since |leg|| = O(u) the previous theorem gives that

le]l = Olleoll® + ulleo|| +u?) = O(u?).

Advantages: LU factorization performed only once in low precision. Limiting accuracy
dictated by u? provided o, (A) is small enough.



GMRES-IR [Carson & Higham 2017-18, Amestoy et al. 2021]
Now use three precisions: u; > u > u?. In [Amestoy et al. 2021] they use five.

GMRES-IR

Solve Axg = b using LU factorization in precision u; and store the LU factors.
For k=1,2,...
1. Compute residual 7, = b — Ax;, at precision u?.
2. Solve Adj, = r}, at precision u by using GMRES with U~'L~! as preconditioner

and matrix-vector products performed at precision u?.

3. Tgxy1 = x + dj, at precision wu.



GMRES-IR [Carson & Higham 2017-18, Amestoy et al. 2021]
Now use three precisions: u; > u > u?. In [Amestoy et al. 2021] they use five.

GMRES-IR

Solve Axg = b using LU factorization in precision u; and store the LU factors.
For k=1,2,...
2

1. Compute residual r, = b — Ax;, at precision u~.

2. Solve Adj, = r}, at precision u by using GMRES with U~'L~! as preconditioner

and matrix-vector products performed at precision u?.

3. Tgxy1 = x + dj, at precision wu.

Result:

® Provided that ko (A) < u~! we obtain a limiting accuracy of O(u) where the
hidden constant is independent from ko, (A).

® This approach is efficient since again the LU factorization is performed only once
and in low precision, and GMRES typically converges in a handful of iterations.

® GMRES-IR is more robust to ill-conditioning than LU-based iterative refinement.



Mixed-precision iterative refinement in the literature

Mixed-precision iterative refinement is at the heart of many recent mixed-precision
developments in numerical linear algebra, including:

® Sparse approximate factorizations (e.g. replace LU with a sparse approximation),
cf. [Amestoy et al. 2022].

Least square problems (see e.g. [Carson et al. 2020]).

Eigenvalue problems (see e.g. [Tisseur 2001]).
Multigrid (see e.g. [Tamstorf et al. 2021] and [McCormick et al. 2021]).

Krylov subspace methods, cf. [Anzt et al. 2010, Lindquist et al. 2021].
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Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strako3 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.
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Mixed-precision Krylov methods and preconditioning

Complex theory: the theory describing the finite precision behavior of iterative
methods is extensive and complex. Review on Lanczos-CG: [Meurant & Strako3 2006].

Practical methods: much work focuses on showing what improves performance in
practice rather than on theoretical results.

Three approaches: (see review articles for more details and info):
1. lterative refinement. Use lower precision in inner solver.
2. MP preconditioning. Apply/implement preconditioner in low precision.

3. MP iterative methods. Adaptively change precision of inner products/matvecs.
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4. Numerical solution of partial differential equations

Main references:

® M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation,
error analysis and applications. Royal Society Open Science, 9:211631, 2022

® M. Klower, S. Hatfield, M. Croci, P. D. Diiben, and T. N. Palmer. Fluid simulations accelerated
with 16 bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16.
Journal of Advances in Modeling Earth Systems, 2021

® M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical
solution of the heat equation in low precision. IMA Journal of Numerical Analysis, 2022. URL
https://doi.org/10.1093/imanum/drac012

® M. Croci and G. R. de Souza. Mixed-precision explicit stabilized Runge—Kutta methods for
single-and multi-scale differential equations. Journal of Computational Physics, 2022
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4a. Towards climate simulations in half precision

Joint with: M. Klower and T. N. Palmer (University of Oxford),
S. Hatfield and P. D. Diiben (European Centre for Medium-Range Weather Forecasts).

Algorithm type: reduced-precision (half).
Main references:

® M. Klower, S. Hatfield, M. Croci, P. D. Diiben, and T. N. Palmer. Fluid simulations accelerated
with 16 bits: Approaching 4x speedup on A64FX by squeezing ShallowWaters.jl into Float16.
Journal of Advances in Modeling Earth Systems, 2021
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Towards climate simulations in half precision [Kiswer et al. 2021]

Float64 simulation

Shallow-water egs for 2D oceanic flow:
Vv -Vo+ixv=-Vn+A®v-—v+F,
n+ V- (vh)=0,
¢+v-Vg=-7(¢— q).

Numerical scheme: explicit 4th-order
timestepping on a staggered grid.

Float16 simulation

Techniques used for fpl6 simulations:
® Scaling and squeezing.
® Kahan compensated summation.

® Performed using A64FX chips on
Fugaku (1st in TOP500).

-1.0 -05 0.0 05 1.0
Tracer concentration

Note: all other results in this part of the talk use precision emulation in software.



4b. Solving parabolic PDEs in half precision
Joint with: M. B. Giles (University of Oxford)

Algorithm type: reduced-precision (half), using stochastic rounding.

Main references:

® M. Croci and M. B. Giles. Effects of round-to-nearest and stochastic rounding in the numerical
solution of the heat equation in low precision. IMA Journal of Numerical Analysis, 2022. URL
https://doi.org/10.1093/imanum/drac012

® M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis. Stochastic rounding: implementation,
error analysis and applications. Royal Society Open Science, 9:211631, 2022
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RtN might cause stagnation

Ty ———— 2 + Ax Tht1
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RtN might cause stagnation

7N

T ———— 2 + Ax Tht1
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SR is resilient to stagnation

T —————— 11 + Ax Th+1
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Interesting results by Milan Klower (University of Oxford)
fpl6 (3 digits) + RtN fpleé (3 digits) + SR

X

X
fp64 (15 digits)

T
0.0 0.2 0.4 0.6 0.8 Lo
Tracer concentration

Note: not just due to stagnation, SR decorrelates errors and causes error cancellation!
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RtN vs SR

Why is RtN in low precision bad for parabolic PDEs?

a) Stagnation:
e RtN always stagnates for sufficiently small At.

b) Global error:

® RtN rounding errors are strongly correlated and grow rapidly until stagnation.

SR fixes all these issues!
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a) Stagnation (heat equation, left 1D, right 2D)

2.0

1.8
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—— SR, all initial conditions \ f — ‘ ! ! ‘ ‘ﬁ
— ENou=l \ / 0.0 0.1 02 03 04 05 06 07 08 0910
0] e REN. wp =3/2— |z —1/2] ' / exact solution
— — RtN, uy =1+ noise \ /
o RtN, ug = 1 + sin(87x) Moo |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
‘ RIN

RtN computations are discretization and initial condition dependent. SR works!
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b) Global rounding errors [C. and Giles 2020]

Let e” € R be the vector containing all rounding errors introduced at time step n.
Define the global rounding error E™ = U™ — U™. It can be shown that

E" = SE" + "
Traditional results for ODEs [Henrici 1962-1963, Araté 1983]: €" is O(At?).

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, |€]'| = O(u) for all n, 1.

SR: the €] are zero-mean, independent in space and mean-independent in time.



b) Global rounding errors [C. and Giles 2020]

Let e” € R be the vector containing all rounding errors introduced at time step n.
Define the global rounding error E™ = U™ — U™. It can be shown that

E"! = SE" +¢"
Traditional results for ODEs [Henrici 1962-1963, Araté 1983]: €" is O(At?).

We can distinguish two cases:

RtN: we can only assume the worst-case scenario, |€]'| = O(u) for all n, 1.

SR: the €] are zero-mean, independent in space and mean-independent in time.

Mode Norm 1D 2D 3D
RtN L?, 00 O(uAt™1) O(uAt=1) O(uAt=1)
SR E[|-J212 OuAtiAnY2) Oul(Al)  O(ul(AhY?)
SR E[[|-]|7.]"? O(uAt'/*) O(ul(At)'/?)  O(u)
Asymptotic global rounding error blow-up rates; ¢(At) = | log(At)].



b) Global

103

[
1=}
<

relative error

—
<

10°

rounding errors (2D heat equation)

Global error (delta form, 2D)

e
-
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O(| log(At)])

10°
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O(| log(A1)]/2)

Note: relative error = error x (u||[UN||)~!




4c. Mixed-precision explicit Runge-Kutta methods
Joint with: G. Rosilho De Souza (USI Lugano).

Algorithm type: mixed-precision (double/bfloat16) using round-to-nearest.

Main reference:

® M. Croci and G. R. de Souza. Mixed-precision explicit stabilized Runge—Kutta methods for
single-and multi-scale differential equations. Journal of Computational Physics, 2022



Framework and objective

We consider mixed-precision explicit RK schemes for the solution of ODEs in the form

y'(t) = fty®), y(0)=wo,
where f(t,y) is sufficiently smooth, and from now on set f = f(y(t)) for simplicity.

Objective

Evaluate f in low-precision as much as possible without affecting accuracy or stability.

Note: in this part of the talk we only use RtN.
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Absolute stability
Dahlquist’s test problem: 3" = Ay, y(0) = 1.
s-stage RK method y" = Rs(2)", where z = AtA = z + iy. Stable if |Rs(2)| < 1.

3 FE




Linear stability for RK methods (in practice)

Exact stability region 3 Perturbed stabreg, u = 27° 3 Perturbed stabreg, u = 278




Linear stability for RKC (in practice, s = 128, u = 279)
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Order-preserving mixed-precision RK methods

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is g-order-preserving (¢ € {1,...,p}), if it
converges with order ¢ under the above assumption.

We saw that RP methods do not converge, hence they are not order-preserving.



Order-preserving mixed-precision RK methods

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is g-order-preserving (¢ € {1,...,p}), if it
converges with order ¢ under the above assumption.

We saw that RP methods do not converge, hence they are not order-preserving.

Our idea: store solution in high precision and use only ¢ high-precision function
evaluations to obtain a g-order-preserving mixed-precision RK method.

We can construct g-order preserving RK methods for any ¢ for linear problems, and for
q = 1,2 for nonlinear problems. We can prove both stability and convergence.



Order-preserving mixed-precision RK methods

Assumption

Operations performed in high-precision are exact.

Definition (Order-preserving mixed-precision RK method)

A p-th order mixed-precision RK method is g-order-preserving (¢ € {1,...,p}), if it
converges with order ¢ under the above assumption.

We saw that RP methods do not converge, hence they are not order-preserving.

Our idea: store solution in high precision and use only ¢ high-precision function
evaluations to obtain a g-order-preserving mixed-precision RK method.

We can construct g-order preserving RK methods for any ¢ for linear problems, and for
q = 1,2 for nonlinear problems. We can prove both stability and convergence.

Note: We mainly focused on stabilized methods since they are low-order, but use a lot
of function evaluations to maximize stability.



Linear problems, i.e. f(y) = Ay

Consider the exact solution at ¢ = At and its corresponding p-th order RK
approximation:

— (AtA)I
y(At) = exp(AtA)yo = Z #yo,
=0
» :
AtA)
Y1 = Z ( ) yo + O(AtPT).

J!

<
I
o

Giving a local error of 7 = At~ |y(At) — y1|| = O(AtP).
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Consider the exact solution at ¢ = At and its corresponding p-th order RK
approximation:

— (AtA)I
y(At) = exp(AtA)yo = Z #yg,
=0
» :
AtA)
Y1 = Z ( ) yo + O(AtPT).

J!

<
I
o

Giving a local error of 7 = At~ |y(At) — y1|| = O(AtP).

Evaluating the scheme in finite precision yields:

p ; J

) At

i=c+yo+) i (H(A + AA;Q) Yo + O(APT),
T \k=1

=1
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Linear problems

T=A g -yl = At + O(AtP).

p J
435 (H<A+AAk> —Aj) "

k=1
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Linear problems

P i J
~ At
T=ATYg -yl = AT e+ ) ],<H (A+ AAy) A)yo + O(A).
k=1

=1

Let us consider the following scenarios:
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!

29/33



Linear problems

P i J
~ At
T=ATYg -yl = AT e+ ) ],<H (A+ AAy) A)yo + O(A).
k=1

J=1

Let us consider the following scenarios:
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!

2. Exact vector operations: ¢ =0 so 7 = O(u + AtP). O(u) limiting accuracy and
loss of convergence.

29/33



Linear problems

P i J
~ At
T=ATYg -yl = AT e+ ) ],<H (A+ AAy) A)yo + O(A).
k=1

J=1

Let us consider the following scenarios:
1. We have ¢ = O(u) and we get 7 = O(uAt~! + AtP). Rapid error growth!

2. Exact vector operations: ¢ =0 so 7 = O(u + AtP). O(u) limiting accuracy and

loss of convergence.
3. First ¢ > 1 matvecs exact. Now ¢ =0 and AA, =0for k=1,...
= O(uAt? + AtP). Recover g-th order convergence!

,{g, SO
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Numerical results - convergence (3D heat eqn)

| F I Ee— Sr— [ Sm— . *
10~
104
1076
g
—8
e 10
=2
=
£ 10
(5]
10712 ////// mixed-precision RK4
- -*- RK4 q=0 —— O(1)
-*- RKd,q=1 —— O(At)
1071 _
-%- RK4,q=2 — OAtQ)
“+- RK4,q=3 —— oA
107 10+
At

1
The transition from order p to order ¢ happens roughly when At = O(||A||~tur—4)
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Numerical results - convergence
1D Brussellator model for chemical autocatalytic reactions (with Dirichlet BCs):

t=cacAu+u’v—(b+1)u+ta
v=aAv—u’v+bu

104 I N 107 e

10!

10°

102

relative error (L° norm)

10~

relative error (L norm)

RKCI (s = 16) , RKC2 (s = 16)
1073 10-0
-~ double ke low =~ double ke Jow
—A— mixed — O(AY) —A— mixed — O(AP)
1072 1073 1072
At At
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Numerical results - convergence
Nonlinear diffusion model, 1D 4-Laplace diffusion operator (with Dirichlet BCs):

u=V-([Vul3Vu)+f

10_1 (U, ST He e Wi, *
. 1072
2107 =
E S
8 g 10~
= 1077 4 10
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= o 107
z z
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£ 107 £
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1077 -=%-- double ke std. mixed 10 === double e std. mixed
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4. Conclusions
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Outlook

® Reduced-/mixed-precision algorithms require a careful implementation, but can
bring significant memory, cost, and energy savings.

® Many new reduced and mixed-precision algorithms for scientific computing and
data science were developed in recent years. Hardware support is growing.

e Advice for new developers: find which operations are more costly or more
sensitive to rounding errors before designing a mixed-precision method.

¢ Advice for new practitioners: keep GPU and FPGA applications in mind as that's
where most savings can currently be obtained.


https://croci.github.io
matteo.croci@austin.utexas.edu
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® Reduced-/mixed-precision algorithms require a careful implementation, but can
bring significant memory, cost, and energy savings.

® Many new reduced and mixed-precision algorithms for scientific computing and
data science were developed in recent years. Hardware support is growing.

e Advice for new developers: find which operations are more costly or more
sensitive to rounding errors before designing a mixed-precision method.

¢ Advice for new practitioners: keep GPU and FPGA applications in mind as that's
where most savings can currently be obtained.

Thank you for listening!

Papers, slides, and more info at: https://croci.github.io
Email: matteo.croci@austin.utexas.edu
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