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Formulation

We describe two classes of applications for problems of the form:

min
x

f (x) + �kxk1

where x 2 IRn; f is convex, smooth, possibly nonlinear; � > 0 is a
regularization parameter.

A special case of particular interest:

min
x

1

2
kAx � yk22 + �kxk1

n may be very large (hence, storage and computational limitations);

`1 norm may apply to only a subvector of x ;

may wish to solve for a number of � values.

Use well-known optimization techniques, tailored to structure and
characteristics of the applications.
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Origins
My talk here in Jan 2007 was my first on sparse optimization /
compressed sensing. (Yin Zhang spoke on this topic at the same meeting.)

It quickly became a major topic of interest in optimization, with many
participants - some already working in optimization and some from outside.

(Sparse optimization was listed as a topic of interest at the 2009 ISMP,
2011 SIAM Conference on Optimization, etc.)

Led naturally to a wider engagement with ML.

Also, built on many earlier works by optimization people on ML, e.g.

Least squares (linear and nonlinear; Tikhonov regularization). Robust
regression (e.g. Huber estimator).

Olvi Mangasarian [Mangasarian, 1965, Mangasarian, 1968]

Kernel SVM [Fine and Scheinberg, 2001], [Ferris and Munson, 2002],
[Gertz and Wright, 2003]

SW with Grace Wahba’s group [Lu et al., 2005, Shi et al., 2008]
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Theme

What influence has machine learning had on optimization?

research directions and themes;

practices and culture.

The encounter with ML has led to increased interest in optimization,
among a wide community with high visibility (in both the scientific
community and the general public).

It has significantly increased the range and number of people writing
papers on optimization.

Caveat. A personal perspective, based on incomplete data. Your
experience may be deeper and more varied!
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I. Paradigms / Formulations

ML has highlighted several paradigms that were not previously mainstream.

support vector machines (linear and kernel SVM);

finite-sum structure;

regularization: `1, TV, group-sparse, nonconvex;

hyperparameter optimization;

matrix optimization (involving low-rank and sparse matrices);

neural network training.
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Linear Least Squares

min
x

f (x) :=
1

2

m∑
j=1

(aT
j x − yj )

2 =
1

2
‖Ax − y‖2

2.

[Gauss, 1799], [Legendre, 1805]. We thought this was a solved problem in
numerical linear algebra (Saunders, ...) but it’s still a popular topic in ML!

`2 regularization reduces sensitivity of the solution x to noise in y .

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖2
2.

`1 regularization (LASSO) [Tibshirani, 1996] yields sparse solutions.

min
x

1

2
‖Ax − y‖2

2 + λ‖x‖1.

Feature selection: Nonzero locations in x indicate important
components of feature vectors aj .

Initially, `1 was solved as a QP parametrized by λ e.g. [Efron et al., 2004].

Application to compressed sensing resulted in many new methods.
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Linear SVM

Each item of data belongs to one of two classes: yj = +1 and yj = −1.

Seek (x , β) such that

aT
j x − β ≥ 1 when yj = +1;

aT
j x − β ≤ −1 when yj = −1.

In the objective, the jth loss term is zero when sign(aT
j x − β) = yj ,

positive otherwise. A popular function is hinge loss:

H(x , β) =
1

m

m∑
j=1

max(1− yj (a
T
j x − β), 0).

Add a regularization term (λ/2)‖x‖2
2 for some λ > 0 to maximize the

margin between the classes. And/or λ‖x‖1 to sparsify / select features.

Wright (UW-Madison) You said it, man Huatulco, Jan 2023 12 / 42



Wright (UW-Madison) You said it, man Huatulco, Jan 2023 13 / 42



Wright (UW-Madison) You said it, man Huatulco, Jan 2023 13 / 42



Wright (UW-Madison) You said it, man Huatulco, Jan 2023 13 / 42



Kernel SVM
To enhance “separability” of the data, apply a nonlinear transformation
aj → ψ(aj ) (“lifting”) and do linear classification on (ψ(aj ), yj ): Find
(x , β) such that

min
x ,β

1

m

m∑
j=1

max(1− yj (ψ(aj )
T x − β), 0) +

1

2
λ‖x‖2

2.

Can avoid defining ψ explicitly by using instead the dual:

min
α∈Rm

1

2
αTQα− eTα s.t. 0 ≤ α ≤ (1/λ)e, yTα = 0.

where Qk` = yky`ψ(ak )Tψ(a`), y = (y1, y2, . . . , ym)T , e = (1, 1, . . . , 1)T .

No need to choose ψ(·) explicitly. Instead choose a kernel K , such that

K (ak , a`) ∼ ψ(ak )Tψ(a`).

[Boser et al., 1992, Cortes and Vapnik, 1995]. “Kernel trick.”
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SVM Algorithms

Many optimization approaches used for linear and kernel SVM.

stochastic gradient on the summation (primal) form;

interior-point [Ferris and Munson, 2000, Fine and Scheinberg, 2001,
Gertz and Wright, 2003]

coordinate descent (SMO) [Platt, 1999]

dual averaging [Lee and Wright, 2012]

gradient projection [Serafini et al., 2004, Serafini and Zanni, 2005]
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Finite-Sum Structure

min
x

f (x) :=
M∑

i=1

fi (x).

Typical application: Empirical Risk Minimization where fi (x) := `(x ; ai )

ai , i = 1, 2, . . . ,M define the set of M training data;

x defines the “model”;

` defines the loss — how well the model fits a given data item.

Generalizes linear least-squares: `(x ; (a, y)) = xTa− y .

Incremental gradient / stochastic gradient are the fundamental algorithms
in use here. Enhanced with batching, acceleration, variance reduction
(SVRG, SAG, SAGA).

ADMM sometimes also applied to this reformulation:

min
x ,x1,...,xM

M∑
i=1

fi (xi ) s.t. xi = x , i = 1, 2, . . . ,M.
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Regularization
The optimization problem in ML is usually an empirical proxy for the real
problem.

real problem: defined by expectation over an (unknown) true data
distribution;

empirical problem: defined by expectation over a finite training set,
sampled from the true distribution.

Generally, no need to solve the empirical problem exactly. Find ways to
incorporate it into a larger strategy, so that the solution generalizes well to
the true data distribution.

explicit regularization — adding terms to the optimization objective;

use of “tuning sets” and “test sets” to e.g. make good choices of the
regularization parameters;

cross-validation and other statistical criteria for choosing
regularization parameters;

regularization by early stopping of the algorithm;

use of distributionally robust optimization formulations.
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Regularization

Regularization terms added to an empirical objective to avoid overfitting
to empirical data; impose structure on a solution.

‖ · ‖1 for sparsity / feature selection;

‖ · ‖2
2 (Tikhonov) to control model size;

group-sparse to impose sparsity at a group level;

TV (sparsity on spatial gradients) for image denoising;

Nuclear norm ‖ · ‖∗ for low-rank matrices.

Sometimes multiple terms are used.

Each term has a nonnegative coefficient λ whose choice is governed by
some statistical criterion. Typically need to solve the problem for multiple
values of λ, which can affect the choice of optimization algorithm.
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Algorithms for Regularized Optimization

minx f (x) + ψ(x).

Equivalent to 0 ∈ ∇f (x) + ∂ψ(x) for convex f , ψ with smooth f .

proximal gradient [Combettes and Wajs, 2005]

FISTA: accelerated proximal gradient [Beck and Teboulle, 2009]

Douglas-Rachford and other operator-splitting methods 1

min-max formulations of regularized ERM and resulting algorithms
(primal-dual, coordinate descent, reduced variance)
[Alacaoglu et al., 2022, Song et al., 2021]

Coordinate descent with regularization

mirror descent [Duchi et al., 2010]

1Caramanis: https://www.youtube.com/watch?v=fn3uFc41R60
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Hyperparameter Optimization

We’re used to having parameters (“hyperparameters”) in optimization
algorithms, for sufficient decrease / line search, backtracking, termination,
trust region increase / decrease, augmented Lagrangian increase, centering
parameter in interior-point, subproblem accuracy, ...

ML adds several more:

regularization parameters,

steplength (“learning rate”): value and schedule,

batch size for finite-sum,

neural net design parameters,

...

In some cases these are critical to reducing solve time to reasonable levels.
Often highly problem-dependent.
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Nonconvexity in ML

Nonconvexity is a particular focus in modern ML and data science
applications.

nonconvex loss functions e.g. Tukey biweight.

nonconvex regularization terms in regression e.g. SCAD, MCP.

nonconvex formulations of low-rank matrix problems: X = UV T ,
where U and V are tall skinny matrices.

neural network training.

Weakly convex: subclass of nonconvex where f (x) + ρ‖x‖2 is convex for ρ
sufficiently large. Popularized recently by Davis and Drusvyatskiy. (Better
complexities available than in for general nonconvex.)

A surprising and very interesting development of recent years is benign or
tractable nonconvexity.
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Benign Nonconvexity
Despite nonconvexity, useful solutions (even global minima) can be found:

matrix and tensor problems with explicit low-rank parametrizations;

dictionary learning;

phase retrieval;

overparametrized neural networks;

AC power flow;

...

Ju Sun’s excellent page: https://sunju.org/research/nonconvex/

Several structures and properties promote benign nonconvexity:

All local minima are global minima;

All saddle points are strict saddle points, so are easy to escape from
(e.g. by detecting negative curvature in the Hessian);

Smart initialization schemes place x0 in a neighborhood of a global
minimizer.
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Neural Network Training

output nodes

input nodes

hidden layers

Often used for multiclass clas-
sification.

C output nodes, one for each
class. Find parameters in the
NN such that for input vec-
tor aj , output of node yj ∈
{1, 2, . . . ,C} dominates the
other C − 1 outputs.

Maximize cross entropy:

m∑
j=1

log
exp oyj (aj , x)∑C
l=1 exp ol (aj ; x)

,

where ol (aj ; x) is output of
node l for parameters x and
input aj .
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Neural Network Training

The objective is nonlinear, nonconvex, nonsmooth.

But it is always optimized using a variant of SGD.

always with minibatching,

almost always with “Adam” diagonal scaling [Kingma and Ba, 2015],

often with a momentum term.

Derivatives calculated by back-propagation (“backprop”), which is
reverse-mode automatic differentiation [Griewank and Walther, 2008].
(Nonsmoothness mostly ignored.)
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Alternative Objectives for NN Training

Alternative least-squares objective proposed in [Hui and Belkin, 2020]:

m∑
j=1

‖o(aj ; x)− eyj‖2
2

where eyj is the “one-hot vector” in RC for class yj , with 1 in position yj

and zeros elsewhere, and o(aj , x) is the set of C outputs from the NN.

Experiments in [Hui and Belkin, 2020] show similar performance for cross
entropy and least-squares objectives.

Current work of Belkin and Hui with SW indicates that certain
combinations of cross-entropy and least-squares can perform even better!
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Overparametrization and Benign Nonconvexity
Surprising development of recent years is that for overparametrized NNs,

a zero-loss solution (global minimizer) is found (if the algorithm is run
long enough);
this solution generalizes well (to unseen data from the same
distribution as training data).

See [Belkin, 2021] for a nice review.

These phenomena have been examined from several perspectives:

“double-descent” explanation of generalization [Belkin et al., 2019]
landscape analysis of the objective.
neuro-tangent kernel (NTK): In a nbd of initial values, the problem is
nearly linear, so reduces approximately to least-norm solution of
underdetermined linear equations.
mean-field limit and gradient flow
[Chizat and Bach, 2020, Mei et al., 2018, Wojtowytsch, 2020,
E et al., 2020, Ding et al., 2022]

So far, these explanations are for special cases or make assumptions on the
NN that are not satisfied in practice.
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II. Optimization Algorithms for ML
The demands of ML / Data Science have highlighted needs for certain
kinds of algorithms. Most previously known, but in many cases out of
fashion and not much studied.

explosion of interest in first-order methods (usually for problems with
Lipschitz gradients). Sublinear convergence is now OK!

accelerated gradient [Nesterov, 1983]

stochastic gradient “SGD” [Robbins and Monro, 1951]
I Adam variant [Kingma and Ba, 2015]: adaptive diagonal scaling
I variance reduction (e.g. SAG [Schmidt et al., 2016], SVRG

[Johnson and Zhang, 2013], both hybrids of full-gradient and
stochastic gradient)

I parallel versions e.g. [Bertsekas and Tsitsiklis, 1989],
[Niu et al., 2011]

coordinate descent (and parallel versions)

prox-gradient [Combettes and Wajs, 2005, Wright et al., 2009]
I accelerated: FISTA [Beck and Teboulle, 2009]
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Optimization Algorithms for ML, cont’d.

conditional gradient / Frank-Wolfe [Jaggi, 2013]

ADMM [Boyd et al., 2011]

sampled and sketched Newton methods [Byrd et al., 2012],
[Bollapragada et al., 2019]

stochastic quasi-Newton [Byrd et al., 2016]

bilevel optimization

primal-dual methods for min-max problems

algorithms for distributionally robust optimization.
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III. Complexity and Convergence
Global complexity analysis of optimization algorithms has become popular.

Not exclusively driven by ML, but dovetails well with ML culture and
interests. Many papers written by researchers with ML backgrounds.

Founded in the oracle complexity concept of
[Nemirovski and Yudin, 1983], where the oracle is a unit of
information about the function (gradient, unbiased gradient estimate,
function+gradient, etc.)

Other measures of complexity: evaluation, iteration, computational.

Typically takes the form of a worst-case upper bound on the work
required by a specific algorithm to find an ε-approx solution to a
problem in a given class.

I expressed in terms of ε and other terms that characterize the
problem class, e.g. Lipschitz constant of Hessian, lower bound on
function, initial value f (x0), etc.

I sometimes also expressed in terms of how a measure of
optimality decreases with iteration number k .

Wright (UW-Madison) You said it, man Huatulco, Jan 2023 29 / 42



Complexity

Lower bounds also of interest: Given a class of algorithms and a class of
problems, there is a problem which no algorithm can solve to ε-accuracy in
less than X amount of work.

Interesting work to be done in closing gaps between theoretical complexity
and the practical behavior of methods.

“average case” analysis — limited success.

smoothed analysis [Spielman and Teng, 2004] — hard problems can
be converted to easy problems if the data defining a problems is
randomly perturbed.

subdivide the problem class.

use deeper theoretical insights to explain practical differences between
methods with similar theoretical complexities e.g.
[Lee and Wright, 2018, Wright and Lee, 2020]
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Theory and Practice

In some areas, a search for better complexity has yielded better or at least
interesting algorithms: e,g. SAG, SAGA, SVRG for SGD.

In others, complexity theory has followed practice e.g. [Niu et al., 2011]
and many other parallel methods using SGD and coordinate descent.

In other cases, pursuit of better complexity has led to algorithms that are
much slower in practice.

One approach is to take a good practical algorithm and add the bells and
whistles needed to equip it with good theory too. e.g.
[Royer et al., 2020, Curtis et al., 2021] for nonconvex smooth
unconstrained.
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Whither Local Convergence?

There’s much less interest in local convergence of Opt-ML algorithms.

nbd of solution in which local convergence rate cuts in may be small,
and we only need an approximate solution.

I but for some problems we may still need to resolve some
properties of the solution (e.g. sparsity) even if it’s not very
accurate.

I And accurate solutions are back in style in some areas e.g.
zero-loss solutions in overparametrized NNs.

any method that required matrices is too expensive, since dimension
is usually large.

Wright (UW-Madison) You said it, man Huatulco, Jan 2023 32 / 42



Local Convergence

But there are situations where a method with fast local convergence may
have advantages. e.g. a skewed convex quadratic function converges in

O(κ log ε) or O(
√
κ log ε) iterations of a first-order method.

Conjugate gradient depends on eigenvalue structure, but likely � n
iterations.

One Newton iteration.

More generally if size of domain of local convergence if characterized by
χ > 0, complexity of “global phase” depends on max(χ, ε) rather than ε.
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IV. Publications

ML has a conference culture, which changes the way work is done and
papers are written.

Fixed format: short, proofs in appendix, semi-compulsory numerical
section.

Questionable referering standards, due to massive volume of
conference submissions.

Can a conference paper be expanded and published in a journal?
Policies differ.

Journals continue, with page limits and new outlets e.g. SIMODS.
Some problems with refereeing times.

Time to publication date is less critical since outlets like arxiv and
Optimization Online are available for preprints. (But there’s still value
in getting the stamp of approval of journal acceptance.)

Referee resources have not expanded to match the larger number of people
and higher rates of publication.
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Publications

There’s a trend toward longer and more technical papers, with long proofs.
e.g. to deal with stochastic gradient, reduced variance, acceleration issues.

The technical wizardry is admirable. But something is lost when papers
become too hard to read in detail.

Analysis of a given method is often simplfied later (as in theoretical CS).
Simplicity has value! We should consider publishing new, simpler proofs of
known results.
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V. Parallel Algorithms

Parallel optimization had a boomlet in the mid-late 80s, when many weird
and wonderful new parallel architectures appeared (Cray, Sequent Balance,
Alliant FX/8, Intel Hypercube, IBM SP, ...).

Partly as an offshoot of parallel linear algebra.

The general optimization paradigms we worked with then were not
particularly suitable for parallelism, but there was some work on variable
and constraint distribution (Ferris and Mangasarian) and potentially
parallel methods for LP (Mangasarian, DeLeone, SW).

Highlight: [Bertsekas and Tsitsiklis, 1989]. Dealt with finite-sum form,
synchronous and asynchronous algorithms, etc.
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OptML and Parallelism

OptML is a good fit for parallelism:

finite-sum distributes naturally;

huge variable space, also distributable (e.g. layers in a NN)

try different hyperparameter values on different processors.

Moreover parallelism is necessary because training is so compute-intensive.

Much research on techniques to handle relatively slow communication
between processors:

specific communication patterns;

intermittent communication;

sparsified communication.

Convergence rates (relative to serial methods) are studied e.g.
[Woodworth et al., 2020b, Woodworth et al., 2020a]. Also lower bounds
for given setups e.g. [Woodworth et al., 2021, Woodworth, 2021].

Wright (UW-Madison) You said it, man Huatulco, Jan 2023 37 / 42



VI. Robust Optimization and ML

Robust optimization techniques provide important tools of several kinds
for ML.

Adversarial ML. Carefully selected perturbations to data can cause
misclassification in wildly unintuitive ways. One solution: seek to correctly
classify not just the point ai but an entire ball of radius ρ centered at ai :

min
x

1

m

m∑
i=1

`(x ; ai ) → min
x

1

m

m∑
i=1

max
‖δi‖≤ρ

`(x ; ai + δi )

(Similar techniques used in the early days of robust optimization.)
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Distributional Robustness (DRO).

View the training data as defining a distribution Qm;

Posit that the true data distribution P is in a ball of radius ε around
Qm;

(Wasserstein metric used to measure distance between distributions)

Solve a min-max problem to find a robust optimal classifier.

min
x

1

m

m∑
i=1

`(x ; ai ) → min
x

max
Q:d(Q,Qm)≤ε

Ea∼Q `(x ; a).

Much work on properties and tractable formulations of the min-max
problem (Kuhn, Harchaoui,...) including relationship to CVaR /
superquantile.

Recent paper [Ho-Nguyen and Wright, 2022] showed that for `(x , a) being
the “zero-one” loss, the DRO formulation involves a ramp-loss functions,
which is nonconvex but provably tractable for some P.
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Another kind of robustness is to deliberate corruption by an adversary:

In computation of a gradient
∑m

i=1∇fi (x), some fraction ε of the
gradients can be incorrect.

In a parallel computation, some fraction of the processors can be
returning false results (“Byzantine”).

Provided ε is not too large, and we make some assumptions on the true
distribution, there are techniques for removing a subset of evaluations that
includes the corrupted evaluations. (Kane, I. Diakonikolas, Rong Ge, ...)
They have described a robust gradient descent procedure for minimizing a
convex finite-sum function.

Current work: Extend these ideas to nonconvex algorithms.
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Summary

The influences of optimization and machine learning / data science /
computational statistics on each other since our meeting here 16 years ago
have been remarkably deep and widespread.

It has been exciting to do research during this time.

We have many young, incredibly talented researchers working at this
intersection, and there is much work left to do.

The future is bright!
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When it comes to machine learning and data science, optimization really
ties the room together!
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