A weak tail-bound probabilistic condition for function estimation
 in stochastic derivative-free optimization

 (with improved sample sizing)

 (with improved sample sizing)}

Luis Nunes Vicente

joint work with Francesco Rinaldi \& Damiano Zeffiro

12th US-Mexico Workshop on Optimization and its Applications

Steve's "60th" Birthday

January 11, 2023
(1) Introduction
(2) The tail bound probabilistic condition \& sample sizing
(3) Numerical experiments
(4) Let's take a break
(5) A simple stochastic direct-search scheme
(6) A simple stochastic trust-region scheme
(7) Conclusions and extensions

Problem formulation

Problem formulation

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

- locally Lipschitz continuous
- possibly non-smooth and with $\inf f=f^{*}$
- given by a stochastic oracle

$$
F(x, \xi) \simeq f(x)
$$

with oracle given by sampling over ξ.

Some notation

- Probability space $(\mathbb{P}, \Omega, \mathcal{F})$
- w outcome of the sample space Ω
- Our algorithms generate random processes:
- g_{k} direction realization (shorthand for $G_{k}(w)$)
- δ_{k} stepsize realization (shorthand for $\Delta_{k}(w)$)
- f_{k} estimate realization for $f\left(x_{k}\right)$ (shorthand for $F_{k}(w)$)
- same for $f_{k}^{g} \simeq f\left(x_{k}+\delta_{k} g_{k}\right)$
- \mathcal{F}_{k-1} is the σ-algebra of events up to the choice of g_{k}
- The acceptance criterion is $f_{k}-f_{k}^{g} \geq \theta \delta_{k}^{q}$, for $\theta>0, q>1$

Tail-bound probabilistic condition

Assumption (Tail bound)

For some $\varepsilon_{q}>0$ (independent of k):

$$
\mathbb{P}\left(\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right| \geq \alpha \Delta_{k}^{q} \mid \mathcal{F}_{k-1}\right) \leq \frac{\varepsilon_{q}}{\alpha^{q /(q-1)}}
$$

a.s. for every $\alpha>0$.

- power law tail bound on error with exponent $q /(q-1)$

Tail-bound probabilistic condition

Assumption (Tail bound)

For some $\varepsilon_{q}>0$ (independent of k):

$$
\mathbb{P}\left(\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right| \geq \alpha \Delta_{k}^{q} \mid \mathcal{F}_{k-1}\right) \leq \frac{\varepsilon_{q}}{\alpha^{q /(q-1)}}
$$

a.s. for every $\alpha>0$.

- power law tail bound on error with exponent $q /(q-1)$
- satisfied, since if r-moment of noise is finite $(r \geq 2)$, then:

$$
\mathbb{E}\left(\left|A_{k}\right|^{r}\right) \leq C_{r} p_{k}^{-\frac{r}{2}}
$$

when $A_{k}=F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)$ considers averaging p_{k} i.i.d. samples in F_{k}, F_{k}^{g} (and that estimator is unbiased)

Sample bound for bounded moment - (i)

Assumption (Bounded moment)
For some $r>1, \quad \mathbb{E}_{\xi}\left[|F(x, \xi)-f(x)|^{r}\right] \leq M_{r}<+\infty$

Sample bound for bounded moment - (i)

Assumption (Bounded moment)

For some $r>1, \quad \mathbb{E}_{\xi}\left[|F(x, \xi)-f(x)|^{r}\right] \leq M_{r}<+\infty$

Theorem

Assume the estimator for A_{k} is unbiased (true if $f(x)=\mathbb{E}_{\xi}[F(x, \xi)]$).
When $r=r(q)=\frac{q}{q-1}, q \in(1,2]$, the tail bound can be satisfied by averaging

$$
O\left(\Delta_{k}^{-2 q}\right) \quad \text { i.i.d. samples }
$$

- for $q=1.5(r=3)$ only $O\left(\Delta_{k}^{-3}\right)$ samples needed for $q=2(r=2)$ the known bound is $O\left(\Delta_{k}^{-4}\right)$

Sample bound for bounded moment - (ii)

Use of r-th moment and q, r being conjugates:

$$
\mathbb{P}\left(|A| \geq \alpha \Delta^{\frac{r}{r-1}}\right)
$$

Sample bound for bounded moment - (ii)

Use of r-th moment and q, r being conjugates:

$$
\mathbb{P}\left(|A| \geq \alpha \Delta^{\frac{r}{r-1}}\right)=\mathbb{P}\left(|A|^{r} \geq \alpha^{r} \Delta^{\frac{r^{2}}{r-1}}\right)
$$

Sample bound for bounded moment - (ii)

Use of r-th moment and q, r being conjugates:

$$
\begin{aligned}
& \mathbb{P}\left(|A| \geq \alpha \Delta^{\frac{r}{r-1}}\right)=\mathbb{P}\left(|A|^{r} \geq \alpha^{r} \Delta^{\frac{r^{2}}{r-1}}\right) \\
& \leq \frac{\mathbb{E}\left[|A|^{r}\right]}{\alpha^{r} \Delta^{r^{2} /(r-1)}}
\end{aligned}
$$

Sample bound for bounded moment - (ii)

Use of r-th moment and q, r being conjugates:

$$
\begin{aligned}
& \mathbb{P}\left(|A| \geq \alpha \Delta^{\frac{r}{r-1}}\right)=\mathbb{P}\left(|A|^{r} \geq \alpha^{r} \Delta^{\frac{r^{2}}{r-1}}\right) \\
& \leq \frac{\mathbb{E}\left[|A|^{r}\right]}{\alpha^{r} \Delta^{r^{2} /(r-1)}} \leq \frac{2^{r} C_{r} M_{r} p^{-\frac{r}{2}}}{\alpha^{r} \Delta^{r^{2} /(r-1)}}
\end{aligned}
$$

Sample bound for bounded moment - (ii)

Use of r-th moment and q, r being conjugates:

$$
\begin{aligned}
& \mathbb{P}\left(|A| \geq \alpha \Delta^{\frac{r}{r-1}}\right)=\mathbb{P}\left(|A|^{r} \geq \alpha^{r} \Delta^{\frac{r^{2}}{r-1}}\right) \\
& \leq \frac{\mathbb{E}\left[|A|^{r}\right]}{\alpha^{r} \Delta^{r^{2} /(r-1)}} \leq \frac{2^{r} C_{r} M_{r} p^{-\frac{r}{2}}}{\alpha^{r} \Delta^{r^{2} /(r-1)}}=\frac{\varepsilon_{q}}{\alpha^{r}}
\end{aligned}
$$

$$
\text { for } p=O\left(\Delta^{\frac{-2 r}{r-1}}\right)=O\left(\Delta^{-2 q}\right)
$$

Correlated errors

Suppose we have access to the random number generator (we can fix ξ and sample $F(\cdot, \xi)$), and the errors are correlated in the form:

Assumption (Correlated error)

Let $\bar{F}(x, \xi)=F(x, \xi)-f(x)$. For some $r>1$:

$$
\mathbb{E}_{\xi}\left[|\bar{F}(x, \xi)-\bar{F}(y, \xi)|^{r}\right] \leq D_{r}\|x-y\|^{r}
$$

Correlated errors

Suppose we have access to the random number generator (we can fix ξ and sample $F(\cdot, \xi)$), and the errors are correlated in the form:

Assumption (Correlated error)

Let $\bar{F}(x, \xi)=F(x, \xi)-f(x)$. For some $r>1$:

$$
\mathbb{E}_{\xi}\left[|\bar{F}(x, \xi)-\bar{F}(y, \xi)|^{r}\right] \leq D_{r}\|x-y\|^{r}
$$

- ensured, for every r, when $F(x, \xi)$ is a Gaussian process with exponentiated quadratic kernel $K(x, y)=\sigma^{2} \exp \left(-\frac{\|x-y\|^{2}}{2 l^{2}}\right)$ in which case $\operatorname{Var}_{\xi}[F(x, \xi)]$ is constant and

$$
\operatorname{Cov}_{\xi}(F(x, \xi), F(y, \xi)) \geq \mathcal{O}\left(1-\|x-y\|^{2}\right)
$$

Sample bound for correlated errors

Theorem

Assume the estimator for A_{k} is unbiased (true if $f(x)=\mathbb{E}_{\xi}[F(x, \xi)]$).
When $r=\frac{q}{q-1}, q \in(1,2]$, the tail bound can be satisfied by averaging:

$$
O\left(\Delta_{k}^{2-2 q}\right) \quad \text { i.i.d. samples }
$$

- for $q=1.5(r=3)$ only $O\left(\Delta_{k}^{-1}\right)$ samples needed for $q=2(r=2)$ one gets $O\left(\Delta_{k}^{-2}\right)$

Numerical experiments - setup

- tested the direct-search algorithm for $q \in\{1.5,2\}$, for which $r(q) \in\{3,2\}$
- algorithms tested on a set of 96 well known non-smooth problems
- added Gaussian noise $N\left(0,10^{-2}\right)$ in the general case, $N\left(0, \delta_{k} 10^{-2}\right)$ in the correlated one
- for the moment bound case, number of samples was: $\left\lceil\delta_{k}^{-4}\right\rceil(q=2)$ and $\left\lceil\delta_{k}^{-3}\right\rceil(q=1.5)$
- for the correlated errors case, number of samples was: $\left\lceil\delta_{k}^{-2}\right\rceil(q=2)$ and $\left\lceil\delta_{k}^{-1}\right\rceil(q=1.5)$
- data and performance profiles

Numerical experiments - bounded moment

Figure: From left to right, data and performance profiles. From top to bottom, tolerance 10^{-2} and 10^{-4}

Numerical experiments - correlated errors

Figure: From left to right, data and performance profiles. From top to bottom, tolerance 10^{-2} and 10^{-4}

Sample bound for bounded moment - (iii)

Is there an optimal q in (1,2]?

Sample bound for bounded moment - (iv)

When $F(x, \varepsilon)-f(x) \sim N(0, \sigma)$, the tail bound condition is satisfied using

$$
p=B(q):=\left\lceil\frac{4 \sigma^{2} M_{r(q)}^{2 / r(q)}}{\varepsilon_{q}^{2 / r(q)}} \Delta^{-2 q}\right\rceil
$$

where $r(q)=\frac{q}{q-1}$ and $M_{r(q)}$ is the $r(q)$-th moment of a standard normal distribution.

The continuous version of $B(q)$ has always a minimum in $(1,2]$.

Comparison with other assumptions - 1

k_{f}-variance conditions [Audet et al., 2021]

$$
\begin{aligned}
\mathbb{E}\left[\left|F_{k}^{g}-f\left(X_{k}+\Delta_{k} G_{k}\right)\right|^{2} \mid \mathcal{F}_{k-1}\right] & \leq k_{f}^{2} \Delta_{k}^{4} \\
\mathbb{E}\left[\left|F_{k}-f\left(X_{k}\right)\right|^{2} \mid \mathcal{F}_{k-1}\right] & \leq k_{f}^{2} \Delta_{k}^{4}
\end{aligned}
$$

Proposition

Then tail bound condition is satisfied for $\varepsilon_{q}=4 k_{f}^{2}$ and $q=2$.

- follows from Markov's inequality

Comparison with other assumptions - 2

β-probabilistically accurate function estimate [Chen et al. 2018]

$$
\mathbb{P}\left(\left\{\left|F_{k}-f\left(X_{k}\right)\right| \leq \tau_{f} \Delta_{k}^{2}\right\} \cap\left\{\left|F_{k}^{g}-f\left(X_{k}+\Delta_{k} G_{k}\right)\right| \leq \tau_{f} \Delta_{k}^{2}\right\} \mid \mathcal{F}_{k-1}\right) \geq \beta
$$

Proposition

If satisfied for all β in a chosen interval (and τ_{f} depending on β and accuracy parameter ε), then tail bound is satisfied with ε_{q} depending on ε.

- follows from the inclusion

$$
\begin{aligned}
& \left\{\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right|<\alpha \Delta_{k}^{2}\right\} \\
& \supset\left\{\left|F_{k}-f\left(X_{k}\right)\right| \leq \tau_{f} \Delta_{k}^{2}\right\} \cap\left\{\left|F_{k}^{g}-f\left(X_{k}+\Delta_{k} G_{k}\right)\right| \leq \tau_{f} \Delta_{k}^{2}\right\}
\end{aligned}
$$

for any $\tau_{f}<\frac{\alpha}{2}$.

Let's take a break...
Apologies for all vegans and vegetarians...
I am also celebrating the 25th anniversary of Steve's 2-week visit to Portugal...

Here is a quiz for Steve... Let's test his memory in real time. :-)

What are we eating here?

A simple stochastic direct-search scheme

Algorithm Stochastic direct search

1: Initialization. Choose a point $x_{0}, \delta_{0}, \theta>0, \tau \in(0,1), \bar{\tau} \in[1,1+\tau]$.
: For $k=0,1 \ldots$
3: \quad Select a direction g_{k} in the unitary sphere.
4: Compute estimates f_{k} and f_{k}^{g} for f in x_{k} and $x_{k}+\delta_{k} g_{k}$.
5: If $f_{k}-f_{k}^{g} \geq \theta \delta_{k}^{q}$, Then set $x_{k+1}=x_{k}+\delta_{k} g_{k}, \delta_{k+1}=\bar{\tau} \delta_{k}$.
6: \quad Else set $x_{k+1}=x_{k}, \delta_{k+1}=(1-\tau) \delta_{k}$.
7: End if
8: End for

Bad successful step

Figure: A bad successful step

Tail-bound probabilistic condition (again)

Assumption (Tail bound)

For some $\varepsilon_{q}>0$ (independent of k):

$$
\mathbb{P}\left(\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right| \geq \alpha \Delta_{k}^{q} \mid \mathcal{F}_{k-1}\right) \leq \frac{\varepsilon_{q}}{\alpha^{q /(q-1)}}
$$

a.s. for every $\alpha>0$.

Convergence of stepsizes

Lemma

Under the tail bound condition, if $\theta>\theta^{d s}\left(q, \tau, \varepsilon_{q}\right)$, then a.s.

$$
\sum \Delta_{k}^{q}<+\infty
$$

- let $\Phi_{k}=f\left(X_{k}\right)-f^{*}+C_{1} \Delta_{k}^{q}$
- the lemma follows from Robbins-Siegmund once we get to

$$
\mathbb{E}\left[\Phi_{k}-\Phi_{k+1} \mid \mathcal{F}_{k-1}\right] \geq C_{2} \Delta_{k}^{q}
$$

- for a certain ρ_{k}, the above LHS is \geq than

$$
(C_{3}-\rho_{k}(\underbrace{\left(\mathbb{P} \text { in tail bound with } \alpha=\rho_{k}\right.}_{\leq C_{4}\left(1 / \rho_{k}\right)})) \Delta_{k}^{q}
$$

Tail-bound probabilistic condition (again)

Assumption (Tail bound)

For some $\varepsilon_{q}>0$ (independent of k):

$$
\mathbb{P}\left(\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right| \geq \alpha \Delta_{k}^{q} \mid \mathcal{F}_{k-1}\right) \leq \frac{\varepsilon_{q}}{\alpha^{q /(q-1)}}
$$

a.s. for every $\alpha>0$.

An intermediate result

Lemma

Let K be the set of indices of unsuccessful iterations. Then under the tail bound assumption and $\theta>\theta^{d s}$ we have a.s.

$$
\liminf _{k \in K, k \rightarrow \infty} \frac{f\left(X_{k}+\Delta_{k} G_{k}\right)-f\left(X_{k}\right)}{\Delta_{k}} \geq 0
$$

- need to prove $\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right| / \Delta_{k} \rightarrow 0$
- apply the tail bound assumption with $\alpha=\frac{\Delta_{k}^{1-q}}{m}$

$$
\mathbb{P}\left(\left.\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+\Delta_{k} G_{k}\right)\right)\right| \geq \frac{\Delta_{k}}{m} \right\rvert\, \mathcal{F}_{k-1}\right) \leq m^{r(q)} \Delta_{k}^{q} \varepsilon_{q}
$$

- conclusion from Borel-Cantelli's First Lemma for every m

Convergence to Clarke stationary points

Theorem

Let the tail bound assumption hold, $\theta>\theta^{d s}$, and f Lipschitz continuous around any limit point.

If $L \subset K$ is such that $\left\{G_{k}\right\}_{k \in L}$ is dense in the unit sphere and

$$
\lim _{k \in L, k \rightarrow \infty} X_{k}=X^{*}
$$

then X^{*} is Clarke stationary (a.s.).

- follows from last lemma and $\limsup \geq \liminf \left(\right.$ and $\left.\Delta_{k} \longrightarrow 0\right)$

A simple stochastic trust-region scheme

Algorithm Stochastic DFO Trust-Region Algorithm

1: Initialization. Select $x_{0} \in \mathbb{R}^{n}, \theta>0, \tau \in(0,1), \bar{\tau} \in[1,1+\tau], \delta_{0}>0$, $q>1$.
2: For $k=0,1 \ldots$
3: \quad Select a direction $g_{k} \neq 0$ and build a symmetric matrix B_{k}.
4: Compute

$$
s_{k} \in \operatorname{argmin}_{\|s\| \leq \delta_{k}} g_{k}^{\top} s+\frac{1}{2} s^{\top} B_{k} s
$$

5: Compute estimates $f_{k} \simeq f\left(x_{k}\right)$ and $f_{k}^{s} \simeq f\left(x_{k}+s_{k}\right)$.
6: If

$$
\frac{f_{k}-f_{k}^{s}}{\theta\left\|s_{k}\right\|^{q}} \geq 1
$$

Then set $\mathrm{x}_{k+1}=x_{k}+s_{k}, \delta_{k+1}=\bar{\tau} \delta_{k}$.
Else set $x_{k+1}=x_{k}, \delta_{k+1}=(1-\tau) \delta_{k}$.

8: End For

How to adapt the tail bound to TR

Assumption (Trust-region tail bound)

For some $\varepsilon_{q}>0$ (independent of k):

$$
\mathbb{P}\left(\left|F_{k}-F_{k}^{g}-\left(f\left(X_{k}\right)-f\left(X_{k}+S_{k}\right)\right)\right| \geq \alpha\left\|S_{k}\right\|^{q} \mid \mathcal{F}_{k-1}\right) \leq \frac{\varepsilon_{q}}{\alpha^{q /(q-1)}}
$$

a.s. every $\alpha>0$.

- $S_{k},\left\|S_{k}\right\|, F_{k}^{s}$ replace $\Delta_{k} G_{k}, \Delta_{k}, F_{k}^{g}$
- same improved sampling bounds of direct-search case

Convergence to Clarke stationary points - 1

Under the tail bound condition

$$
\sum\left\|S_{k}\right\|^{q}<+\infty
$$

for a different lower bound $\theta>\theta^{\operatorname{tr}}\left(q, \tau, \varepsilon_{q}, \rho\right)$.

Assumption (Hessian bound 1)

There exists $\rho \in(0,1]$ such that, for every k,

$$
\left\|B_{k}\right\| \leq \frac{1}{\rho} \frac{\left\|G_{k}\right\|}{\Delta_{k}}
$$

- when $\left\|G_{k}\right\|=1$, Hessian is "unbounded" by $1 / \Delta_{k}$
- it implies $\left\|S_{k}\right\| \geq \rho \Delta_{k}$, which then gives $\sum \Delta_{k}^{q}<+\infty$

Convergence to Clarke stationary points - 2

Assumption (Hessian bound 2)

There exists a sequence $\left\{a_{k}\right\} \downarrow 0$ and such that, for every k,

$$
\left\|B_{k}\right\| \leq a_{k} \frac{\left\|G_{k}\right\|}{\Delta_{k}}
$$

Lemma (asymptotic alignment)

If S_{k} solves the trust-region subproblem,

$$
\lim _{k \rightarrow \infty} \frac{G_{k}}{\left\|G_{k}\right\|}+\frac{S_{k}}{\left\|S_{k}\right\|}=0
$$

a.s. (it holds for every realization, actually).

- for k large, S_{k} becomes aligned with $-G_{k}$

Convergence to Clarke stationary points - 3

Theorem

Let the tail bound assumption hold, $\theta>\theta^{t r}, f$ Lipschitz continuous around any limit point, and Hessian bound 2.

If $L \subset K$ is such that $\left\{G_{k}\right\}_{k \in L}$ is dense in the unit sphere and

$$
\lim _{k \in L, k \rightarrow \infty} X_{k}=X^{*}
$$

then X^{*} is Clarke stationary (a.s.).

- corollary of analogous DS result for $\left\{\frac{S_{k}}{\left\|S_{k}\right\|}\right\}+$ asymptotic alignment

Conclusions and extensions

Conclusions

- introduced a tail bound condition tailored to acceptance criterion
- proved improved bounds on the corresponding number of samples
- proved convergence of a direct-search and a trust-region schemes

Extensions

- more general random trust-region models (e.g. piecewise linear)
- composition of smooth function with known non-smooth function
- numerical experiments for trust-region method

