A weak tail-bound probabilistic condition for function estimation in stochastic derivative-free optimization (with improved sample sizing)

Luis Nunes Vicente

joint work with Francesco Rinaldi & Damiano Zeffiro

12th US-Mexico Workshop on Optimization and its Applications

Steve's "60th" Birthday

January 11, 2023

- 2 The tail bound probabilistic condition & sample sizing
- 3 Numerical experiments
- 4 Let's take a break
- 5 A simple stochastic direct-search scheme
- 6 A simple stochastic trust-region scheme
- Conclusions and extensions

Problem formulation

Problem formulation

 $\min_{x \in \mathbb{R}^n} f(x)$

where $f: \mathbb{R}^n \to \mathbb{R}$ is

- locally Lipschitz continuous
- \bullet possibly non-smooth and with $\inf f=f^*$
- given by a stochastic oracle

$$F(x,\xi) \simeq f(x)$$

with oracle given by sampling over ξ .

- Probability space $(\mathbb{P}, \Omega, \mathcal{F})$
- $\bullet \,\, w$ outcome of the sample space Ω
- Our algorithms generate random processes:
 - g_k direction realization (shorthand for $G_k(w)$)
 - δ_k stepsize realization (shorthand for $\Delta_k(w)$)
 - f_k estimate realization for $f(x_k)$ (shorthand for $F_k(w)$)
 - same for $f_k^g \simeq f(x_k + \delta_k g_k)$
- \mathcal{F}_{k-1} is the $\sigma-$ algebra of events up to the choice of g_k
- The acceptance criterion is $f_k f_k^g \ge \theta \delta_k^q$, for $\theta > 0, q > 1$

Assumption (Tail bound)

For some $\varepsilon_q > 0$ (independent of k):

$$\mathbb{P}\left(|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))| \ge \alpha \Delta_k^q |\mathcal{F}_{k-1}\right) \le \frac{\varepsilon_q}{\alpha^{q/(q-1)}}$$

a.s. for every $\alpha > 0$.

 ${\ensuremath{\, \circ }}$ power law tail bound on error with exponent q/(q-1)

Assumption (Tail bound)

For some $\varepsilon_q > 0$ (independent of k):

$$\mathbb{P}\left(|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))| \ge \alpha \Delta_k^q |\mathcal{F}_{k-1}\right) \le \frac{\varepsilon_q}{\alpha^{q/(q-1)}}$$

a.s. for every $\alpha > 0$.

- ${\ensuremath{\, \bullet }}$ power law tail bound on error with exponent q/(q-1)
- satisfied, since if r-moment of noise is finite (r ≥ 2), then:

$$\mathbb{E}(|A_k|^r) \leq C_r p_k^{-\frac{r}{2}}$$

when $A_k = F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))$ considers averaging p_k i.i.d. samples in F_k, F_k^g (and that estimator is unbiased)

Assumption (Bounded moment)

For some
$$r > 1$$
, $\mathbb{E}_{\xi}[|F(x,\xi) - f(x)|^r] \leq M_r < +\infty$

Assumption (Bounded moment)

For some
$$r > 1$$
, $\mathbb{E}_{\xi}[|F(x,\xi) - f(x)|^r] \leq M_r < +\infty$

Theorem

Assume the estimator for A_k is unbiased (true if $f(x) = \mathbb{E}_{\xi}[F(x,\xi)]$).

When $r=r(q)=\frac{q}{q-1},~q\in(1,2],$ the tail bound can be satisfied by averaging

$$O\left(\Delta_k^{-2q}
ight)$$
 i.i.d. samples

• for
$$q = 1.5$$
 $(r = 3)$ only $O(\Delta_k^{-3})$ samples needed
for $q = 2$ $(r = 2)$ the known bound is $O(\Delta_k^{-4})$

$$\mathbb{P}(|A| \ge \alpha \Delta^{\frac{r}{r-1}})$$

$$\mathbb{P}(|A| \ge \alpha \Delta^{\frac{r}{r-1}}) = \mathbb{P}(|A|^r \ge \alpha^r \Delta^{\frac{r^2}{r-1}})$$

$$\begin{split} \mathbb{P}(|A| \geq \alpha \Delta^{\frac{r}{r-1}}) &= \mathbb{P}(|A|^r \geq \alpha^r \Delta^{\frac{r^2}{r-1}}) \\ &\leq \frac{\mathbb{E}[|A|^r]}{\alpha^r \Delta^{r^2/(r-1)}} \end{split}$$

$$\mathbb{P}(|A| \ge \alpha \Delta^{\frac{r}{r-1}}) = \mathbb{P}(|A|^r \ge \alpha^r \Delta^{\frac{r^2}{r-1}})$$
$$\le \frac{\mathbb{E}[|A|^r]}{\alpha^r \Delta^{r^2/(r-1)}} \le \frac{2^r C_r M_r p^{-\frac{r}{2}}}{\alpha^r \Delta^{r^2/(r-1)}}$$

Use of r-th moment and q,r being conjugates:

$$\begin{split} \mathbb{P}(|A| \geq \alpha \Delta^{\frac{r}{r-1}}) &= \mathbb{P}(|A|^r \geq \alpha^r \Delta^{\frac{r^2}{r-1}}) \\ \leq \frac{\mathbb{E}[|A|^r]}{\alpha^r \Delta^{r^2/(r-1)}} \leq \frac{2^r C_r M_r p^{-\frac{r}{2}}}{\alpha^r \Delta^{r^2/(r-1)}} = \frac{\varepsilon_q}{\alpha^r} \end{split}$$

for $p = O(\Delta^{\frac{-2r}{r-1}}) = O(\Delta^{-2q}).$

Correlated errors

Suppose we have access to the random number generator (we can fix ξ and sample $F(\cdot, \xi)$), and the errors are correlated in the form:

Assumption (Correlated error) Let $\bar{F}(x,\xi) = F(x,\xi) - f(x)$. For some r > 1: $\mathbb{E}_{\xi}[|\bar{F}(x,\xi) - \bar{F}(y,\xi)|^r] \leq D_r ||x-y||^r$

Correlated errors

Suppose we have access to the random number generator (we can fix ξ and sample $F(\cdot, \xi)$), and the errors are correlated in the form:

Assumption (Correlated error)
Let $\bar{F}(x,\xi) = F(x,\xi) - f(x)$. For some $r > 1$:
$\mathbb{E}_{\xi}[\bar{F}(x,\xi) - \bar{F}(y,\xi) ^{r}] \leq D_{r} x - y ^{r}$

• ensured, for every r, when $F(x,\xi)$ is a Gaussian process with exponentiated quadratic kernel $K(x,y) = \sigma^2 \exp\left(-\frac{\|x-y\|^2}{2l^2}\right)$

in which case $\mathrm{Var}_{\xi}[F(x,\xi)]$ is constant and

$$\operatorname{Cov}_{\xi}(F(x,\xi),F(y,\xi)) \geq \mathcal{O}\left(1 - \|x - y\|^2\right)$$

LNV

Theorem

Assume the estimator for A_k is unbiased (true if $f(x) = \mathbb{E}_{\xi}[F(x,\xi)]$).

When $r = \frac{q}{q-1}$, $q \in (1,2]$, the tail bound can be satisfied by averaging:

 $O(\Delta_k^{2-2q})$ i.i.d. samples

• for q = 1.5 (r = 3) only $O(\Delta_k^{-1})$ samples needed for q = 2 (r = 2) one gets $O(\Delta_k^{-2})$

Numerical experiments – setup

- tested the direct-search algorithm for $q \in \{1.5,2\},$ for which $r(q) \in \{3,2\}$
- algorithms tested on a set of 96 well known non-smooth problems
- \bullet added Gaussian noise $N(0,10^{-2})$ in the general case, $N(0,\delta_k 10^{-2})$ in the correlated one
- for the moment bound case, number of samples was: $\lceil \delta_k^{-4} \rceil$ (q=2) and $\lceil \delta_k^{-3} \rceil$ (q=1.5)
- for the correlated errors case, number of samples was: $\lceil \delta_k^{-2} \rceil$ (q=2) and $\lceil \delta_k^{-1} \rceil$ (q=1.5)
- data and performance profiles

Numerical experiments - bounded moment

Figure: From left to right, data and performance profiles. From top to bottom, tolerance 10^{-2} and 10^{-4}

Figure: From left to right, data and performance profiles. From top to bottom, tolerance 10^{-2} and 10^{-4}

Is there an optimal q in (1,2]?

When $F(x,\varepsilon) - f(x) \sim N(0,\sigma)$, the tail bound condition is satisfied using

$$p = B(q) := \left[\frac{4\sigma^2 M_{r(q)}^{2/r(q)}}{\varepsilon_q^{2/r(q)}} \Delta^{-2q} \right]$$

where $r(q)=\frac{q}{q-1}$ and $M_{r(q)}$ is the r(q)-th moment of a standard normal distribution.

The continuous version of B(q) has always a minimum in (1, 2].

 k_f -variance conditions [Audet et al., 2021]

$$\mathbb{E}[|F_k^g - f(X_k + \Delta_k G_k)|^2 \mid \mathcal{F}_{k-1}] \le k_f^2 \Delta_k^4$$
$$\mathbb{E}[|F_k - f(X_k)|^2 \mid \mathcal{F}_{k-1}] \le k_f^2 \Delta_k^4$$

Proposition

Then tail bound condition is satisfied for $\varepsilon_q = 4k_f^2$ and q = 2.

• follows from Markov's inequality

Comparison with other assumptions -2

 β -probabilistically accurate function estimate [Chen et al. 2018]

$$\mathbb{P}(\{|F_k - f(X_k)| \le \tau_f \Delta_k^2\} \cap \{|F_k^g - f(X_k + \Delta_k G_k)| \le \tau_f \Delta_k^2\} | \mathcal{F}_{k-1}) \ge \beta$$

Proposition

If satisfied for all β in a chosen interval (and τ_f depending on β and accuracy parameter ε), then tail bound is satisfied with ε_q depending on ε .

follows from the inclusion

$$\{|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))| < \alpha \Delta_k^2\}$$

$$\supset \{|F_k - f(X_k)| \le \tau_f \Delta_k^2\} \cap \{|F_k^g - f(X_k + \Delta_k G_k)| \le \tau_f \Delta_k^2\}$$

for any $\tau_f < \frac{\alpha}{2}$.

Let's take a break...

Apologies for all vegans and vegetarians...

I am also celebrating the 25th anniversary of Steve's 2-week visit to Portugal...

Here is a quiz for Steve... Let's test his memory in real time. :-)

What are we eating here?

Algorithm Stochastic direct search

- 1: Initialization. Choose a point x_0 , δ_0 , $\theta > 0$, $\tau \in (0, 1)$, $\overline{\tau} \in [1, 1 + \tau]$.
- 2: **For** $k = 0, 1 \dots$
- 3: Select a direction g_k in the unitary sphere.
- 4: Compute estimates f_k and f_k^g for f in x_k and $x_k + \delta_k g_k$.
- 5: If $f_k f_k^g \ge \theta \delta_k^q$, Then set $x_{k+1} = x_k + \delta_k g_k$, $\delta_{k+1} = \bar{\tau} \delta_k$.
- 6: **Else** set $x_{k+1} = x_k$, $\delta_{k+1} = (1 \tau)\delta_k$.
- 7: End if
- 8: End for

Bad successful step

Figure: A bad successful step

Assumption (Tail bound)

For some $\varepsilon_q > 0$ (independent of k):

$$\mathbb{P}\left(|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))| \ge \alpha \Delta_k^q |\mathcal{F}_{k-1}\right) \le \frac{\varepsilon_q}{\alpha^{q/(q-1)}}$$

a.s. for every $\alpha > 0$.

Lemma

Under the tail bound condition, if $\theta > \theta^{ds}(q, \tau, \varepsilon_q)$, then a.s.

$$\sum \Delta_k^q < +\infty$$

• let
$$\Phi_k = f(X_k) - f^* + C_1 \Delta_k^q$$

the lemma follows from Robbins-Siegmund once we get to

$$\mathbb{E}[\Phi_k - \Phi_{k+1} | \mathcal{F}_{k-1}] \geq C_2 \Delta_k^q$$

• for a certain ρ_k , the above LHS is \geq than

$$\left(C_3 - \rho_k(\underbrace{\mathbb{P} \text{ in tail bound with } \alpha = \rho_k}_{\leq C_4(1/\rho_k)})\right) \Delta_k^q$$

Assumption (Tail bound)

For some $\varepsilon_q > 0$ (independent of k):

$$\mathbb{P}\left(|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))| \ge \alpha \Delta_k^q |\mathcal{F}_{k-1}\right) \le \frac{\varepsilon_q}{\alpha^{q/(q-1)}}$$

a.s. for every $\alpha > 0$.

Lemma

Let K be the set of indices of unsuccessful iterations. Then under the tail bound assumption and $\theta > \theta^{ds}$ we have a.s.

$$\liminf_{k \in K, k \to \infty} \frac{f(X_k + \Delta_k G_k) - f(X_k)}{\Delta_k} \ge 0$$

• need to prove $|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))|/\Delta_k \to 0$

 \bullet apply the tail bound assumption with $\alpha = \frac{\Delta_k^{1-q}}{m}$

$$\mathbb{P}(|F_k - F_k^g - (f(X_k) - f(X_k + \Delta_k G_k))| \ge \frac{\Delta_k}{m} \mid \mathcal{F}_{k-1}) \le m^{r(q)} \Delta_k^q \varepsilon_q$$

ullet conclusion from Borel-Cantelli's First Lemma for every m

Theorem

Let the tail bound assumption hold, $\theta > \theta^{ds}$, and f Lipschitz continuous around any limit point.

If $L \subset K$ is such that $\{G_k\}_{k \in L}$ is dense in the unit sphere and

$$\lim_{k \in L, \, k \to \infty} X_k = X^*$$

then X^* is Clarke stationary (a.s.).

• follows from last lemma and $\limsup \ge \liminf (\text{and } \Delta_k \longrightarrow 0)$

A simple stochastic trust-region scheme

Algorithm Stochastic DFO Trust-Region Algorithm

- 1: Initialization. Select $x_0 \in \mathbb{R}^n$, $\theta > 0$, $\tau \in (0, 1)$, $\overline{\tau} \in [1, 1+\tau]$, $\delta_0 > 0$, q > 1.
- 2: **For** $k = 0, 1 \dots$
- 3: Select a direction $g_k \neq 0$ and build a symmetric matrix B_k .
- 4: Compute $s_k \in \operatorname{argmin}_{\|s\| \le \delta_k} g_k^\top s + \frac{1}{2} s^\top B_k s.$
- 5: Compute estimates $f_k \simeq f(x_k)$ and $f_k^s \simeq f(x_k + s_k)$. 6: If

$$\frac{f_k - f_k^s}{\theta \|s_k\|^q} \ge 1$$

Then set $x_{k+1} = x_k + s_k$, $\delta_{k+1} = \bar{\tau} \delta_k$. Else set $x_{k+1} = x_k$, $\delta_{k+1} = (1 - \tau) \delta_k$.

- 7: **Else** set $x_{k+1} = x_k$, $\delta_{k+1} = (1 1)^{-1}$
- 8: End For

Assumption (Trust-region tail bound)

For some $\varepsilon_q > 0$ (independent of k):

$$\mathbb{P}\left(\left|F_k - F_k^g - (f(X_k) - f(X_k + S_k))\right| \ge \alpha \|S_k\|^q \, |\mathcal{F}_{k-1}\right) \le \frac{\varepsilon_q}{\alpha^{q/(q-1)}}$$

a.s. every $\alpha > 0$.

- S_k , $\|S_k\|$, F_k^s replace $\Delta_k G_k$, Δ_k , F_k^g
- same improved sampling bounds of direct-search case

Convergence to Clarke stationary points -1

Under the tail bound condition

$$\sum \|S_k\|^q < +\infty$$

for a different lower bound $\theta > \theta^{tr}(q, \tau, \varepsilon_q, \rho).$

Assumption (Hessian bound 1) There exists $\rho \in (0, 1]$ such that, for every k, $\|B_k\| \leq \frac{1}{\rho} \frac{\|G_k\|}{\Delta_k}$

• when $\|G_k\| = 1$, Hessian is "unbounded" by $1/\Delta_k$

• it implies $\|S_k\| \ge \rho \Delta_k$, which then gives $\sum \Delta_k^q < +\infty$

Assumption (Hessian bound 2)

There exists a sequence $\{a_k\} \downarrow 0$ and such that, for every k,

$$\|B_k\| \le a_k \frac{\|G_k\|}{\Delta_k}$$

Lemma (asymptotic alignment)

If S_k solves the trust-region subproblem,

$$\lim_{k \to \infty} \frac{G_k}{\|G_k\|} + \frac{S_k}{\|S_k\|} = 0$$

a.s. (it holds for every realization, actually).

• for k large, S_k becomes aligned with $-G_k$

Theorem

Let the tail bound assumption hold, $\theta > \theta^{tr}$, f Lipschitz continuous around any limit point, and Hessian bound 2. If $L \subset K$ is such that $\{G_k\}_{k \in L}$ is dense in the unit sphere and

$$\lim_{k \in L, \, k \to \infty} X_k = X^*$$

then X^* is Clarke stationary (a.s.).

• corollary of analogous DS result for $\left\{\frac{S_k}{\|S_k\|}\right\}$ + asymptotic alignment

Conclusions

- introduced a tail bound condition tailored to acceptance criterion
- proved improved bounds on the corresponding number of samples
- proved convergence of a direct-search and a trust-region schemes

Extensions

- more general random trust-region models (e.g. piecewise linear)
- composition of smooth function with known non-smooth function
- numerical experiments for trust-region method