Algorithms and application for special classes of nonlinear least squares problems 2023

Clément W. Royer

US-Mexico workshop on optimization and its applications

January 9, 2023

Nonlinear Least Squares Problems 2023

Not so long ago, not so far away...

BULL. AUSTRAL. MATH. SOC.	90C30
VOL. 31 (1985), 309-311.	(65K05)

ALGORITHMS AND APPLICATION FOR SPECIAL CLASSES OF NONLINEAR LEAST SQUARES PROBLEMS

STEPHEN J. WRIGHT

A Nonlinear Least Squares problem is an optimization problem for which the objective function to be minimized has the form

$$F(x) = \sum_{i=1}^m f_i^2(x)$$
 , $x \in \operatorname{R}^n$, $m \ge n$.

- Nonlinear least squares + constraints/nonsmoothness;
- Efficient solve for sparse Jacobian;
- Cool application (geophysics).

What more can I do?

Rebooting the (least-squares) franchise

A DIONAL LINEAR THE ADVISOR DEVICE TO THE ADVISOR OF THE ADVISOR O

Nonlinear least squares

- A basic problem...
- ...with modern instances.

Revisit algorithms

- Complexity bounds for Gauss-Newton methods.
- Complexity metrics.

Go a bit further

- Inexactness and stochasticity.
- Probabilistic results.

- Problem and first results
- 2 More complexity results
- Beyond the deterministic setting
- Application: Learning dynamics

Problem and first results

- 2 More complexity results
- 3 Beyond the deterministic setting
- 4 Application: Learning dynamics

General setup

Nonlinear least-squares

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} f(\boldsymbol{x}) := \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2, \qquad \boldsymbol{r}:\mathbb{R}^n \mapsto \mathbb{R}^m, \boldsymbol{r}\in\mathcal{C}^2.$$
Jacobian: $\boldsymbol{J}(\boldsymbol{x}) := [\nabla r_i(\boldsymbol{x})^\top] \in \mathbb{R}^{m \times n}.$

Nonlinear least-squares

$$\min_{oldsymbol{x}\in\mathbb{R}^n}f(oldsymbol{x}):=rac{1}{2}\|oldsymbol{r}(oldsymbol{x})\|^2,\qquadoldsymbol{r}:\mathbb{R}^n\mapsto\mathbb{R}^m,oldsymbol{r}\in\mathcal{C}^2.$$

Jacobian: $J(\mathbf{x}) := [\nabla r_i(\mathbf{x})^\top] \in \mathbb{R}^{m \times n}$.

Gauss-Newton techniques

- Gauss-Newton model $f(\mathbf{x} + \mathbf{s}) \approx \frac{1}{2} \|\mathbf{r}(\mathbf{x}) + \mathbf{J}(\mathbf{x})\mathbf{s}\|^2$;
- Steps computed via line search/trust region;
- Hessian approximated by $J(x)^{T}J(x)$.

Nonlinear least-squares

$$\min_{oldsymbol{x}\in\mathbb{R}^n}f(oldsymbol{x}):=rac{1}{2}\|oldsymbol{r}(oldsymbol{x})\|^2,\qquadoldsymbol{r}:\mathbb{R}^n\mapsto\mathbb{R}^m,oldsymbol{r}\in\mathcal{C}^2.$$

Jacobian: $J(\mathbf{x}) := [\nabla r_i(\mathbf{x})^\top] \in \mathbb{R}^{m \times n}$.

Gauss-Newton techniques

- Gauss-Newton model $f(\mathbf{x} + \mathbf{s}) \approx \frac{1}{2} \|\mathbf{r}(\mathbf{x}) + \mathbf{J}(\mathbf{x})\mathbf{s}\|^2$;
- Steps computed via line search/trust region;
- Hessian approximated by $J(x)^{T}J(x)$.

Levenberg(-Morrison)-Marquardt

- Regularized Gauss-Newton model: $f(\mathbf{x} + \mathbf{s}) \approx \frac{1}{2} \|\mathbf{r}(\mathbf{x}) + \mathbf{J}(\mathbf{x})\mathbf{s}\|^2 + \frac{\gamma}{2} \|\mathbf{s}\|^2;$
- Regularization parameter γ set adaptively.

Levenberg-Marquardt for $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n, \gamma_0 \ge \gamma_{\min} > 0, \eta > 0.$ Iteration k: Given (\mathbf{x}_k, γ_k) ,

Compute

$$oldsymbol{s}_k pprox rgmin_{oldsymbol{s}} m_k(oldsymbol{s}) := rac{1}{2} \|oldsymbol{r}(oldsymbol{x}_k) + oldsymbol{J}(oldsymbol{x}_k) oldsymbol{s} \|^2 + rac{\gamma_k}{2} \|oldsymbol{s}\|^2.$$

$$\frac{\frac{1}{2}\|r(\boldsymbol{x}_k)\|^2 - \frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x}_k + \boldsymbol{s}_k)\|^2}{m_k(0) - m_k(\boldsymbol{s}_k)} \geq \eta,$$

set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\gamma_{k+1} = \max\{0.5\gamma_k, \gamma_{\min}\};$

• Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

Levenberg-Marquardt for $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n, \gamma_0 \ge \gamma_{\min} > 0, \eta > 0.$ Iteration k: Given (\mathbf{x}_k, γ_k) ,

Compute

$$oldsymbol{s}_k pprox rgmin_{oldsymbol{s}} m_k(oldsymbol{s}) := rac{1}{2} \|oldsymbol{r}(oldsymbol{x}_k) + oldsymbol{J}(oldsymbol{x}_k) oldsymbol{s} \|^2 + rac{\gamma_k}{2} \|oldsymbol{s}\|^2.$$

$$\frac{\frac{1}{2}\|r(\boldsymbol{x}_k)\|^2 - \frac{1}{2}\|r(\boldsymbol{x}_k + \boldsymbol{s}_k)\|^2}{m_k(0) - m_k(\boldsymbol{s}_k)} \geq \eta_{2}$$

set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\gamma_{k+1} = \max\{0.5\gamma_k, \gamma_{\min}\};$

• Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

Goal: Prove a complexity result for the method.

Complexity in nonconvex optimization

Setup: Sequence of points $\{x_k\}$ generated by an algorithm applied to $\min_{x \in \mathbb{R}^n} f(x)$.

Complexity in nonconvex optimization

Setup: Sequence of points $\{x_k\}$ generated by an algorithm applied to $\min_{x \in \mathbb{R}^n} f(x)$.

Standard complexity result

Given $\epsilon_g \in (0, 1)$:

- Worst-case number of iterations to obtain \boldsymbol{x}_k such that $\|\nabla f(\boldsymbol{x}_k)\| \leq \epsilon_g$.
- Focus: Dependency on ϵ_g .

Complexity in nonconvex optimization

Setup: Sequence of points $\{x_k\}$ generated by an algorithm applied to $\min_{x \in \mathbb{R}^n} f(x)$.

Standard complexity result

Given $\epsilon_g \in (0, 1)$:

- Worst-case number of iterations to obtain \boldsymbol{x}_k such that $\|\nabla f(\boldsymbol{x}_k)\| \leq \epsilon_g$.
- Focus: Dependency on ϵ_g .

Some examples

- Gradient descent: $\mathcal{O}(\epsilon_g^{-2})$ iterations.
- Newton: $\mathcal{O}(\epsilon_g^{-2})$ iterations.
- Cubic regularization/Modified Newton: $\mathcal{O}(\epsilon_g^{-3/2})$ iterations.

- Problem: $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$:
- Goal: Find \boldsymbol{x}_k such that $\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon_g$.

- Problem: $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$:
- Goal: Find \boldsymbol{x}_k such that $\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon_g$.

Some results

- Gradient descent: $\mathcal{O}(\epsilon_g^{-2})$ iterations.
- Gauss-Newton + line search/trust region: $\mathcal{O}(\epsilon_g^{-2})$ iterations.
- Levenberg-Marquardt: $\mathcal{O}(\epsilon_g^{-2})$ iterations.

Levenberg-Marquardt for $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n, \gamma_0 \ge \gamma_{\min} > 0, \eta > 0.$ Iteration k: Given (\mathbf{x}_k, γ_k) ,

Compute

$$oldsymbol{s}_k pprox rgmin_{oldsymbol{s}} m_k(oldsymbol{s}) := rac{1}{2} \|oldsymbol{r}(oldsymbol{x}_k) + oldsymbol{J}(oldsymbol{x}_k) oldsymbol{s} \|^2 + rac{\gamma_k}{2} \|oldsymbol{s}\|^2.$$

$$\frac{\frac{1}{2}\|r(\boldsymbol{x}_k)\|^2 - \frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x}_k + \boldsymbol{s}_k)\|^2}{m_k(0) - m_k(\boldsymbol{s}_k)} \geq \eta,$$

set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\gamma_{k+1} = \max\{0.5\gamma_k, \gamma_{\min}\};$

• Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

Levenberg-Marquardt for $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n, \gamma_0 \ge \gamma_{\min} > 0, \eta > 0.$ Iteration k: Given (\mathbf{x}_k, γ_k) ,

Compute

$$oldsymbol{s}_k pprox rgmin_{oldsymbol{s}} m_k(oldsymbol{s}) := rac{1}{2} \|oldsymbol{r}(oldsymbol{x}_k) + oldsymbol{J}(oldsymbol{x}_k) oldsymbol{s} \|^2 + rac{\gamma_k}{2} \|oldsymbol{s}\|^2.$$

$$\frac{\frac{1}{2}\|r(\boldsymbol{x}_k)\|^2 - \frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x}_k + \boldsymbol{s}_k)\|^2}{m_k(0) - m_k(\boldsymbol{s}_k)} \geq \eta,$$

set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\gamma_{k+1} = \max\{0.5\gamma_k, \gamma_{\min}\};$

• Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

Goal: Prove a complexity result for the method.

Decrease guarantee

For any successful iteration $(\mathbf{x}_{k+1} \neq \mathbf{x}_k)$,

$$\|r(\boldsymbol{x}_k)\|^2 - \|r(\boldsymbol{x}_{k+1})\|^2 \ge \mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right).$$

Decrease guarantee

For any successful iteration $(\mathbf{x}_{k+1} \neq \mathbf{x}_k)$,

$$\|r(\boldsymbol{x}_k)\|^2 - \|r(\boldsymbol{x}_{k+1})\|^2 \ge \mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right)$$

Regularization parameter

• If γ_k large enough, the iteration is successful.

•
$$\gamma_k \leq \gamma_{\max}$$
 for all k .

Decrease guarantee

For any successful iteration $(\mathbf{x}_{k+1} \neq \mathbf{x}_k)$,

$$\|r(\boldsymbol{x}_k)\|^2 - \|r(\boldsymbol{x}_{k+1})\|^2 \ge \mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right)$$

Regularization parameter

• If γ_k large enough, the iteration is successful.

•
$$\gamma_k \leq \gamma_{\max}$$
 for all k .

Complexity of standard Levenberg-Marquardt

The method reaches \boldsymbol{x}_k such that $\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon_g$ in at most $\mathcal{O}(\epsilon_g^{-2})$ iterations.

Problem and first results

- 2 More complexity results
 - 3 Beyond the deterministic setting
 - 4 Application: Learning dynamics

Our problem: $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$

- Used $\| \boldsymbol{J}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{r}(\boldsymbol{x}) \|$ as a complexity metric;
- Oblivious to the least-square structure;
- May want to stop when residuals are small.

Our problem: $\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{r}(\boldsymbol{x})\|^2$

- Used $\| \boldsymbol{J}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{r}(\boldsymbol{x}) \|$ as a complexity metric;
- Oblivious to the least-square structure;
- May want to stop when residuals are small.

Scaled gradient (Cartis, Gould, Toint '13; Gould, Rees, Scott '19)

$$oldsymbol{g}(oldsymbol{x}) := \left\{egin{array}{cc} rac{oldsymbol{J}(oldsymbol{x})^{ ext{T}}oldsymbol{r}(oldsymbol{x})}{\|oldsymbol{r}(oldsymbol{x})\|} & ext{if } \|oldsymbol{r}(oldsymbol{x})\| > 0 \\ 0 & ext{otherwise.} \end{array}
ight.$$

• Stopping criterion for complexity:

$$\|\boldsymbol{r}(\boldsymbol{x})\| \leq \epsilon_r \quad \text{or} \quad \|\boldsymbol{g}(\boldsymbol{x})\| \leq \epsilon_g.$$

An alternate complexity measure ('ed)

Goal: Find x_k such that

$$\|\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon_r \quad \text{or} \quad \|\boldsymbol{g}(\boldsymbol{x}_k)\| \leq \epsilon_g, \quad \boldsymbol{g}(\boldsymbol{x}_k) := \begin{cases} rac{\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}} \boldsymbol{r}(\boldsymbol{x}_k)}{\|\boldsymbol{r}(\boldsymbol{x}_k)\|} & ext{if } \|\boldsymbol{r}(\boldsymbol{x}_k)\| > 0\\ 0 & ext{otherwise.} \end{cases}$$

Goal: Find \boldsymbol{x}_k such that

$$\|m{r}(m{x}_k)\| \leq \epsilon_r \quad ext{or} \quad \|m{g}(m{x}_k)\| \leq \epsilon_g, \quad m{g}(m{x}_k) := \left\{egin{array}{c} rac{m{J}(m{x}_k)^{ op}m{r}(m{x}_k)}{\|m{r}(m{x}_k)\|} & ext{if} \ \|m{r}(m{x}_k)\| > 0 \ 0 & ext{otherwise.} \end{array}
ight.$$

Complexity of Levenberg-Marquardt (Gould, Rees, Scott '19)

For any $i \in \mathbb{N} \cup \{-1\}$, the method finds a suitable \boldsymbol{x}_k in at most

 $\mathcal{O}(2^i \epsilon_g^{-2} \epsilon_r^{-1/2^i})$ iterations.

Goal: Find \boldsymbol{x}_k such that

$$\|\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon_r \quad ext{or} \quad \|\boldsymbol{g}(\boldsymbol{x}_k)\| \leq \epsilon_g, \quad \boldsymbol{g}(\boldsymbol{x}_k) := \left\{ egin{array}{c} rac{m{J}(m{x}_k)^{ ext{T}}m{r}(m{x}_k)}{\|m{r}(m{x}_k)\|} & ext{if } \|m{r}(m{x}_k)\| > 0 \\ 0 & ext{otherwise.} \end{array}
ight.$$

Complexity of Levenberg-Marquardt (Gould, Rees, Scott '19)

For any $i \in \mathbb{N} \cup \{-1\}$, the method finds a suitable \boldsymbol{x}_k in at most

 $\mathcal{O}(2^i \epsilon_g^{-2} \epsilon_r^{-1/2^i})$ iterations.

• Part of more results on high-order regularization methods.

• Asymptotically:
$$\epsilon_r^{-1/2'} \to 1$$
 but $2^i \to \infty$.

Alternate metric (Bergou, Diouane, Kungurstev, R '22)

New scaled gradient

Given $\mathfrak{i} \in \mathbb{N} \cup \{-1\}$,

$$oldsymbol{g}^{\mathrm{i}}(oldsymbol{x}) \ := \ \left\{ egin{array}{cc} rac{\|oldsymbol{J}(oldsymbol{x})^{ op}oldsymbol{r}(oldsymbol{x})\|}{\|oldsymbol{r}(oldsymbol{x})\|^{2-2^{-\mathrm{i}}}} & \mathrm{if} \ \|oldsymbol{r}(oldsymbol{x})\|
eq 0, \ 0 & \mathrm{otherwise.} \end{array}
ight.$$

• Stopping criterion for complexity:

$$\|\boldsymbol{r}(\boldsymbol{x})\| \leq \epsilon_r \quad \text{or} \quad \|\boldsymbol{g}^{\mathrm{i}}(\boldsymbol{x})\| \leq \epsilon_g.$$

Alternate metric (Bergou, Diouane, Kungurstev, R '22)

New scaled gradient

Given $i \in \mathbb{N} \cup \{-1\}$,

$$oldsymbol{g}^{\mathrm{i}}(oldsymbol{x}) \ := \ \left\{ egin{array}{cc} rac{\|oldsymbol{J}(oldsymbol{x})^{ op}oldsymbol{r}(oldsymbol{x})\|}{\|oldsymbol{r}(oldsymbol{x})\|^{2-2^{-\mathrm{i}}}} & \mathrm{if} \ \|oldsymbol{r}(oldsymbol{x})\|
eq 0, \ 0 & \mathrm{otherwise.} \end{array}
ight.$$

• Stopping criterion for complexity:

$$\|\boldsymbol{r}(\boldsymbol{x})\| \leq \epsilon_r \quad \text{or} \quad \|\boldsymbol{g}^{\mathrm{i}}(\boldsymbol{x})\| \leq \epsilon_g.$$

- i = -1: Classical gradient;
- i = 0: CGT scaled gradient;
- $\mathfrak{i} \to \infty$: $\|\boldsymbol{g}^{\mathfrak{i}}(\boldsymbol{x})\| > \epsilon_{g}$ akin to gradient dominance.

Decrease guarantees

For any successful iteration $(\mathbf{x}_{k+1} \neq \mathbf{x}_k)$,

$$\|\boldsymbol{r}(\boldsymbol{x}_k)\|^2 - \|\boldsymbol{r}(\boldsymbol{x}_{k+1})\|^2 \ge \mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right)$$

and (if $\|\boldsymbol{r}(\boldsymbol{x}_k)\| \neq 0$)

$$\|m{r}(m{x}_k)\|^{rac{1}{2^{\mathfrak{i}}}} - \|m{r}(m{x}_{k+1})\|^{rac{1}{2^{\mathfrak{i}}}} \geq \mathcal{O}\left(rac{\|m{g}^{\mathfrak{i}}(m{x}_k)\|^2\|m{r}(m{x}_k)\|^{(4-2^{1-\mathfrak{i}})}}{\gamma_k}
ight).$$

Decrease guarantees

For any successful iteration $(\mathbf{x}_{k+1} \neq \mathbf{x}_k)$,

$$\|\boldsymbol{r}(\boldsymbol{x}_k)\|^2 - \|\boldsymbol{r}(\boldsymbol{x}_{k+1})\|^2 \ge \mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right)$$

and (if $\|\boldsymbol{r}(\boldsymbol{x}_k)\| \neq 0$)

$$\|\boldsymbol{r}(\boldsymbol{x}_{k})\|^{\frac{1}{2^{i}}} - \|\boldsymbol{r}(\boldsymbol{x}_{k+1})\|^{\frac{1}{2^{i}}} \ge \mathcal{O}\left(\frac{\|\boldsymbol{g}^{i}(\boldsymbol{x}_{k})\|^{2}\|\boldsymbol{r}(\boldsymbol{x}_{k})\|^{(4-2^{1-i})}}{\gamma_{k}}\right)$$

Regularization parameter

- If γ_k large enough, the iteration is successful.
- $\gamma_k \leq \gamma_{\max}$ for all k.

Complexity table

Goal: Find \boldsymbol{x}_k such that

$$\|\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon_r \quad \text{or} \quad \|\boldsymbol{g}^{\mathrm{i}}(\boldsymbol{x}_k)\| \leq \epsilon_g.$$

Complexity results (BDKR '22)

i	Arbitrary	$\mathfrak{i} = -1$	i = 0
$g^{i}(\mathbf{x})$	$\frac{\ \boldsymbol{J}(\boldsymbol{x})^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x})\ }{\ \boldsymbol{r}(\boldsymbol{x})\ ^{2-2^{-1}}}$	$\ J(x)^{\mathrm{T}}r(x)\ $	$\frac{\ J(x)^{\mathrm{T}}r(x)\ }{\ r(x)\ }$
Order	$\left \epsilon_g^{-2} \epsilon_r^{-(4-2^{1-i})} \right $	ϵ_g^{-2}	$\epsilon_g^{-2}\epsilon_r^{-2}$.

- Matches existing results for i = -1.
- For i = 0: previous results get better bounds in terms of ε_r but with very large constants (2ⁱ).

- Problem and first results
- 2 More complexity results
- Beyond the deterministic setting
 - 4 Application: Learning dynamics

Stochastic nonlinear least-squares

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})=\frac{1}{2}\|\mathbf{r}(\mathbf{x})\|^2$$

• Values of *r* and Jacobian *J* only accessed through stochastic estimates.

Challenges

- Every evaluation is replaced by a random estimate;
- Decrease no longer guaranteed;
- Accuracy of evaluation matters.

Using inexact values

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\gamma_0 \ge \gamma_{\min} > 0$. Iteration k: Given (\mathbf{x}_k, γ_k) ,

- Compute $\mathbf{r}_{m_k} \approx \mathbf{r}(\mathbf{x}_k)$, $\mathbf{J}_{m_k} \approx \mathbf{J}(\mathbf{x}_k)$ and $\mathbf{s}_k \approx \operatorname{argmin}_{\mathbf{s}} m_k(\mathbf{s}) = \frac{1}{2} \|\mathbf{r}_{m_k} + \mathbf{J}_{m_k} \mathbf{s}\|^2 + \frac{\gamma_k}{2} \|\mathbf{s}\|^2$.
- Compute $\mathbf{r}_k^0 \approx \mathbf{r}(\mathbf{x}_k)$ and $\mathbf{r}_k^s \approx \mathbf{r}(\mathbf{x}_k + \mathbf{s}_k)$.
- If $\frac{\frac{1}{2} \|\boldsymbol{r}_{k}^{0}\|^{2} \frac{1}{2} \|\boldsymbol{r}_{k}^{s}\|^{2}}{m_{k}(0) m_{k}(s)} \geq \eta$, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_{k} + \boldsymbol{s}_{k}$ and $\gamma_{k+1} = \max\{0.5\gamma_{k}, \gamma_{\min}\};$
- Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

Using inexact values

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\gamma_0 \ge \gamma_{\min} > 0$. Iteration k: Given (\mathbf{x}_k, γ_k) ,

- Compute $\mathbf{r}_{m_k} \approx \mathbf{r}(\mathbf{x}_k)$, $\mathbf{J}_{m_k} \approx \mathbf{J}(\mathbf{x}_k)$ and $\mathbf{s}_k \approx \operatorname{argmin}_{\mathbf{s}} m_k(\mathbf{s}) = \frac{1}{2} \|\mathbf{r}_{m_k} + \mathbf{J}_{m_k} \mathbf{s}\|^2 + \frac{\gamma_k}{2} \|\mathbf{s}\|^2$.
- Compute $\mathbf{r}_k^0 \approx \mathbf{r}(\mathbf{x}_k)$ and $\mathbf{r}_k^s \approx \mathbf{r}(\mathbf{x}_k + \mathbf{s}_k)$.
- If $\frac{\frac{1}{2} \|r_k^0\|^2 \frac{1}{2} \|r_k^s\|^2}{m_k(0) m_k(s)} \ge \eta$, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ and $\gamma_{k+1} = \max\{0.5\gamma_k, \gamma_{\min}\};$
- Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

Goal: Prove a complexity result for this inexact method. **Key:** Use γ_k to monitor the inexactness and the convergence.

Complexity analysis in an inexact setting

Accuracy requirements (model)

For every k,

$$\| oldsymbol{J}(oldsymbol{x}_k)^{ op}oldsymbol{r}(oldsymbol{x}_k) - oldsymbol{J}_{m_k}^{ op}oldsymbol{r}_{m_k} \| \leq \mathcal{O}\left(rac{1}{\gamma_k}
ight)$$

and

$$\left|rac{1}{2}\|oldsymbol{r}(x_k)\|^2 - rac{1}{2}\|oldsymbol{r}_{m_k}\|^2
ight| \leq \mathcal{O}\left(rac{1}{\gamma_k}
ight).$$

Accuracy requirements (evaluations)

For every k,

$$\left\| \frac{1}{2} \| \boldsymbol{r}_k^0 \|^2 - \frac{1}{2} \| \boldsymbol{r}(\boldsymbol{x}_k) \|^2 \right\| \leq \mathcal{O}\left(\frac{1}{\gamma_k^2} \right)$$

and

$$\left| rac{1}{2} \| oldsymbol{r}_k^{oldsymbol{s}} \|^2 - rac{1}{2} \| oldsymbol{r}(oldsymbol{x}_k + oldsymbol{s}_k) \|^2
ight| \leq \mathcal{O}\left(rac{1}{\gamma_k^2}
ight)$$

Complexity analysis

Using inexactness

• With the same theory as in the exact case, get $\mathcal{O}(\epsilon^{-3})$ instead of $\mathcal{O}(\epsilon^{-2})$ to obtain $\|J(\mathbf{x}_k)^{\mathrm{T}} \mathbf{r}(\mathbf{x}_k)\| \leq \epsilon!$

Complexity analysis

Using inexactness

- With the same theory as in the exact case, get $\mathcal{O}(\epsilon^{-3})$ instead of $\mathcal{O}(\epsilon^{-2})$ to obtain $\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon!$
- Arguments:
 - Still decrease in $\mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right);$
 - But now γ_k grows as $\mathcal{O}(\epsilon^{-1})!$

Complexity analysis

Using inexactness

- With the same theory as in the exact case, get $\mathcal{O}(\epsilon^{-3})$ instead of $\mathcal{O}(\epsilon^{-2})$ to obtain $\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\| \leq \epsilon!$
- Arguments:
 - Still decrease in $\mathcal{O}\left(\frac{\|\boldsymbol{J}(\boldsymbol{x}_k)^{\mathrm{T}}\boldsymbol{r}(\boldsymbol{x}_k)\|^2}{\gamma_k}\right);$
 - But now γ_k grows as $\mathcal{O}(\epsilon^{-1})!$

A fix (BDKR '22)

- The analysis reveals $\gamma = \mathcal{O}(\|J(\mathbf{x})^{\top}r(\mathbf{x})\|/\|\mathbf{s}\|);$
- By analogy with trust-region, we want $\gamma = 1/\| \pmb{s} \|;$
- A scaling will help us achieve that.

A corrected Levenberg-Marquardt method

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\gamma_0 \ge \gamma_{\min} > 0$. Iteration k: Given (\mathbf{x}_k, γ_k) ,

• Compute $\mathbf{r}_{m_k} \approx \mathbf{r}(\mathbf{x}_k), \ \mathbf{J}_{m_k} \approx \mathbf{J}(\mathbf{x}_k)$ and

$$oldsymbol{s}_k pprox ext{argmin}_{oldsymbol{s}} m_k(oldsymbol{s}) = rac{1}{2} \|oldsymbol{r}_{m_k} + oldsymbol{J}_{m_k} oldsymbol{s}\|^2 + rac{\gamma_k \|oldsymbol{J}_{m_k} oldsymbol{r}_{m_k}\|}{2} \|oldsymbol{s}\|^2.$$

- Compute $\mathbf{r}_k^0 \approx \mathbf{r}(\mathbf{x}_k)$ and $\mathbf{r}_k^s \approx \mathbf{r}(\mathbf{x}_k + \mathbf{s}_k)$.
- If $\frac{\frac{1}{2} \|\boldsymbol{r}_{k}^{0}\|^{2} \frac{1}{2} \|\boldsymbol{r}_{k}^{s}\|^{2}}{m_{k}(0) m_{k}(s)} \geq \eta$, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_{k} + \boldsymbol{s}_{k}$ and $\gamma_{k+1} = \max\{0.5\gamma_{k}, \gamma_{\min}\};$
- Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.

A corrected Levenberg-Marquardt method

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\gamma_0 \ge \gamma_{\min} > 0$. Iteration k: Given (\mathbf{x}_k, γ_k) ,

• Compute $\mathbf{r}_{m_k} \approx \mathbf{r}(\mathbf{x}_k), \ \mathbf{J}_{m_k} \approx \mathbf{J}(\mathbf{x}_k)$ and

 $\boldsymbol{s}_k \approx \operatorname{argmin}_{\boldsymbol{s}} m_k(\boldsymbol{s}) = \frac{1}{2} \|\boldsymbol{r}_{m_k} + \boldsymbol{J}_{m_k} \boldsymbol{s}\|^2 + \frac{\gamma_k \|\boldsymbol{J}_{m_k}^\top \boldsymbol{r}_{m_k}\|}{2} \|\boldsymbol{s}\|^2.$

- Compute $\mathbf{r}_k^0 \approx \mathbf{r}(\mathbf{x}_k)$ and $\mathbf{r}_k^s \approx \mathbf{r}(\mathbf{x}_k + \mathbf{s}_k)$.
- If $\frac{\frac{1}{2} \|\boldsymbol{r}_{k}^{0}\|^{2} \frac{1}{2} \|\boldsymbol{r}_{k}^{s}\|^{2}}{m_{k}(0) m_{k}(s)} \geq \eta$, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_{k} + \boldsymbol{s}_{k}$ and $\gamma_{k+1} = \max\{0.5\gamma_{k}, \gamma_{\min}\};$
- Otherwise, set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k$ and $\gamma_{k+1} = 2\gamma_k$.
- Two sources of inexactness (models/estimates);
- Analysis can be deterministic or probabilistic.

Probabilistic models

Accuracy property

For any realization, $(\boldsymbol{J}_{m_k}, \boldsymbol{r}_{m_k})$ is called accurate if

$$\|oldsymbol{J}(oldsymbol{x}_k)^{ op}oldsymbol{r}(oldsymbol{x}_k) - oldsymbol{J}_{oldsymbol{m}_k}^{ op}oldsymbol{r}_{m_k}\| \leq \mathcal{O}\left(rac{1}{\gamma_k}
ight) \quad \left|rac{1}{2}\|oldsymbol{r}(oldsymbol{x}_k)\|^2 - rac{1}{2}\|oldsymbol{r}_{m_k}\|^2
ight| \leq \mathcal{O}\left(rac{1}{\gamma_k^2}
ight)$$

Probabilistic accuracy property

The random model sequence $\{(J_{m_k}, r_{m_k})\}$ is called *p*-accurate if

$$\forall k, \quad \mathbb{P}\left(\left(oldsymbol{J}_{m_k}, oldsymbol{r}_{m_k}
ight) ext{ accurate } |\mathcal{F}_{k-1}
ight) \geq p.$$

• $\mathcal{F}_{k-1} = \sigma(m_0, \dots, m_{k-1}, \mathbf{r}_0^0, \mathbf{r}_0^s, \dots, \mathbf{r}_{k-1}^0, \mathbf{r}_{k-1}^s)$ represents the history of the algorithm up to iteration k.

Accurate function estimates

$$\begin{aligned} \left| \frac{1}{2} \| \boldsymbol{r}_k^0 \|^2 - \frac{1}{2} \| \boldsymbol{r}(\boldsymbol{x}_k) \|^2 \right| &\leq \mathcal{O}\left(\frac{1}{\gamma_k^2} \right) \\ \left| \frac{1}{2} \| \boldsymbol{r}_k^s \|^2 - \frac{1}{2} \| \boldsymbol{r}(\boldsymbol{x}_k + \boldsymbol{s}_k) \|^2 \right| &\leq \mathcal{O}\left(\frac{1}{\gamma_k^2} \right). \end{aligned}$$

Probabilistically accurate estimates

The random estimate sequence $\{(\mathbf{r}_k^0, \mathbf{r}_k^s)\}$ is q-accurate if

$$orall k, \quad \mathbb{P}\left((\pmb{r}_k^0, \pmb{r}_k^1) ext{ accurate } ig|\mathcal{F}_{k-1/2}
ight) \geq q.$$

•
$$\mathcal{F}_{k-1/2} = \sigma(m_0, \dots, m_{k-1}, m_k, \mathbf{r}_0^0, \mathbf{r}_0^s, \dots, \mathbf{r}_{k-1}^0, \mathbf{r}_{k-1}^s)$$
 represents the iteration of the algorithm up to the computation of \mathbf{r}_k^0 and \mathbf{r}_k^s .

Goal: Bound the stopping time

$$\mathcal{K}_{\epsilon} = \min\{k \; ||| oldsymbol{r}(oldsymbol{x})|| \leq \epsilon_r \quad ext{or} \quad \|oldsymbol{g}^{ ext{i}}(oldsymbol{x})\| \leq \epsilon_g\}.$$

Goal: Bound the stopping time

$$\mathcal{K}_{\epsilon} = \min\{k \mid \| \boldsymbol{r}(\boldsymbol{x}) \| \leq \epsilon_r \quad ext{or} \quad \| \boldsymbol{g}^{ ext{i}}(\boldsymbol{x}) \| \leq \epsilon_g \}.$$

Theorem (BDKR '22)

If $\{(\pmb{J}_{m_k},\pmb{r}_{m_k})\}$ are *p*-accurate and $\{(\pmb{r}_k^0,\pmb{r}_k^s)\}$ are *q*-accurate, then

$$\mathbb{E}[K_{\epsilon}] \leq \mathcal{O}\left(\frac{pq}{pq-1/2} \epsilon_g^{-2} \epsilon_r^{-(4-2^{1-i})}\right).$$

- Problem and first results
- 2 More complexity results
- 3 Beyond the deterministic setting
- Application: Learning dynamics

Motivation: Learning ODE parameters

Problem

• Data: $\{z(t_i)\}_{i=0}^m$ obtained from the solution z(t) of an ODE

$$\frac{d\boldsymbol{z}}{dt}(t) = \phi_{\boldsymbol{A}}(\boldsymbol{z}(t)).$$

with $\boldsymbol{z}(0) = \boldsymbol{z}_0$.

• Goal: Learn the parameters \boldsymbol{A} of the dynamics ϕ .

Motivation: Learning ODE parameters

Problem

• Data: $\{z(t_i)\}_{i=0}^m$ obtained from the solution z(t) of an ODE

$$\frac{d\boldsymbol{z}}{dt}(t) = \phi_{\boldsymbol{A}}(\boldsymbol{z}(t)).$$

with $z(0) = z_0$.

• Goal: Learn the parameters \boldsymbol{A} of the dynamics ϕ .

Model: NeuralODE

• A neural network defined as the solution of an ODE: $\pmb{z}\mapsto \pmb{y}(1)$, where \pmb{y} solution of

$$\frac{d\boldsymbol{y}}{dt}(t) = \phi_{\boldsymbol{X}}(\boldsymbol{y}(t))$$

with $\boldsymbol{y}(0) = \boldsymbol{y}_0$.

• Goal: Learn X close to A.

Illustration: Linear ODE

Problem

- Noisy data $\{z_i\}_{i=0}^m$ generated by a linear ODE $\frac{dz}{dt}(t) = Az(t)$;
- Closed-form expression: $z(t) = e^{At}z(0)$.

Training problem

$$\underset{\boldsymbol{X} \in \mathbb{R}^{n \times n}}{\text{minimize}} \frac{1}{m} \sum_{i=1}^{m} \left\| \left(\boldsymbol{I} + \frac{\boldsymbol{X}}{\ell} \right)^{\ell} \boldsymbol{z}_{i} - \boldsymbol{z}_{i+1} \right\|^{2}$$

Euler's formula:

$$e^{oldsymbol{X}} pprox \left(oldsymbol{I} + rac{oldsymbol{X}}{\ell}
ight)^\ell, \ell \geq 1.$$

 Nonconvex nonlinear least squares for ℓ ≥ 2 (strict, even high-order saddle points).

Setup

- 100 trajectories on a spiral (2-dimensional linear ODE)
- Comparison: Levenberg-Marquardt with two complexity metrics as stopping criteria.

Setup

- 100 trajectories on a spiral (2-dimensional linear ODE)
- Comparison: Levenberg-Marquardt with two complexity metrics as stopping criteria.

$$\begin{tabular}{|c|c|c|c|}\hline Criterion & Best error in \pmb{X}_* \\ \hline $\|\pmb{J}(\pmb{x}_k)^{\mathrm{T}}\pmb{r}(\pmb{x}_k)\| \leq 10^{-3}$ & 49 \\ \hline $\|\underline{\pmb{J}(\pmb{x}_k)^{\mathrm{T}}\pmb{r}(\pmb{x}_k)\|} & \leq 10^{-3}$ or $\|\pmb{r}(\pmb{x}_k)\| \leq 10^{-6}$ & 56. \end{tabular}$$

Complexity and nonlinear least squares

- A family of complexity metrics and results.
- Derived for Gauss-Newton methods (Levenberg-Marquardt type).
- Works with inexact/stochastic values and derivatives.

E. Bergou, Y. Diouane, V. Kungurstev and C. W. Royer. A stochastic Levenberg-Marquardt method using random models with complexity results. SIAM/ASA JUQ, 2022.

Complexity and nonlinear least squares

- A family of complexity metrics and results.
- Derived for Gauss-Newton methods (Levenberg-Marquardt type).
- Works with inexact/stochastic values and derivatives.

E. Bergou, Y. Diouane, V. Kungurstev and C. W. Royer. A stochastic Levenberg-Marquardt method using random models with complexity results. SIAM/ASA JUQ, 2022.

Next

- Gauss-Newton vs Newton steps?
- Application to NeuralODE training.
- Go beyond least squares (cross-entropy loss).

A. Allauzen, I. S. Legheraba and C. W. Royer. Optimization landscape of linear neural ordinary differential equations, in preparation.

Thank you, and happy birthday Steve!

Harrison Ford	Steve Wright
Part of the Star Wars saga	Part of the IPM saga
Plays a professor/adventurer with a hat and a whip	Is a professor and from Australia

C. W. Royer