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Not so long ago, not so far away...

Nonlinear least squares + constraints/nonsmoothness;
Efficient solve for sparse Jacobian;
Cool application (geophysics).

What more can I do?
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Rebooting the (least-squares) franchise
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Today’s goals

Nonlinear least squares
A basic problem...
...with modern instances.

Revisit algorithms
Complexity bounds for Gauss-Newton methods.
Complexity metrics.

Go a bit further
Inexactness and stochasticity.
Probabilistic results.
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Outline

1 Problem and first results

2 More complexity results

3 Beyond the deterministic setting

4 Application: Learning dynamics
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General setup

Nonlinear least-squares

min
x∈Rn

f (x) :=
1
2
‖r(x)‖2, r : Rn 7→ Rm, r ∈ C2.

Jacobian: J(x) :=
[
∇ri (x)>

]
∈ Rm×n.

Gauss-Newton techniques

Gauss-Newton model f (x + s) ≈ 1
2‖r(x) + J(x)s‖2;

Steps computed via line search/trust region;
Hessian approximated by J(x)TJ(x).

Levenberg(-Morrison)-Marquardt

Regularized Gauss-Newton model:
f (x + s) ≈ 1

2‖r(x) + J(x)s‖2+γ
2‖s‖

2;

Regularization parameter γ set adaptively.
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Levenberg-Marquardt for minx∈Rn
1
2‖r(x)‖

2

Inputs: x0 ∈ Rn, γ0 ≥ γmin > 0, η > 0.
Iteration k: Given (xk , γk),

Compute

sk ≈ argmin
s

mk(s) :=
1
2
‖r(xk) + J(xk)s‖2 +

γk
2
‖s‖2.

If
1
2‖r(xk)‖2 − 1

2‖r(xk + sk)‖2

mk(0)−mk(sk)
≥ η,

set xk+1 = xk + sk and γk+1 = max{0.5γk , γmin};
Otherwise, set xk+1 = xk and γk+1 = 2γk .

Goal: Prove a complexity result for the method.
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Complexity in nonconvex optimization

Setup: Sequence of points {xk} generated by an algorithm applied to
minx∈Rn f (x).

Standard complexity result

Given εg ∈ (0, 1):
Worst-case number of iterations to obtain xk such that
‖∇f (xk)‖ ≤ εg .
Focus: Dependency on εg .

Some examples

Gradient descent: O(ε−2
g ) iterations.

Newton: O(ε−2
g ) iterations.

Cubic regularization/Modified Newton: O(ε−3/2
g ) iterations.
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The least-squares setting

Problem: minx∈Rn
1
2‖r(x)‖

2:
Goal: Find xk such that ‖J(xk)

Tr(xk)‖ ≤ εg .

Some results

Gradient descent: O(ε−2
g ) iterations.

Gauss-Newton + line search/trust region: O(ε−2
g ) iterations.

Levenberg-Marquardt: O(ε−2
g ) iterations.
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Main arguments

Decrease guarantee

For any successful iteration (xk+1 6= xk),

‖r(xk)‖2 − ‖r(xk+1)‖2 ≥ O
(
‖J(xk)

Tr(xk)‖2

γk

)
.

Regularization parameter
If γk large enough, the iteration is successful.
γk ≤ γmax for all k .

Complexity of standard Levenberg-Marquardt

The method reaches xk such that ‖J(xk)
Tr(xk)‖ ≤ εg in at most O(ε−2

g )
iterations.
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An alternate complexity measure

Our problem: minx∈Rn
1
2‖r(x)‖

2

Used ‖J(x)Tr(x)‖ as a complexity metric;
Oblivious to the least-square structure;
May want to stop when residuals are small.

Scaled gradient (Cartis, Gould, Toint ’13; Gould, Rees, Scott ’19)

g(x) :=

{
J(x)Tr(x)
‖r(x)‖ if ‖r(x)‖ > 0

0 otherwise.

Stopping criterion for complexity:

‖r(x)‖ ≤ εr or ‖g(x)‖ ≤ εg .
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An alternate complexity measure (’ed)

Goal: Find xk such that

‖r(xk)‖ ≤ εr or ‖g(xk)‖ ≤ εg , g(xk) :=

{
J(xk )

Tr(xk )
‖r(xk )‖ if ‖r(xk)‖ > 0

0 otherwise.

Complexity of Levenberg-Marquardt (Gould, Rees, Scott ’19)

For any i ∈ N ∪ {−1}, the method finds a suitable xk in at most

O(2iε−2
g ε
−1/2i
r ) iterations.

Part of more results on high-order regularization methods.

Asymptotically: ε−1/2i
r → 1 but 2i →∞.
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Alternate metric (Bergou, Diouane, Kungurstev, R ’22)

New scaled gradient

Given i ∈ N ∪ {−1},

g i(x) :=


‖J(x)T r(x)‖
‖r(x)‖2−2−i if ‖r(x)‖ 6= 0,

0 otherwise.

Stopping criterion for complexity:

‖r(x)‖ ≤ εr or ‖g i(x)‖ ≤ εg .

i = −1: Classical gradient;
i = 0: CGT scaled gradient;
i→∞: ‖g i(x)‖ > εg akin to gradient dominance.
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Main arguments

Decrease guarantees

For any successful iteration (xk+1 6= xk),

‖r(xk)‖2 − ‖r(xk+1)‖2 ≥ O
(
‖J(xk)

Tr(xk)‖2

γk

)
and (if ‖r(xk)‖ 6= 0)

‖r(xk)‖
1
2i − ‖r(xk+1)‖

1
2i ≥ O

(
‖g i(xk)‖2‖r(xk)‖(4−21−i)

γk

)
.

Regularization parameter
If γk large enough, the iteration is successful.
γk ≤ γmax for all k .
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Complexity table

Goal: Find xk such that

‖r(xk)‖ ≤ εr or ‖g i(xk)‖ ≤ εg .

Complexity results (BDKR ’22)

i Arbitrary i = −1 i = 0

g i(x) ‖J(x)Tr(x)‖
‖r(x)‖2−2−i ‖J(x)Tr(x)‖ ‖J(x)Tr(x)‖

‖r(x)‖

Order ε−2
g ε
−(4−21−i)
r ε−2

g ε−2
g ε−2

r .

Matches existing results for i = −1.
For i = 0: previous results get better bounds in terms of εr but with
very large constants (2i ).
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Outline
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A stochastic problem

Stochastic nonlinear least-squares

min
x∈Rn

f (x) =
1
2
‖r(x)‖2

Values of r and Jacobian J only accessed through stochastic
estimates.

Challenges
Every evaluation is replaced by a random estimate;
Decrease no longer guaranteed;
Accuracy of evaluation matters.
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Using inexact values

Inputs: x0 ∈ Rn, γ0 ≥ γmin > 0.
Iteration k: Given (xk , γk),

Compute rmk
≈ r(xk), Jmk

≈ J(xk) and
sk ≈ argmins mk(s) = 1

2‖rmk
+ Jmk

s‖2 + γk
2 ‖s‖

2.
Compute r0

k ≈ r(xk) and r sk ≈ r(xk + sk).

If
1
2‖r

0
k‖

2−1
2‖r

s
k‖

2

mk (0)−mk (s)
≥ η, set xk+1 = xk + sk and

γk+1 = max{0.5γk , γmin};
Otherwise, set xk+1 = xk and γk+1 = 2γk .

Goal: Prove a complexity result for this inexact method.
Key: Use γk to monitor the inexactness and the convergence.
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Complexity analysis in an inexact setting

Accuracy requirements (model)

For every k ,

‖J(xk)
>r(xk)− J>mk

rmk
‖ ≤ O

(
1
γk

)
and ∣∣1

2‖r(xk)‖
2 − 1

2‖rmk
‖2
∣∣ ≤ O( 1

γk

)
.

Accuracy requirements (evaluations)

For every k , ∣∣1
2‖r

0
k‖2 − 1

2‖r(xk)‖2
∣∣ ≤ O( 1

γ2
k

)
and ∣∣1

2‖r
s
k‖2 − 1

2‖r(xk + sk)‖2
∣∣ ≤ O( 1

γ2
k

)
.
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Complexity analysis

Using inexactness

With the same theory as in the exact case, get O(ε−3) instead of
O(ε−2) to obtain ‖J(xk)

Tr(xk)‖ ≤ ε!

Arguments:
Still decrease in O

(
‖J(xk )

Tr(xk )‖2
γk

)
;

But now γk grows as O(ε−1)!

A fix (BDKR ’22)

The analysis reveals γ = O(‖J(x)>r(x)‖/‖s‖);
By analogy with trust-region, we want γ = 1/‖s‖;
A scaling will help us achieve that.
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A corrected Levenberg-Marquardt method

Inputs: x0 ∈ Rn, γ0 ≥ γmin > 0.
Iteration k: Given (xk , γk),

Compute rmk
≈ r(xk), Jmk

≈ J(xk) and

sk ≈ argmins mk(s) = 1
2‖rmk

+ Jmk
s‖2 +

γk‖J>mk
rmk
‖

2 ‖s‖2.
Compute r0

k ≈ r(xk) and r sk ≈ r(xk + sk).

If
1
2‖r

0
k‖

2−1
2‖r

s
k‖

2

mk (0)−mk (s)
≥ η, set xk+1 = xk + sk and

γk+1 = max{0.5γk , γmin};
Otherwise, set xk+1 = xk and γk+1 = 2γk .

Two sources of inexactness (models/estimates);
Analysis can be deterministic or probabilistic.
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Probabilistic models

Accuracy property

For any realization, (Jmk
, rmk

) is called accurate if

‖J(xk)
>r(xk)−J>mk

rmk
‖ ≤ O

(
1
γk

) ∣∣1
2‖r(xk)‖2 − 1

2‖rmk
‖2
∣∣ ≤ O( 1

γ2
k

)
.

Probabilistic accuracy property

The random model sequence {(Jmk
, rmk

)} is called p-accurate if

∀k, P ((Jmk
, rmk

) accurate |Fk−1) ≥ p.

Fk−1 = σ(m0, . . . ,mk−1, r0
0, r

s
0, . . . , r

0
k−1, r

s
k−1) represents the history

of the algorithm up to iteration k .
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Probabilistic function estimates

Accurate function estimates

∣∣1
2‖r

0
k‖2 − 1

2‖r(xk)‖2
∣∣ ≤ O ( 1

γ2
k

)
∣∣1
2‖r

s
k‖2 − 1

2‖r(xk + sk)‖2
∣∣ ≤ O ( 1

γ2
k

)
.

Probabilistically accurate estimates

The random estimate sequence {(r0
k , r

s
k)} is q-accurate if

∀k , P
(
(r0

k , r
1
k) accurate

∣∣Fk−1/2
)
≥ q.

Fk−1/2 = σ(m0, . . . ,mk−1,mk , r0
0, r

s
0, . . . , r

0
k−1, r

s
k−1) represents the

iteration of the algorithm up to the computation of r0
k and r sk .
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Probabilistic complexity results

Goal: Bound the stopping time

Kε = min{k |‖r(x)‖ ≤ εr or ‖g i(x)‖ ≤ εg}.

Theorem (BDKR ’22)

If {(Jmk
, rmk

)} are p-accurate and {(r0
k , r

s
k)} are q-accurate, then

E[Kε] ≤ O
(

pq

pq − 1/2
ε−2
g ε
−(4−21−i)
r

)
.
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Outline

1 Problem and first results

2 More complexity results

3 Beyond the deterministic setting

4 Application: Learning dynamics
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Motivation: Learning ODE parameters

Problem
Data: {z(ti )}mi=0 obtained from the solution z(t) of an ODE

dz
dt

(t) = φA(z(t)).

with z(0) = z0.
Goal: Learn the parameters A of the dynamics φ.

Model: NeuralODE
A neural network defined as the solution of an ODE: z 7→ y(1), where
y solution of

dy
dt

(t) = φX (y(t))

with y(0) = y0.
Goal: Learn X close to A.
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Illustration: Linear ODE

Problem

Noisy data {z i}mi=0 generated by a linear ODE dz
dt (t) = Az(t);

Closed-form expression: z(t) = eAtz(0).

Training problem

minimize
X∈Rn×n

1
m

m∑
i=1

∥∥∥∥∥
(

I +
X
`

)`
z i − z i+1

∥∥∥∥∥
2

.

Euler’s formula:

eX ≈
(

I +
X
`

)`
, ` ≥ 1.

Nonconvex nonlinear least squares for ` ≥ 2 (strict, even high-order
saddle points).
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Applying Levenberg-Marquardt

Setup
100 trajectories on a spiral (2-dimensional linear ODE)
Comparison: Levenberg-Marquardt with two complexity metrics as
stopping criteria.

Criterion Best error in X ∗
‖J(xk)

Tr(xk)‖ ≤ 10−3 49
‖J(xk )

Tr(xk )‖
‖r(xk )‖ ≤ 10−3 or ‖r(xk)‖ ≤ 10−6 56.
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Summary

Complexity and nonlinear least squares
A family of complexity metrics and results.
Derived for Gauss-Newton methods (Levenberg-Marquardt type).
Works with inexact/stochastic values and derivatives.

E. Bergou, Y. Diouane, V. Kungurstev and C. W. Royer. A stochastic
Levenberg-Marquardt method using random models with complexity results. SIAM/ASA
JUQ, 2022.

Next
Gauss-Newton vs Newton steps?
Application to NeuralODE training.
Go beyond least squares (cross-entropy loss).

A. Allauzen, I. S. Legheraba and C. W. Royer. Optimization landscape of linear neural
ordinary differential equations, in preparation.
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The end

Thank you, and happy birthday Steve!

Harrison Ford Steve Wright
Part of the Star Wars saga Part of the IPM saga

Plays a professor/adventurer with a hat and a whip Is a professor and from Australia
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