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Introduction

50 years of research in deterministic nonlinear optimization
Adopted in wide range of applications
Can be quite complex for constrained problems:

IPOPT, KNITRO, SNOPT, MINOS,…

Growing interest in stochastic optimization problems.
Noise or computational error

Central Question: 
• should existing methods be drastically redesigned to be robust to noise?
or
• do relatively small changes suffice?
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Main Thesis

• Can design effective methods by preserving underlying properties of current
methods
• Making judicious modifications following

Three Design Principles

Based on the observation: the only operations that lead to difficulties are:

1. Comparisons of noisy function values
2. Computation of differences of noisy function values
3. Computation of differences of noisy gradients

In addition, robust stop tests can be difficult in the noisy settings. 
Relevant to methods including inner and outer iterations.       (Dezfulian, Waechter)
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We do not argue…

That the only way to design nonlinear optimization methods that are robust to 
noise is to adapt existing deterministic methods

May be preferable to design methods from scratch following new ideas

But the sophistication of many methods makes it alluring to build upon
their foundations as much as possible.

Example: Inequality Constrained Problems: 
1. If a good estimate of active set is known, it is attractive to use an active-set 

approach (SQP)

2. Interior point methods very effective for large problems with network
structure. Hope to retain this strength in the noisy setting

.
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Main goal of this talk

• Discuss the three design principles

• Review recent research on how to implement them in practice

• Illustrate via a case study involving engineering design

N.B. Argue that we need an estimate of the noise to guarantee 
a reasonable solution

Before doing this:
o What do we mean by noise?
o What are realistic applications?

.

 ε
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Some References

Curtis, Robinson, Roger, et al.  (constrained setting)
Scheinberg, Paquette, et al. (unconstrained)
Berahas and Northwestern team (unconstrained, constrained)
Bollapragada (dynamic sampling, unconstrained, constrained)

Before that:
More’ and Wilde

Before that:
Polyak  (robust control)
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Noise

Computational error:
• Roundoff, Mixed Precision
• Deterministic, repeated evaluations give same results

• Computational error arises in scientific computing
• Inexact linear solves, adaptive integration schemes
• More’-Wild

Stochastic noise
• Monte Carlo simulation, etc

We assume that noise is persistent and that it cannot be controlled or
diminished in any way
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Acceptable solutions

Given a noise level, we can define acceptable solutions (neighborhoods)
• Can algorithms compute them? 
• What information about the noise is needed?
• In the algorithms discussed today noise estimation is an integral 

part of the iteration

Having said all of this, do our codes really fail when we inject noise?
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Failure of classical methods

§ Design optimization problem involving PDEs,      Willcox et al
§ Some physical parameters are uncertain, Monte Carlo
§ Standard optimization packages failed
§ Resort to a derivative free optimization code (Powell’s BOBYQA)

• Why? For another talk…

Moving forward
§ Noisy finite differences are enough to cause failure
§ Prefer: interior point, augmented Lagrangian, etc?
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Principle I: robust comparisons

Comparisons are performed when gauging progress in a line search or trust region approach, 
both for unconstrained and constrained problems (objective or penalty function). 

Claim: We can retain the logic of the algorithms

Comparisons should be: 
• relaxed based on noise level, or
• should be avoided altogether (no need for noise estimate)
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Option A: Avoiding the line search

Reasons for avoiding a line search

o Measuring progress with some confidence we may be too expensive. 

o If search direction is very noisy and poorly scaled, it is unproduction to try 
control the length of each step; better to rely on expected behavior

o Forcing sample consistency not useful in the very noisy regime

Steplength can control noise and displacement simultaneously
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Avoiding the line search: SGD

Hallmark of Neural Network
Perceptron algorithm, Rummelhart, LeCun, etc. Bertsekas

Responsibility falls on tuning or steplength rule 
• Predetermined diminishing steplength
• Adaptive/manual step-wise reduction (current practice)
• Fixed steplength

  

For stochastic problem:  minF(w) ≡ E[ f (w;ξ )]

E[F(wk+1)− F(wk )] ≤ −α k‖∇F(wk )‖2
2 + α k

2 E‖∇f (wk ,ξk )‖ 2  
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Option B: Performing a line search

If line search is performed, safeguard sufficient decrease condition           (Berahas)

Will never fail if 

o Guarantee convergence by setting 
o If noise is not bounded, set 2 times std deviation
o Not  provably convergent, one can expect it in practice.                          Scheinberg et al.

Interested in preserving line searches; common in nonlinear optimization algorithms
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Trust region method

Create a model of the objective 

Accept the step and update trust region according to ratio 

Can establish convergence to a neighborhood                                              Sun and Nocedal 2021
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Noise-tolerant first-order line search method

  

1. Compute !gk
2. pk = − !gk
2. Find α k  such that

    !f (xk +α pk ) ≤ !f (xk )+ c0α k !gk
T p + 2ε f

4. xk+1 = xk +α k pk

     

          Problem:   min f (x)     Observe: !f (x);   stochastic approx: !gk

Algorithm can be run repeatedly for smaller values of
 
ε f
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Bounded Errors Assumption

      min f (x) s.t.  c(x) = 0

Assume bounded errors (noise) for simplicity

   

| !f (x)− f (x) | ≤ ε f ‖!c(x)− c(x)‖1≤ εc
‖!g(x)− g(x)‖≤ εg ‖ !J(x)− J(x)‖1,2 ≤ εJ
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A convergence result

Before the iterates enter the region where errors dominate, true function values 
converge at an R-linear rate to a neighborhood of the solution 

  

Theorem. Let 

                N = { x :‖∇φ(x)‖≤ max{A
Mε f
β

,B
εg
β

} }

Let K  be the first iterate that enters N . Then for all k < K
φ(xk )−φ(x*) ≤ ρ[φ(x0 )−φ(x*)]+ 2ε f Berahas et al

Oztoprak
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Solving practical problems

How to compute gradient approximations?
(Noisy) Automatic Differentiation

à Noise-aware finite differences More’-Wild (2002)



• Comparisons of function values
• Differences of Functions or gradient values:  noise-aware derivative estimation
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Principles  of Noisy Optimization.  Part II:  Function Differences

Adaptive estimation of L is important                                                        Shi, Xie, Xuan 2022
Need a reasonable estimate of noise level 
Complexity guarantees for Gaussian directions                                       Nesterov, Spokoiny

We can now tackle a practical problem…
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Acoustic design

An incoming wave enters horn through inlet; exits the outlet
into exterior domain with an absorbing boundary

Goal: optimize efficiency

         High fidelity model is a finite-element model of the Helmholtz 
equation leading to system of 39,895 equations and unknowns. This 
systems gives pressures which are then used to compute the reflection 
coefficient
  

Some of the properties of the metal are unknown
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Ng and Wilcox 2014

         zupper (ω ) : upper horn wall impedance
  

         The uncertain model parameters are given as
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Formulation

 

         The optimization problem

                  minbL≤b≤bu
f (b) = E[s(b,ω ))]+ 3 var[s(b,ω )]

• Estimate noise level via sampling
• Fairly constant throughout optimization

Bound constrained stochastic nonlinear optimization problem
Use gradient projection method with relaxed line search
Using noise-aware finite difference approximations to gradient



Solution of acoustic design problem
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Sample size = 100

Fixed Steplength

Robust Line Search
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Conclusion: feature to be added to codes

Add module for predetermined steplength selection rule

Interesting alternative:  step search technique
Supported by probabilistic convergence theory               Scheinberg et al. 2022 
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Deterministic variant of horn problem

 

         The optimization problem

                  minbL≤b≤bu
f (b) = E[s(b,ω ))]+ 3 var[s(b,ω )]
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Deterministic variant of horn problem

With analytic derivatives computed in lower precision arithmetic

• Example of mixed precision arithmetic promoted in deep learning
• Speedups, memory and energy savings
• Computational noise
• Lower precision noise: multiplicative noise 



Our optimization packages written in FP64
Training neural networks. Inference.
Weight update: FP32
Forward and Back-propagation FP16

View: noisy function and gradient evaluations.
Stochastic noise due to the randomness in the SGD method

27

Mixed Precision Arithmetic in Deep Learning
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Mixed Precision in Data Assimilation

Evolution can be described by the Navier-Stokes equations. 

However,
• Initial atmospheric state only partially known, 
• Estimate using an optimization algorithm
• Maximize goodness of  fit between the simulated states

and actual observations in assimilation window. 

Optimal initial state used to produce a 10-15 day weather forecast.
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Data assimilation model

o Using lower precision throughout gives reasonable results
o More promising: mixed precision
o Gradient computation (adjoint) in lower precision
o Gradients (Jacobian) already computed using a lower fidelity model
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Principles of Noisy Optimization.    Part 3:

Differences in gradients: performing quasi-Newton updates

o BFGS and L-BFGS widely used for unconstrained 
and constrained problems

o Work in conjunction with line search yields convex approximation

Armijo-Wolfe line search
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Armijo-Wolfe line search

Armijo-Wolfe line search

f (xk +α p) ≤ f (xk )+αc1g(xk )
T p      

g(xk +α p)T p ≥ c2g(xk )
T p      

Armijo

Wolfe
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Quasi-Newton methods and noise

• Break down with noise
• Gradient differences corrupted

Ø Needs reliable curvature estimates Hk

Ø We propose a way to achieve this 
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Condition number of Hessian approximation

After entering regime where noise dominates new Hessian approximations stable

Standard BFGS

Noise tolerant BFGS
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Robust BFGS update

1. Compute step as usual

2. measure curvature over a sufficiently large interval; lengthen

3. Hessian update  
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Sufficiently long interval

• Knowledge of m not needed 
• Can be estimated adaptively 



Classical convergence theory  (Dennis-More’, Powell, Byrd,…,)

Analysis is complex
• Step affects Hessian approx. and vice versa. 
• Line search essential role
• Bounding condition number of Hk not possible without first proving convergence

Use fundamental result about BFGS updating                         Byrd-Nocedal 1989

o as long as curvature estimates are reliable…
o a large fraction of all steps are strongly descent directions
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Convergence Theory



37 Presentation Title Footer 

A fundamental result of BFGS updating

Theorem. [Byrd, N. (1989)] Let H 0 > 0 and Hk = Bk
−1  generated by BFGS 

updating using any pairs (sk , yk ) s.t.

                           yk
T sk
sk
T sk

≥ m̂ yk
T yk
yk
T sk

≤ M̂ ∀k (*)

Fix q∈(0,1)  (say q = 0.9). Define cosθk angle between skand Bksk
Then for all k

| { j ∈{0,1,…,k −1} :cosθ j ≥ β} | ≥ qk
Then a fixed fraction (say 0.9) of search directions make an acute angle
With the steepest descent direction

 θk = ∠(− pk ,gk ), θk
! = ∠(− pk ,∇φ(xk ))    

θk

 θk
!     

pk
gk

∇φ(xk )
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New Convergence theory: noisy case             Yuchen Xie

Identify a region where noise is not dominant and show

• Existence of steplengths (conditional)
• Same steplength works for true objective
• Lengthening guarantees stable updating
• Existence of good iterates: noisy case
• Function decrease for good iterates                             Byrd, Xie, N. 2019

 ε
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Linear Convergence

  

Theorem. Let 

                N = { x :‖∇φ(x)‖≤ max{A
Mε f
β

,B
εg
β

} }

Let K  be the first iterate that enters N . Then for all k < K
φ(xk )−φ(x*) ≤ ρ[φ(x0 )−φ(x*)]+ 2ε f

Before the iterates enter the region where errors dominate, true function 
values converge at an R-linear rate to a neighborhood of the solution 

 

Other Results:
1. If (ε f ,εg ) > 0 then K  is finite
2. If an iterate enters noise neighborhood N , all subsequent iterates cannot stray too
far away (2ε f )
3. For all good iterates sufficiently away from N  lengthening is not necessary
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• Success in the presence of intermittent noise



Numerical Results

41



42

The Algorithm

  

Input: x0 , H 0 > 0,  lengthening parameter ℓ
For k = 0,1,…
pk ←−Hkgk
Attempt to find α  that satisfies the Armijo-Wolfe  for  (f , g)
If succeeded: α k ←α
else α k ←0

   If ‖α k pk‖≥ ℓ
          sk ←α k pk , yk ← g(xk + sk )− g(xk ) [usual]

else

sk ← ℓ
pk
‖pk‖

, yk = g(xk + sk )− g(xk ) [lengthening, extra gradient]

end if
Update inverse Hessian approx; compute new iterate

          Hk+1 = BFGS(Hk ,sk , yk ) xk+1 ← xk +α k pk [could be zero]
end for
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Three application classes

Monte Carlo simulation of physical model with uncertainties
• optimize engineering system modeled by differential equations 
• in which some physical parameters are uncertain. 
• Monte Carlo
• Objective is an expectation

Mixed Precision Arithmetic and Adjoints
• for atmospheric and ocean sciences. 
• The gradient is based on a lower fidelity model; the objective 
• is noisy. These problems are similar in nature to parameter 
• identification problems.

Empirical risk minimization problem in machine learning 
• Multi-class logistic regression or neural networks. 
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