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Thank you Steve!

2



Resource adequacy in the power grid

• Grid planners make long term decisions about which generators to build


• Problem: Balancing low cost of normal operation and high resiliency to 
extreme conditions


• Challenges:


• Weather dependence 

• Demand variability


• Wildfires


• Energy storage


• Generator operation requirements


• Transmission line constraints
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February 2021

• Extreme cold


• High demand


• High generator 
outages across 
most technologies


• Widespread 
electricity outages

Texas power crisis

10/10/22, 4:37 PMHow Texas’ Power Generation Failed During the Storm, in Charts - The New York Times

Page 1 of 5https://www.nytimes.com/interactive/2021/02/19/climate/texas-storm-power-generation-charts.html

https://nyti.ms/3bqEHCo

By Veronica Penney Feb. 19, 2021

A huge winter storm slammed Texas earlier this week, knocking

out power plants and leaving millions of residents without

electricity and heat for days, amid freezing conditions.

A major part of the problem: The state’s power plants were not

prepared for the frigid temperatures that accompanied the storm.

Natural gas, coal and nuclear plants — which provide the bulk of

Texas’ power in the winter — were knocked offline, and wind

turbines froze, too.

Texas’ Power Generation Took a Hit During the Storm.
Natural Gas Was Hit Hardest.

How Texas’ Power Generation Failed
During the Storm, in Charts

Power generation in Texas by fuel source
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Natural gas power, the state’s top
source of electricity, took the biggest
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• Demand


• Natural gas supply


• Generator reliability


• Thermal plant capacity

Temperature dependence in the power grid
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Source: Murphy, 2019



Towards an optimization formulation
Primary decision variables 

• For gas/coal/nuclear generators




• For solar/wind locations:   


Capital costs:   (  is capital cost amortized to hourly basis)


Operational impacts of generator mix (depends on random 
demand/capacity) 
• Cost to meet demands 

• Amount of load shed (difficult to quantify as a cost)


xi = {1, if generator i is built (base capacity is p̄i )
0, otherwise

xi = base capacity to build (MW)

c⊤x ci
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Modeling “random” quantities

• Random variables in our model: 

 




• Separate spatially-dependent statistical model of  for each hour 


• Total load: temperature and hour dependent (estimated via regression): 



• Capacities: 

• Deterministic dependence on hour (solar/wind capacity factors)

• Random reduction from base capacity: mean reduction is function of 

(h, T)
h = an hour (varies throughout time of day and year)
Ti = temperature at location of generator i in hour h

T h

D(h, T)

p̄i(h, T)

Ti 7



Simple operational model

Model for fixed capital decisions , hour , and temperature vector 





•  = Generation amount from generator  (decision)


•  = Amount of load shed (decision)


• ”cost” of load shed (parameter set to attempt to limit load shed amount)

x h T

Qλ
N(x, h, T ) = min

p,s ∑
i

cG,ipi + λs

s.t. ∑
i

pi ≥ D (h, T) − s

pi ≤ xi p̄i (h, Ti)
s, p ≥ 0

pi i
s
λ =



Two-stage stochastic programming model

How to solve?

• Continuous opt methods (SGD, etc.) not applicable due to integer 

• Sample average approximation (SAA): replace expected value with 

finite sum

• Repeat with different random samples

• Solving SAA problem: Extensive form or decomposition algorithms


How to choose  ?

• Solve with varying values  Set of solutions that with varying 

trade-off between cost (capital + average generation cost) vs. risk 
of load shedding

x

λ
⇒

   min
x

c⊤x + 𝔼h,T [Qλ
N(x, h, T)]
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Trade-off between cost and risk of load shed
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Potential drawbacks

• Sampling error highly sensitive to high-impact (high load shed) low-
probability events


• Expected value ignores risk aversion


• Objective changes in extreme situations


• E.g., goal is to minimize load shed with little concern for cost

  min
x

c⊤x + 𝔼h,T [Qλ
N(x, h, T)]
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Bi-objective perspective

• Objective 1: Min average cost =   


• Objective 2: Min risk of load shed = 


                   


: Average over  fraction of outcomes with worst load shed


• Also exploring  as risk measure (“LOLP”) => 
chance constraint formulation

c⊤x + 𝔼h,T [Qλ
N(x, h, T)]

CVaRα
h,T (QE(x, h, T))

QE(x, h, T ) = min
p

s s.t. ∑
i

pi ≥ D(h, T ) − s

pi ≤ xi p̄i (h, Ti)
s, p ≥ 0

CVaRα
h,T α

ℙ(QE(x, h, T) > 0)
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How to solve bi-objective model

min
x

c⊤x + 𝔼h,T [Qλ
N(x, h, T))

s.t. CVaRα
h,T (QE(x, h, T)) ≤ U

• Solve this model repeatedly with varying . (Fix ) 


• Estimating normal operation costs: Sample average approximation


• CVaR of load shed: Sample average approximation


• Sample from same distributions 


• With , this is very sensitive to sampling error

U λ

h and T

α = 0.0001
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Idea: Conditional sampling

Motivation: extreme temperature is a proxy for extreme load shed


• Sample from  conditionally on being an extreme temperature (e.g. 
1% hottest and coldest)


• Then use larger  in CVaR term over these extreme scenarios, e.g. 



Challenge


• “Tuning”  when using the conditional sampling

T

α
α = 0.1

α 14

min
x

c⊤x + 𝔼h,T [Qλ
N(x, h, T))

s.t. CVaRα
h,T (QE(x, h, T)) ≤ U



An advantage of bi-objective formulation

General bi-objective problem:  

• Find (approximation) of set of Pareto solutions to minimization of two 
objectives: 


Observation 

• If  is any strictly increasing function, set of Pareto solutions is 
equivalent to set of Pareto solutions of two objectives: 




• Implication: to obtain Pareto solutions, can use a highly incorrect 
estimate of  as long as estimate is highly correlated with 

f(x) and g(x)

h

f(x) and h(g(x))

g g
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Case study: Midwestern US

• Scope: 6 states (MN, IA, WI, MI, IN, IL)

• Existing generators and potential new wind and 

solar are available to build (~2000  vars)

• 15 samples to generate candidate solutions

• Unconditional and conditional temperature 

scenarios (county-by-county) from ANL 
collaborators


• Generator capacities sampled from model created  
from PJM outage data


• Target 

• Conditional:  with 1% extreme temperatures

• Evaluation of solutions done using true distribution 

with large sample size

xi

α = 0.0001
α = 0.1
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Scenarios per sample
Normal Extreme

Bi-
objective 1,008 1,008

Base 2,016 0

Test 5,040 25,008



Conditional sampling yields lowest risk solutions
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Solutions 
dominated by 
another solution 
obtained by 
same method 
are left out of 
this figure



Conditional sampling yields more consistent solutions
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This figure 
includes solutions 
obtained from all 
15 different 
samples at each 
trade-off 
parameter level



Spatial distribution of temperatures

•  is spatially correlated: the temperature in one location is highly 
correlated with the temperature at nearby locations


• Spatially independent temperature distributions are sometimes used in 
practice (e.g. FEMA risk assessments)


• Experiment: solve the bi-objective model with conditional samples, but 
with all samples obtained from spatial independent distribution

T
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Importance of spatial temperature distribution
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Dominated 
solutions within a 
method are again 
excluded.


X-axis scale 
(CVaR) increased 
in this figure



Importance of modeling temperature-dependent capacity
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Limitations/Future extensions
• No consideration of transmission constraints or capacity expansion

• Does not capture dynamic effects/constraints


• Ramping and min up/down constraints

• Effect of duration of extreme temperature events

• Energy storage/ reservoir levels for hydro resources


• Additional weather-dependent factors


Most of these can be incorporated into same modeling framework, but 
new computational techniques will be required to solve it


Compare LOLP (chance constraint) to CVaR formulation


Insights about strategic location of generator capacity?
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Normal and extreme temperatures
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