# On a bilevel optimization approach to fair classification

Kangwook Lee @ UW Madison

Joint work with Yuji Roh, Euijong Whang, Changho Suh (KAIST), Yuchen Zeng, Ziqian Lin (UW Madison)

Jan 9, 2023 @ 12th US-Mexico Workshop on Optimization and Its Applications

#### Research overview

#### Theory

- IT & SP & Queueing & OPT
  - ICLR'22 (SGD)
  - ICML'21 (matrix comp.)
  - NeurlPS'18 (binary matrix comp.)
  - IEEE T-IT'19 (graph clustering)
  - IEEE T-IT'19 (group testing)
  - IEEE JSTSP'18 (graph clustering)
  - IEEE T-IT'17 (phase retrieval)
  - IEEE T-IT'17 (MDS queue)
  - IEEE T-N'17 (task replica)
  - IEEE T-C'16 (task replica)

- Trustworthy ML
  - ISIT'22 (adversarial attack)
  - NeurlPS'21a (fair + robust)
  - NeurIPS'21b (data leakage)
  - ICLR'21 (bilevel opt.)
  - ICML'20 (mutual information)
  - ICML'22 (adv. robustness)
  - NeurlPS'20 (data poisoning)
  - AAAI'19 (domain gen.)
  - ICLR'18 (domain gen.)

- Large ML models
  - NeurlPS'22a (diffusion)
  - NeurlPS'22b (GPT3)
  - NeurIPS'22c (model pruning)
  - EMNLP'22 (translation)

- Systems
- Distributed ML (coded comp.)
  - ICML'21 (coded deep learning)
  - MLSys'21 (grad. compression)
  - SysML'18 (data shuffling)
  - IEEE T-IT'18 (MDS codes)

- Various applications in machine learning
  - Hyper-parameter optimization [KLS, ICMLW'19]
  - Multi-task and meta learning (e.g., finding a good initialization) [KJLOO, NeurlPS'21]
  - Neural Architecture Search (NAS)
  - Data poisoning [WSRVASLP, NeurlPS'20]

#### This talk

#### A new ML application of bilevel optimization + a tailored algorithm

- Various applications in machine learning
  - Hyper-parameter optimization [KLS, ICMLW'19]
  - Multi-task and meta learning (e.g., finding a good initialization) [KJLOO, NeurIPS'21]
  - Neural Architecture Search (NAS)
  - Data poisoning [WSRVASLP, NeurlPS'20]
  - ML Fairness [Roh, Lee, Whang, and Suh, ICLR'21]

#### ML Fairness

- Setting
  - Consider classification for simplicity
  - Also consider scenarios where the input data comes from individuals
- Example
  - Facial recognition for security systems
  - Resume screening for recruiting
  - Recidivism prediction for pretrial decision making
- Accuracy alone is not sufficient...
  - Learned classifiers are observed to disproportionally treat different subpopulations

#### ML Fairness

#### Examples: Face-to-gender classification

http://gendershades.org/





#### ML Fairness

#### Examples: Face-to-gender classification

http://gendershades.org/





Why? Data & algorithmic bias

#### Group Fairness

- Notation
  - $Y \in \{0,1\}$ : True labels
  - $\hat{Y} \in \{0,1\}$ : Predicted labels
  - $A \in \{0,1\}$ : Group labels (e.g., male/female)
- Group fairness of a (binary) classifier can be defined in various ways:
  - Accuracy parity:  $P(\hat{Y} = Y | A = 0) = P(\hat{Y} = Y | A = 1)$
  - Demographic parity:  $P(\hat{Y} = 1 \mid A = 0) = P(\hat{Y} = 1 \mid A = 1)$
  - Equal opportunity:  $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$
- Unfairness is usually measured as the absolute difference between the two terms

#### Group Fairness

- Notation
  - $Y \in \{0,1\}$ : True labels
  - $\hat{Y} \in \{0,1\}$ : Predicted labels
  - $A \in \{0,1\}$ : Group labels (e.g., male/female)
- Group fairness of a (binary) classifier can be defined in various ways:
  - Accuracy parity:  $P(\hat{Y} = Y | A = 0) = P(\hat{Y} = Y | A = 1)$
  - Demographic parity:  $P(\hat{Y} = 1 | A = 0) = P(\hat{Y} = 1 | A = 1)$
  - Equal opportunity:  $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$
- Unfairness is usually measured as the absolute difference between the two terms
  - Many other definitions exist: variance, CVaR, ...



(error rate, unfairness)?

$$\hat{Y} = 0$$
  $\hat{Y} = 1$ 
 $A = 0$   $- + - +$ 
 $A = 1$   $- - + +$ 

(error rate, unfairness) = 
$$\left(\frac{2}{10}, \left| \frac{2}{5} - \frac{0}{5} \right| \right)$$

(error rate, unfairness) = (0.2, 0.4)

$$\hat{Y} = 0$$
  $\hat{Y} = 1$ 
 $A = 0$   $- + - +$ 
 $A = 1$   $- - + +$ 

(error rate, unfairness) = (0.2, 0)

#### Goal

• Find the most fair classifiers and then find the most accurate one among them



### Problem setting

- Notation
  - $A \in \{0,1\}$ : Group labels (e.g., male/female)
  - $L_A$ : Loss measured on the subgroup A's data
  - $L = L_0 + L_1$
- In this talk, for simplicity, we will consider the loss parity (= accuracy parity for 0/1 loss)
  - $L_0 = L_1$

#### Existing algorithms

- Pre-processing & post-processing
- Min-max formulation exponentiated gradient [Agarwal et al., '18]
- Adversarial training auxiliary classifier for predicting group label [Zhang et al., 18]
- Distributionally robust opt. [Hashimoto et al., 18]
- Mutual information surrogate [RLWS, ICML'20]

## A very simple baseline beats everything (?)



Hey, I just tried out the following algorithm last week, and it beat all SOTA algorithms both in performance & time

Yuji Roh (PhD student from the data-centric AI lab @ KAIST)

- 1. Train a model with vanilla SGD for many iterations
- 2. Measure  $L_0$  and  $L_1$
- 3. If  $L_0 > L_1$ : Continue training with minibatches more group 0 data (Why? The model is performing not well on group 0 so let's feed more group 0 data)

Otherwise: Continue training with minibatches with more group 1 data

I even gave it a name, *FairBatch*. Could you explain why FairBatch works?

### Initial formulation gave me a constrained opt.

$$\min_{\theta} L(\theta) \quad \text{s.t.} \quad |L_0(\theta) - L_1(\theta)| = \varepsilon^*$$

We don't know  $\varepsilon^{\star}$ 

#### Key observations

$$\min_{\theta} L(\theta) \quad \text{s.t.} \quad |L_0(\theta) - L_1(\theta)| = \varepsilon$$

$$g = \min_{\theta} L(\theta) + \lambda'(L_0(\theta) - L_1(\theta) - \varepsilon) + \lambda''(L_0(\theta) - L_1(\theta) + \varepsilon)$$

$$= \min_{\theta} L_0(\theta) + L_1(\theta) + (\lambda' + \lambda'')(L_0(\theta) - L_1(\theta)) - (\lambda' - \lambda'')\varepsilon$$

$$\lambda := \lambda' + \lambda''$$

$$= \min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta) - (\lambda' - \lambda'') \varepsilon$$

#### Key observations

$$\min_{\theta} L(\theta) \quad \text{s.t.} \quad |L_0(\theta) - L_1(\theta)| = \varepsilon$$

$$g = \min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta) - (\lambda' - \lambda'') \varepsilon$$

1. The optimal model parameter  $\theta$  can be found by simply minimizing a weighted objective function:

$$(1+\lambda)L_0(\theta)+(1-\lambda)L_1(\theta)$$
 for properly chosen  $\lambda$ 

#### Key observations

$$\min_{\theta} L(\theta) \quad \text{s.t.} \quad |L_0(\theta) - L_1(\theta)| = \varepsilon$$

$$g = \min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta) - (\lambda' - \lambda'') \varepsilon$$

2. Instead of 
$$\varepsilon \to (\lambda_{\varepsilon}, \theta_{\varepsilon})$$
, we can use  $\lambda \to \theta_{\lambda} \to \varepsilon_{\lambda}$ 

#### Tada! A bilevel formulation

$$\min_{\theta} L(\theta) \quad \text{s.t.} \quad |L_0(\theta) - L_1(\theta)| = \varepsilon^*$$



$$\min_{\lambda} \varepsilon(\lambda) = \left| L_0(\theta^*) - L_1(\theta^*) \right|$$

$$\theta^* = \arg\min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta)$$

$$\min_{\lambda} F(\lambda, \theta^{\star})$$

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} L(\lambda, \theta)$$

- Various applications in machine learning
  - Hyper-parameter optimization
  - Multi-task and meta learning (e.g., finding a good initialization)
  - Neural Architecture Search (NAS)
  - Data poisoning

Example: Hyper-parameter optimization [Franceschi et al., '18]

$$\min_{\theta} L_{\text{train}}(\theta) + \lambda R(\theta)$$

How can I choose  $\lambda$ ?

Example: Hyper-parameter optimization [Franceschi et al., '18]

$$\min_{\lambda} L_{\text{Val}}(\theta^*)$$

$$\theta^* = \arg\min_{\theta} L_{\text{train}}(\theta) + \lambda R(\theta)$$

Example: Data poisoning [Biggio et al., '12] [Steinhard et al., '17]



True label: airplane

Predicted label: truck



True label: 7

Predicted label: 1

Example: Data poisoning [Biggio et al., '12] [Steinhard et al., '17]

- Learner: minimize the loss computed on the dataset
- Attacker: manipulate the dataset so that the learned model behaves as desired

$$\min_{D_p} d(\theta_{target}, \theta^*)$$

$$\theta^* = \arg\min_{\theta} L(D \cup D_p; \theta)$$

```
\min_{\lambda} F(\lambda, \theta^{*})
\theta^{*} = \arg\min_{\theta} L(\lambda, \theta)
```

$$\min_{\lambda} F(\lambda, \theta^{*})$$

$$\theta^{*} = \arg\min_{\theta} L(\lambda, \theta)$$

$$\min_{\lambda} F(\lambda, \theta^{*})$$
s.t.  $G(\lambda, \theta^{*}) = 0$ 

• Constraint-based approaches [Hansen et al. (1992); Shi et al. (2005); Moore (2010)]

$$\min_{\lambda} F(\lambda, \theta^{\star})$$

$$\nabla F(\lambda, \theta^{\star}) = \nabla_{\lambda} F(\lambda, \theta^{\star}) + \nabla_{\theta} F(\lambda, \theta^{\star})^{T} \nabla_{\lambda} \theta^{\star}$$

$$\theta^{\star} = \arg\min_{\theta} L(\lambda, \theta)$$

$$\nabla_{\theta} L(\lambda, \theta^{\star}) = 0 \Rightarrow \nabla_{\lambda, \theta}^{2} L(\lambda, \theta^{\star}) + \nabla_{\theta \theta}^{2} L(\lambda, \theta^{\star}) \nabla_{\lambda} \theta^{\star}$$

$$\Rightarrow \nabla_{\lambda} \theta^{\star} = - (\nabla_{\theta\theta}^{2} L(\lambda, \theta^{\star}))^{-1} \nabla_{\lambda, \theta}^{2} L(\lambda, \theta^{\star})$$

$$\Rightarrow \nabla F(\lambda, \theta^{\star}) = \nabla_{\lambda} F(\lambda, \theta^{\star}) - \nabla_{\theta} F(\lambda, \theta^{\star})^{T} (\nabla_{\theta\theta}^{2} L(\lambda, \theta^{\star}))^{-1} \nabla_{\lambda, \theta}^{2} L(\lambda, \theta^{\star})$$

- Constraint-based approaches [Hansen et al. (1992); Shi et al. (2005); Moore (2010)]
- Gradient-based approaches
  - Implicit differentiation [Ghadmi and Wang, 2018; Domke, 201

| Algorithms                    | Q (Inner)                   | N (Inverse Hessian-vector prod.)                      | $\mathbf{MV}(\epsilon)$                          | $\mathbf{Gc}(\epsilon)$                             |
|-------------------------------|-----------------------------|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| BA (Ghadimi & Wang, 2018)     | $\Theta(\kappa \ln \kappa)$ | $\frac{(k+1)^{\frac{1}{4}}}{2}$ (k: iteration number) | $\widetilde{\mathcal{O}}(\kappa^5\epsilon^{-1})$ | $\widetilde{\mathcal{O}}(\kappa^5\epsilon^{-1.25})$ |
| AID-BiO (Ji et al., 2021)     | $\Theta(\kappa \ln \kappa)$ | $\Theta(\kappa \ln \kappa)$                           | $\widetilde{\mathcal{O}}(\kappa^4\epsilon^{-1})$ | $\widetilde{\mathcal{O}}(\kappa^4\epsilon^{-1})$    |
| N- $Q$ -loop AID (this paper) | $\Theta(\kappa \ln \kappa)$ | $\Theta(\kappa \ln \kappa)$                           | $\widetilde{\mathcal{O}}(\kappa^4\epsilon^{-1})$ | $\widetilde{\mathcal{O}}(\kappa^4\epsilon^{-1})$    |
| Q-loop AID (this paper)       | $\Theta(\kappa \ln \kappa)$ | 1                                                     | $\widetilde{\mathcal{O}}(\kappa^6\epsilon^{-1})$ | $\widetilde{\mathcal{O}}(\kappa^5\epsilon^{-1})$    |
| N-loop AID (this paper)       | $\mathcal{O}(1)$            | $\Theta(\kappa \ln \kappa)$                           | $\widetilde{\mathcal{O}}(\kappa^4\epsilon^{-1})$ | $\widetilde{\mathcal{O}}(\kappa^5\epsilon^{-1})$    |
| No-loop AID (this paper)      | $\mathcal{O}(1)$            | 1                                                     | $\widetilde{\mathcal{O}}(\kappa^6\epsilon^{-1})$ | $\widetilde{\mathcal{O}}(\kappa^6\epsilon^{-1})$    |

$$\min_{\lambda} F(\lambda, \theta^{*})$$

$$\theta^{*} = \arg\min_{\theta} L(\lambda, \theta)$$

$$\min_{\lambda} F(\lambda, \theta^{*})$$

$$\theta^{*} = GD(\theta_{0}, L(\lambda, \theta), k)$$

- Constraint-based approaches [Hansen et al. (1992); Shi et al. (2005); Moore (2010)]
- Gradient-based approaches
  - Implicit differentiation [Ghadmi and Wang, 2018; Domke, 2012; Pedregosa, 2016; Grazzi et al., 2020; Ji et al., 2021]
  - Iterative differentiation [Maclaurin et al., 2015; Franceschi et al., 2017; Shaban et al., 2019]

# Hypergradient descent

$$\frac{\mathrm{d} \varepsilon}{\mathrm{d} \lambda}$$

$$\min_{\lambda} \varepsilon(\lambda) = \left| L_0(\theta^*) - L_1(\theta^*) \right|$$

$$\theta^* = \arg\min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta)$$

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda} = (L_0(\theta^*) - L_1(\theta^*) \cdot \frac{\mathrm{d}L_0(\theta^*) - L_1(\theta^*)}{\mathrm{d}\lambda}$$

requires the Inverse Hessian

 $L_0(\theta^{\star}) - L_1(\theta^{\star})$  is nonincreasing



 $\varepsilon(\lambda)$  is quasi-convex



## Algorithm

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda}$$

$$\min_{\lambda} \varepsilon(\lambda) = \left| L_0(\theta^*) - L_1(\theta^*) \right|$$

$$\theta^* = \arg\min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta)$$

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda} = (L_0(\theta^*) - L_1(\theta^*) \cdot \frac{\mathrm{d}L_0(\theta^*) - L_1(\theta^*)}{\mathrm{d}\lambda}$$



requires the Inverse Hessian

$$\mathrm{sign}\left(\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda}\right) = \mathrm{sign}(L_1(\theta^\star) - L_0(\theta^\star))$$





 $\varepsilon(\lambda)$  is quasi-convex



[Hazan, Levy, Shalev-Shwartz, '15]

$$\frac{\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda}}{\left\|\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda}\right\|_{2}} = \mathrm{sign}\left(\frac{\mathrm{d}\varepsilon}{\mathrm{d}\lambda}\right) \text{ is all you need}$$



$$\lambda \leftarrow \lambda - \alpha(\text{sign}(L_1(\theta^*) - L_0(\theta^*)))$$

# Signed hypergradient descent

$$\lambda = 0$$

while not converged:

$$\theta^{\star}(\lambda) = \arg\min_{\theta} (1 + \lambda) L_0(\theta) + (1 - \lambda) L_1(\theta)$$

$$\lambda \leftarrow \lambda - \alpha(\operatorname{sign}(L_1(\theta^*) - L_0(\theta^*)))$$

Theorem. This algorithm converges to  $\lambda^*$  in  $\begin{bmatrix} 1 \\ - \end{bmatrix}$  steps

 $\alpha$ 

No assumptions at all — DNN or whatever

#### Signed hypergradient descent + no-loop approx.

Initialize  $\lambda$ ,  $\theta$ 

#### while not converged:

$$F(\theta) = (1 + \lambda)L_0(\theta) + (1 - \lambda)L_1(\theta)$$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} F(\theta)$$

$$\lambda \leftarrow \lambda - \alpha(\text{sign}(L_1(\theta^*) - L_0(\theta^*)))$$

Convergence is never formally proved, but it is pretty straightforward...
With some assumptions, analysis should be similar to [Ghadimi and Wang, '18] and [Ji et al., '22]

#### Signed hypergradient descent + no-loop approx. + "adaptive" minibatches

Initialize  $\lambda$ ,  $\theta$ 

#### while not converged:

$$F(\theta) = (1 + \lambda)L_0(\theta) + (1 - \lambda)L_1(\theta)$$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} F(\theta)$$

$$\lambda \leftarrow \lambda - \alpha(\operatorname{sign}(L_1(\theta^*) - L_0(\theta^*)))$$

Draw samples with 
$$y = 0$$
 w.p.  $\frac{1 + \lambda}{2}$ 
Draw samples with  $y = 1$  w.p.  $\frac{1 - \lambda}{2}$ 

#### Signed hypergradient descent + no-loop approx. + "adaptive" minibatches

Initialize  $\lambda$ ,  $\theta$ 

#### while not converged:

$$F(\theta) = (1 + \lambda)L_0(\theta) + (1 - \lambda)L_1(\theta)$$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} F(\theta)$$

$$\lambda \leftarrow \lambda - \alpha(\operatorname{sign}(L_1(\theta^*) - L_0(\theta^*)))$$

Draw samples with 
$$y = 0$$
 W.p.  $\frac{1 + \lambda}{2}$ 
Draw samples with  $y = 1$  W.p.  $\frac{1 - \lambda}{2}$ 

### FairBatch

[Roh, Lee, Whang, and Suh, ICLR'21]



- 1. Train a model with vanilla SGD
- 2. Measure  $L_0$  and  $L_1$
- 3. If  $L_0 > L_1$ : Continue training with minibatches with more group 0 data

OR: Continue training with minibatches with more group 1 data

# Experimental results



# Experimental results

|                |                                                   | Test accuracy | EO diff | Runtime (s) |
|----------------|---------------------------------------------------|---------------|---------|-------------|
| Vanilla        | Logistic regression                               | 0.84          | 0.54    | 23          |
| Fairness-aware | Logistic regression<br>+ Fairness constraints [1] | 0.84          | 0.21    | 29          |
|                | Label bias correction [2]                         | 0.84          | 0.11    | 558         |
|                | Adversarial debiasing [3]                         | 0.84          | 0.16    | 32          |
|                | AdaFair [4]                                       | 0.84          | 0.38    | 792         |
|                | FairBatch (ours)                                  | 0.84          | 0.11    | 47 -> 23    |

# FairBatch = Adaptive pre-processing



### Applications of FairBatch

- Fair and robust training [Roh, Lee, Whang, and Suh, NeurlPS'21]
  - Bilevel optimization (for fairness) + Integer optimization (for robustness)
- Federated fair training [Zeng, Chen, and Lee, AAAIW'22]
  - FairBatch is inherently "federatable" Easy to check  $\sum L_0 \lessgtr \sum L_1$
- Fair ML with non-differentiable models
  - Blackbox fine-tuning (e.g., GPT3) [Zeng, Lin, Park, Oh, Lee, in progress]
  - Decision trees [Lin and Lee, in progress]

#### Conclusion

- FairBatch: A new ML application of bilevel optimization
  - The single-loop version comes with a convergence guarantee
  - The no-loop version works very well in practice
  - They achieve the state-of-the-art performances on most datasets
  - Very easy-to-implement!
- Many applications due to its modularity
  - Fair learning + Robustness

#### Thanks! Any questions?

- Fair learning + Federated learning
- Fair learning + Black-box training (e.g., GPT3 finetuning & decision trees)