On a bilevel optimization approach
to tair classification

Joint work with Yuji Roh,

Kangwook Lee @ UW Madison

—uijong Whang, Changho Suh (KAIS

), Yuchen Zeng, Zigian Lin (UW Madison)

Jan 9, 2023 @ 12th US-Mexico Workshop on Optimization and Its Applications



Research overview

Theo ry — Systems

 |IT & SP & Queueing sorr e Trustworthy ML  Large ML models e Distributed ML (coded comp.)
 [CLR’22 (SGD) * |[SIT’22 (adversarial attack) * NeurlPS’22a (diffusion)  |[CML’21 (coded deep learning)
 [ICML’21 (matrix comp.) * NeurlPS’21a (fair + robust) * NeurlPS’22b (GPT3) * MLSys’21 (grad. compression)
* NeurlPS’18 (binary matrix comp.) * NeurlPS’21b (data leakage) * NeurlPS’22c (model pruning)  SysML’18 (data shuffling)
 |EEE T-IT’19 (graph clustering)  [CLR’21 (bilevel opt.) e EMNLP’22 (translation)  |EEE T-IT’18 (MDS codes)
 |EEE T-IT’19 (group testing) «ICML20 (mutual information)
 |EEE JSTSP’18 (graph clustering)  |CML’22 (adv. robustness)
 |EEE T-IT’17 (phase retrieval) * NeurlPS’20 (data poisoning)
 |EEE T-IT’17 (MDS queue) * AAAI'19 (domain gen.)
 |EEE T-N’17 (task replica)  [CLR’18 (domain gen.)
 |EEE T-C’16 (task replica)




Bilevel optimization for machine learning

* Various applications in machine learning
 Hyper-parameter optimization [KLS, ICMLW’19]
 Multi-task and meta learning (e.g., finding a good initialization) [KJ-OO0, NeurlPS'21]
* Neural Architecture Search (NAS)

» Data poisoning [WSRVASLP, NeurlPS’20]



This talk

A new ML application of bilevel optimization + a tailored algorithm

* Various applications in machine learning
 Hyper-parameter optimization [KLS, ICMLW’19]
 Multi-task and meta learning (e.g., finding a good initialization) [KJ-OO0, NeurlPS'21]
* Neural Architecture Search (NAS)

» Data poisoning [WSRVASLP, NeurlPS’20]

e ML Fairness [Roh, Lee, Whang, and Suh, ICLR’21]



ML Fairness

e Setting

* Consider classification for simplicity

* Also consider scenarios where the input data comes from individuals
 Example

e Facial recognition for security systems

 Resume screening for recruiting

* Recidivism prediction for pretrial decision making
* Accuracy alone is not sufficient...

* |earned classifiers are observed to disproportionally treat different subpopulations



ML Fairness

Examples: Face-to-gender classification http://gendershades.org/

Gender Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark
Classifier (2017)

93.7%

90.0%




ML Fairness

Examples: Face-to-gender classification http://gendershades.org/

_

Why? Data & algorithmic bias




Group Fairness

* Notation
« Y€ {0,1}: True labels
= {0,1}: Predicted labels

« A € {0,1}: Group labels (e.g., male/female)

* Group fairness of a (binary) classifier can be defined in various ways:
 Accuracy parity: P(?:Y|A=O)=P(?=Y\A= 1)
« Demographic parity: P(? =]1|A=0) = P(i’\ =1|A=1)
« Equal opportunity: P(Y=1|A=0Y=1)=P(Y=1|A=1,Y=1)

e Unfairness is usually measured as the absolute difference between the two terms



Group Fairness

* Notation
« Y€ {0,1}: True labels
= {0,1}: Predicted labels

« A € {0,1}: Group labels (e.g., male/female)

 Group fairness of a (binary) classifier can be defined in various ways:
 Accuracy parity: P(?zY\AzO)zP(?zY\Az 1)
« Demographic parity: P(i’\ =1|A=0)= P(? =1|A=1)
« Equal opportunity: P(Y=1|A=0Y=1)=P(Y=1|A=1Y=1)
* Unfairness is usually measured as the absolute difference between the two terms

 Many other definitions exist: variance, CVaR, ...



Example: 1d-threshold classifier

VaN 1 aN

A=0 — -+ - 4
A=1 - — =i+ +

(error rate, unfairness)?



Example: 1d-threshold classifier
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Example: 1d-threshold classifier

VaN 1 aN

A=0 — -+ - 4
A=1 - — =i+ +

(error rate, unfairness) = (0.2, 0.4)



Example: 1d-threshold classifier

N 1 AN

Y=O§Y=1
A=0 - -+ - 4+
e L

A=1 - — =+ +

(error rate, unfairness) = (0.2, 0)



Goal

* Find the most fair classifiers and then find the most accurate one among them

error rate

Fair ERM

ERM
unfairness



Problem setting

* Notation
« A € {0,1}: Group labels (e.g., male/female)
» [ ,: Loss measured on the subgroup A’s data
o L=Ly+ L,
* |n this talk, for simplicity, we will consider the loss parity (= accuracy parity for 0/1 loss)

. LO:L1



Existing algorithms

* Pre-processing & post-processing

 Min-max formulation — exponentiated gradient jagarwai et al, 18]

» Adversarial training — auxiliary classifier for predicting group label znangetal. 1]
» Distributionally robust opt. Hashimoto et al., 18]

 Mutual information surrogate ruws, icvi2o;



A very simple baseline beats everything (?)

Hey, | just tried out the following algorithm last week,

and it beat all SOTA algorithms both in performance & time

YU]I Roh (PhD student from the data-centric Al lab @ KAIST)

1.  Train a model with vanilla SGD for many iterations

2. Measure L,and L,

3. If Ly> L;: Continue training with minibatches more group 0 data
(Why? The model is performing not well on group 0 so let’s feed more group O data) _

Otherwise: Continue training with minibatches with more group 1 data

| even gave it a name, FairBatch. Could you explain why FairBatch works?




Initial formulation gave me a constrained opt.

mgn L(O) st |LyO)—L(@O)]=¢e"

We don’t know &*



Key observations

minL(0) st |Ly(0) — Li(0)| =

g = m@in L(O) + A'(Ly(O) — L(0) —e) + A"(Ly(0) — L;(O) + ¢€)

= m@in Ly(O) + L(0) + (A" + A")(Ly(0) — L(0)) — (A" — A")e
A=A+ A"
= m@in(l + A)Lo(0) + (1 =)L, (0) — (L' — A")e



Key observations

minL(0) st |Ly(0) — Li(0)| =

g = m@ln(l + /I)LO(H) + (1 — /‘L)Ll(g) — (X = Ae

1. The optimal model parameter 6 can be found

by simply minimizing a weighted objective function:
(1 +4)Ly(@) + (1 — A)L,(0) for properly chosen 4




Key observations

minL(0) st |Ly(0) — Li(0)| =

g = mgin(l 17 ﬂ)LO(H) + (1 = ,I)Ll((g) — (A =2"e

2. Instead of ¢ — (4., 6.),

we canuse A — 0, — ¢,



Tada! A bilevel formulation

m@in L) s.t |LyO)—L O] =¢e"

-)

min e(2) = | Ly(0*) = L,(0*)

0* = arg m@in(l + ALy (6) + (1 — A)L,(0)



Bilevel optimization for machine learning

min F(4, 0™)
2

0* = arg min L(/, 0)
0



Bilevel optimization for machine learning

» \Various applications in machine learning
* Hyper-parameter optimization
* Multi-task and meta learning (e.g., finding a good initialization)
* Neural Architecture Search (NAS)

» Data poisoning



Bilevel optimization for machine learning

Example: Hyper-parameter optimization [Franceschietal.’78

mgn Lirqin(@) + AR(0)

How can | choose A7



Bilevel optimization for machine learning

Example: Hyper-parameter optimization [Franceschietal.’78

mjn Lya1(0™)

0* = arg min Ly 5in(6) + AR(6)
0



Bilevel optimization for machine learning

Example: Data poisoning [Biggio et al., ’12] [Steinhard et al.,’17]

277
7K
: e

Predicted label: truck Predicted label: 1

[WSRVASLP, NeurlPS’20]



Bilevel optimization for machine learning

Example: Data poisoning [Biggio et al., ’12] [Steinhard et al.,’17]

* | earner: minimize the loss computed on the dataset

o Attacker: manipulate the dataset so that the learned model behaves as desired

D,

0™ = argmin L(D U D ; )
0



Bilevel Optimization Algorithms

min F(1, 0%)
2

0* = arg min L(4, 0)
0



Bilevel Optimization Algorithms

m/lin F(A, 0%) min F (4, 0%)
* l
0* = arg min L(/, 0) s.t. G1,0%) =0
0

 (Constraint-based approaches [Hansen et al. (1992); Shi et al. (2005); Moore (2010)]



Bilevel Optimization Algorithms

m/lin F(1,0%) V F(4, 6’*) — VAF(/L 9*) + VQF(/I, 6’*)TV/16’*
0* = arg min L(/, 0) VQL(/L 6’*) =0 = V,zl gL(/L 9*) + V(%QL(/L 9*) V,ﬂg*
. ,

= VF(L,0%) = V,F(4,60%) — VoF(, 0 (V3,L(, 0%))"' V2 ,L(4,6%)

 (Constraint-based approaches [Hansen et al. (1992); Shi et al. (2005); Moore (2010)]

Algorithms

* Gradient-based approaches BA (Ghadimi & Wang, 2018)

I . AID-BiO (Ji et al.,_gz)z—r)
* |mplicit differentiation [Ghadmi and Wang, 2018; Domke, 201

N-Q-loop AID (this paper)

Q-loop AID (this paper)
N-loop AID (this paper)

No-loop AID (this paper)

[Ji et al., 2022]



Bilevel Optimization Algorithms

min F(1, 0%) min F(1, 0%)

l >

0* = arg min L(4, 0) 0* = GD(6,, L(4,0), k)
0

 (Constraint-based approaches [Hansen et al. (1992); Shi et al. (2005); Moore (2010)]

 Gradient-based approaches

* |mplicit differentiation [Ghadmi and Wang, 2018; Domke, 2012; Pedregosa, 2016; Grazzi et al., 2020; Ji et al., 2021]

e [terative differentiation [Maclaurin et al., 2015; Franceschi et al., 2017; Shaban et al., 2019]



Hypergradient descent dé¢

mﬂin () = LO(H*) — LI(H*) dﬂ« |

L,(0*) — L,(6™) is nonincreasing

v

0* = arg mein(l + AH)Ly(O) + (1 — 1)L, (0)

d dL,(0*) — L,(0*
d_fl = (Ly(0™) — L,(07) - ot )d/l 107) e(A) is quasi-convex
\_\,—_J

requires the Inverse Hessian

ee+ e‘g

L Lo(6) =

L) =0 -1)




Algorithm de

—
min e(2) = | Lo(6*) = L,(60*) dA

L,(0*) — L,(6™) is nonincreasing

v

0* = arg min(1 + A)Ly(0) + (1 — A)L,(0)
0
dL,(6*) — L,(0%)

— (L()(H*) — L1(6’*) ‘

e(A) is quasi-convex

dA d
S —— * [Hazan, Levy, Shalev-Shwartz, '15]
‘ requires the Inverse Hessian de
di . ( de ) .
= sign | — | iIs all you need
. de , N N de dA
sign \ — | = sign(L;(0™) — Ly(07)) a |,

b A — A —a(sign(L,(0™) — L,(6™)))



Signed hypergradient descent

A=0
while not convergeaq:

0*(1) = arg min(1 + 2)Lo(0) + (1 = DL, (©)

A — A — a(sign(Ll(H*) — L()(H*)))

|
Theorem. This algorithm converges to 1* in | — | steps

04

No assumptions at all — DNN or whatever



Sighed hypergradient descent + no-loop approx.

Initialize 4, @

while not converged:
F(0) = (1 + HLy0) + (1 = DL (6)
0 — 60— BV, F(6)
A — A —a(sign(L(0™) — Ly(60™)))

Convergence is never formally proved, but it is pretty straightforward...
With some assumptions, analysis should be similar to [Ghadimi and Wang, 18] and [Ji et al., ’22]



Signhed hypergradient descent + no-loop approx. +“adaptive” minibatches

Initialize 4, @

while not converged:

0 — 60— BV, ,FO)
A < A — a(sign(L(0%) — Ly(6™)))




Signhed hypergradient descent + no-loop approx. +“adaptive” minibatches

nitialize A, @ FairBatch

[Roh, Lee, Whang, and Suh, ICLR’21]
A W@?‘f

while not convergeaq:

F(0) = (1 + )Ly(0) + (1 = HL,(6) 4
0 — O — ﬂVQF(H) —_— 1. Train a model with vanilla SGD
w2 Measure L and L

A — A —a(sign(L(0™) — Ly(60™))) 3. If Ly > L;: Continue training

— with minibatches with more group O data
_ +
Draw samples with y = 0 W.p. 9) OR: Continue training

1 — A with minibatches with more group 1 data

Draw samples withy =1  W.p. >



Experimental results




Experimental results

Test accuracy Runtime (s)

Vanilla Logistic regression 0.84 . 23

Logistic regression 0.84 .
+ Fairness constraints [1] ' :

Label bias correction [2]
Fairness-aware Adversarial debiasing [3]
AdaFair [4]

FairBatch (ours)

[1] Zafar et al., 2017 [2] Jiang & Nachum, 2019 [3] Zhang et al., 2018 [4] losifidis & Ntoutsi, 2019




FairBatch = Adaptive pre-processing

Pre Data = i Training

Post Data ————— Training

o o Postprocessing B N\ [ee []

I Data = G ———————p | odel

Training

1.Check Ly S L,
2. Update A Training

FairBatch Data =—p

High performance & modular!

3. Adaptive sampling




Applications of FairBatch

* Fair and robust training [Roh, , Whang, and Suh, NeurlPS’21]
* Bilevel optimization (for fairness) + Integer optimization (for robustness)

* Federated fair training [Zeng, Chen, and , AAAIW’22]
. FairBatch is inherently “federatable” — Easy to check Z Ly s Z L,

 Fair ML with non-differentiable models
* Blackbox fine-tuning (e.qg., GPT3) [Zeng, Lin, Park, Oh, , In progress]

e Decision trees [Lin and , In progress]



Conclusion

 FairBatch: A new ML application of bilevel optimization
* The single-loop version comes with a convergence guarantee
* The no-loop version works very well in practice
* They achieve the state-of-the-art performances on most datasets
* \ery easy-to-implement!
 Many applications due to its modularity
- Fair learning + Robustness Thanks! Any questi()ns?
* Fair learning + Federated learning

* Fair learning + Black-box training (e.g., GPT3 finetuning & decision trees)



