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Classical Submodularity

N = {1, 2, . . . , n}

Definition (submodular set function)

A function f : 2N → R is submodular if f (X ) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ) for any
X ,Y ⊆ N.

Intuition. Submodularity ⇔ Diminishing (Marginal) Returns (DR).
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Classical Submodularity
Marginal return ρi (S) := f (S ∪ {i})− f (S).

Definition (submodular set function, alternative)

A function f : 2N → R is submodular if ρi (X ) ≥ ρi (Y ) for any X ⊆ Y ⊆ N, i ∈ N\Y .
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Classical Submodular Set Function Optimization

More applications: assortment optimization, mean-risk optimization, problems
involving clustering, coverage, risk aversion, economies of scale, etc..

Yu, Küçükyavuz Mixed-Integer DR-Submodular Minimization USA-Mexico Workshop 4 / 32



Classical Submodular Set Function Optimization

More applications: assortment optimization, mean-risk optimization, problems
involving clustering, coverage, risk aversion, economies of scale, etc..
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Classical Submodular Set Function Optimization

Decision space: Selection from a single ground set. Modeled by binary variables.

Slight abuse of notation: Use f (X ) and f (x) interchangeably.
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Submodular Minimization

Unconstrained Submodular Set Function Minimization

Strongly poly-time solvable [e.g., Iwata et al., 2001, Orlin, 2009]

conv (epigraph of f ) is given by extended polymatroid inequalities (EPI)
[Atamtürk and Narayanan, 2021, Lovász, 1983]

Separation of EPIs is easy (greedy does it) [Edmonds, 1970]

→ An equivalent
(exponential) LP

Cardinality-constrained Submodular Set Function Minimization

NP-hard and hard to approximate (polynomial factor lower bounds on the
approximation factor) [Svitkina and Fleischer, 2011]

Use the EPIs to solve the resulting problem as an MILP (delayed cut
generation) [e.g., Atamtürk and Narayanan, 2008, for mean-risk optimization]
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Research question:
Exact approaches for optimizing generalizations of

submodular set functions to mixed-integer variables (i.e.,
choose multiple (discrete or continuous) copies of

each item)?

More formally,

finitely convergent convexification schemes for mixed-binary or pure integer
programs become infinitely convergent for mixed-integer programs.

lifting problem of a valid inequality with mixed-binary variables is linear,
whereas it is nonlinear for mixed-integer variables.
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Diminishing Returns (DR)-Submodular Minimization
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Diminishing Returns (DR)-Submodular Functions
ei : a vector with 1 in the ith entry, 0 elsewhere.

Definition (DR-submodular)

A function f : X ⊆ Zn × Rm → R is DR-submodular if

f (x + αei )− f (x) ≥ f (y + αei )− f (y)

for every i ∈ {1, 2, . . . , n + m}, for all x, y ∈ X with x ≤ y component-wise, and for all
α ∈ R+ such that x + αei , y + αei ∈ X .

Note: DR-submodular functions are not
necessarily concave.
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DR-Submodular Functions

Example. Quadratic functions with non-positive Hessian entries (can be
non-convex and non-concave).

A continuous DR-submodular function f (z) = −z2
1 − 13z1z2 + 50z1 + 30z2.

Example. Submodular set functions when X = {0, 1}n.
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Mixed-Integer DR-Submodular Optimization

Challenging!

Yu, Küçükyavuz Mixed-Integer DR-Submodular Minimization USA-Mexico Workshop 11 / 32



Existing Literature

DR-submodular maximization

max
z∈Z

f (z)

Pure integer: Ene and Nguyen [2016], Soma and Yoshida [2017], Soma and Yoshida
[2018].

Continuous: Bian et al. [2017], Ene and Nguyen [2020], Medal and Ahanor [2022],

Niazadeh et al. [2018], Sadeghi and Fazel [2020].

DR-submodular minimization

min
z∈Z

f (z)

Bach [2019], Ene and Nguyen [2016].

Pseudo-polynomial algorithms, pure integer variables.

Questions: Mixed-integer variables? Beyond box constraints? Polynomial-time

solvable?
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Problem Description

min
z∈Z(G,u)

f (z),

where f is DR-submodular and G = (V,A) is a DAG representing the
monotonicity relations among variables in V = {1, 2, . . . , n + m}.

Z(G, u) := {z ∈ Zn × Rm : 0 ≤ z ≤ u, zi ≤ zj , ∀ (i , j) ∈ A}.
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Yu, Küçükyavuz Mixed-Integer DR-Submodular Minimization USA-Mexico Workshop 13 / 32



Mixed-Integer DR-Submodular Example
Sensor energy management.

zi : energy level of sensor at location i ∈ V (continuous or discrete)

f (z) = E[saved detection time] is DR-submodular
= t∞ −

∑
ω∈Ω pω

∑
S⊆V(mini∈S tω,i )

∏
i∈S(1− (1− p)zi )

∏
i /∈S(1− p)zi

I Ω: contamination events; ω ∈ Ω has probability pω
I 1− (1− p)zi : chance of successful detection of any event by i at energy level zi
I tω,i : time to detect event ω by sensor i ; t∞ := maxi∈V,ω∈Ω tω,i .

Some sensor information is of higher priority ⇒ monotonicity constraints.
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Yu, Küçükyavuz Mixed-Integer DR-Submodular Minimization USA-Mexico Workshop 14 / 32



Mixed-Integer DR-Submodular Example
Sensor energy management.

zi : energy level of sensor at location i ∈ V (continuous or discrete)

f (z) = E[saved detection time] is DR-submodular
= t∞ −

∑
ω∈Ω pω

∑
S⊆V(mini∈S tω,i )

∏
i∈S(1− (1− p)zi )

∏
i /∈S(1− p)zi

I Ω: contamination events; ω ∈ Ω has probability pω
I 1− (1− p)zi : chance of successful detection of any event by i at energy level zi
I tω,i : time to detect event ω by sensor i ; t∞ := maxi∈V,ω∈Ω tω,i .

Some sensor information is of higher priority ⇒ monotonicity constraints.
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Problem Description

Z(G, u) := {z ∈ Zn × Rm : 0 ≤ z ≤ u, zi ≤ zj , ∀ (i , j) ∈ A}.

G = (V,A): a directed rooted forest.

Definition (Directed rooted forest)

A disjoint union of directed rooted tree(s) with arcs pointing away from the root(s).

Example A

Example B
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Equivalent Formulation

Recall

min
z∈Z(G,u)

f (z),

Z(G, u) := {z ∈ Zn × Rm : 0 ≤ z ≤ u, zi ≤ zj , ∀ (i , j) ∈ A}.

Equivalently,

min
{
w : (z,w) ∈ conv

(
PZ(G,u)

f

)}
,

where
PZ(G,u)

f := {(z,w) ∈ Z(G, u)× R : w ≥ f (z)}.
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Understand conv (Z(G,u))

Observation. Continuous relaxation of Z(G,u) is not necessarily conv (Z(G,u)).

Example.
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Understand conv (Z(G,u))
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Understand conv (Z(G,u))
Mixed-Integer Rounding (MIR) inequality [Nemhauser and Wolsey, 1990]:

−z8 +
z7

u7 − bu7c
≤ bu7c(du7e − u7)

u7 − bu7c
.
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Understand conv (Z(G,u))

Ψ = The set of fractionally upper-bounded continuous variables with discrete
descendant(s).

Theorem (informal; full description of conv (Z(G, u))) [Yu and Küçükyavuz, 2022]

Under some conditions, conv (Z(G, u)) is fully described by the trivial inequalities and
the MIR inequalities for all ψ ∈ Ψ and their children:

−zch(ψ) +
zψ

uψ − buψc
≤ buψc(duψe − uψ)

uψ − buψc
.
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Characterize conv
(
PZ(G,u)

f

)

Proposition (validity of DR inequalities) [Yu and Küçükyavuz, 2022]

For certain permutations δ = (δ(1), δ(2), . . . , δ(|V|)), a DR inequality associated with δ

w ≥
|V|∑
k=0

[t(δ, z)k − t(δ, z)k+1] f (P(T δ,k)).

is valid for PZ(G,u)
f .
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Characterize conv
(
PZ(G,u)

f

)

DR inequality [Yu and Küçükyavuz, 2022]

For certain permutation δ = (δ(1), δ(2), . . . , δ(|V|)), a DR inequality associated with δ
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For certain permutation δ = (δ(1), δ(2), . . . , δ(|V|)), a DR inequality associated with δ
is

w ≥
|V|∑
k=0

[t(δ, z)k − t(δ, z)k+1] f (P(T δ,k)).
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Characterize conv
(
PZ(G,u)

f

)
DR inequality [Yu and Küçükyavuz, 2022]

For certain permutation δ = (δ(1), δ(2), . . . , δ(|V|)), a DR inequality associated with δ
is

w ≥
|V|∑
k=0

[t(δ, z)k − t(δ, z)k+1] f (P(T δ,k)).

t(δ, z)k : linear expression of z, with explicit form.

DR inequalities are linear and homogeneous.

They subsume the well-known extended polymatroid inequalities [Atamtürk and
Narayanan, 2021, Edmonds, 1970, Lovász, 1983].

Note the equivalent DR-inequality

w ≥
|V|∑
k=1

t(δ, z)k [f (P(T δ,k))− f (P(T δ,k−1))].
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An Important Property of conv (Z(G,u))
Proposition [Yu and Küçükyavuz, 2022]

For any z ∈ conv (Z(G, u)), let δ ← Permutation Finder(z,G, u). Then z can be
written as the convex combination:

z =

|V|∑
k=0

[t(δ, z)k − t(δ, z)k+1]P(T δ,k).
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An Important Property of conv (Z(G,u))
Proposition [Yu and Küçükyavuz, 2022]

For any z ∈ conv (Z(G, u)), let δ ← Permutation Finder(z,G, u). Then z can be
written as the convex combination:

z =

|V|∑
k=0

[t(δ, z)k − t(δ, z)k+1]P(T δ,k).

For k ∈ {1, . . . , |V|}, let i = δ(k),

t(δ, z)k :=



ηψ(z)− ziM(T δ,k−1)

buψc − uiM(T δ,k−1)

, if i = ψ ∈ Ψ and ch (ψ) /∈ T δ,k−1,

zi − ηψ(z)

ui − buψc
, else if iM(T δ,k−1) = ψ ∈ Ψ,

zi − ziM(T δ,k−1)

ui − uiM(T δ,k−1)

, otherwise.

t(δ, z)0 = 1, t(δ, z)|V|+1 = 0.

For any ψ ∈ Ψ, ηψ(z) =
zψ−(uψ−buψc)zch(ψ)

uch(ψ)−uψ
.

Gist: t(δ, z)k is a linear expression of z that we can explicitly state.
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Characterize conv
(
PZ(G,u)

f

)
Theorem (full description of conv

(
PZ(G,u)

f

)
) [Yu and Küçükyavuz, 2022]

The DR inequalities, MIR inequalities, along with the box and monotonicity constraints,

fully describe conv
(
PZ(G,u)

f

)
.

Mixed-integer nonlinear program.

Continuous linear program (with
exponentially many constraints).
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Exact Separation of DR Inequalities

We propose an exact separation algorithm for DR inequalities.

I Finds a most-violated DR inequality at any (z,w) 6∈ conv (Z(G, u))× R.

I An O(|V|2 log |V|) algorithm (|V| rounds of sorting).

minz∈Z(G,u) f (z) is polynomial-time solvable!
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Takeaways

DR-submodular optimization is a mixed-integer extension of classical
submodular optimization.

A polyhedral study on DR-submodular minimization
I under box and possibly additional monotonicity constraints,
I with mixed-integer variables.

Propose valid linear inequalities and the complete convex hull description
for the epigraph.

Nonlinear program → Linear program.

Provide an exact separation algorithm.

Establish polynomial time complexity of this class of constrained
mixed-integer DR-submodular minimization problems.

Benign non-convexity!
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