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Introduction

Optimization for Machine Learning

Learning from labeled data: Risk minimization

minx∈X ED∼P[`(x ,D)] (1)

where D = (input, output) data, x = model parameters.
Classic examples:

(a) Linear regression: ` is
convex & smooth

`(x ,D) = (aT x − b)2

D = (a, b), X = Rd .

(b) Classification with SVM:
` is convex & non-smooth

`(x ,D) =
max(0, 1− bxTa) + τ‖x‖2
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Introduction

Another example: Deep learning

Risk minimization:

minx∈X f (x) := ED∼P[`(x ,D)]

where D = (input, output), x = network parameters ({W (k), b(k)}k).
Thresholding at every layer: Non-smooth or smooth
Loss: Generalized (Norkin) differentiable or smooth
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Introduction

Deep Learning Applications

Figure: Computer Vision

Figure: Predicting Social Media

Figure: Machine Translation

Figure: Diagnosing Covid
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Introduction

Robustness to Statistical Changes in Input Data

Risk minimization leads to fragile models.

Figure: Distributional shift in the input

Figure: [Goodfellow et al. 2014] Robustness issue to attacks/perturbations
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Introduction

Distributionally robust statistical learning

Ensuring distributional robustness:

min
x∈X

max
Q∈M(P)︸ ︷︷ ︸

ambiguity set

ED∼Q [`(x ,D)]

Existing approaches to modelling M(P) include conditional value at
risk [Takeda and Kanamori, 2009], f -divergence based sets [Duchi
and Namkoong, 2018], Wasserstein distance/distance-based
approaches [Ho-Nguyen & Wright, 2021], [Esfahani & Kuhn,
2018],[Gao & Kleywegt, 2016].

M(P) is typically infinite-dimensional.
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Introduction

Existing work
Sample-based approximations to the ambiguity set: Finite-sum instead of
expectation

Convex loss: Finite-dimensional convex program formulations [Esfahani &
Kuhn, 2018],[Abadeh et al., 2015], [Chen & Pashalidis 2018], bandit mirror
descent Namkoong & Duchi, 2016], conic interior point solvers or gradient
descent with backtracking Armijo line-searches [Duchi & Namkoong, 2021],
convex and Lipschitz losses [Levy et al., 2020], SGD-based algorithm with
O(1/ε2) complexity for Lipschitz and smooth losses [Soma & Yoshida,
2020], SAPD alg. [Zhang et al., 2022],..
Smooth non-convex loss: Wasserstein distance-based [Sinha et al. 2018],
f-divergences/smooth Lipschitz losses [Jin et al. 2021], O(1/ε6) complexity
for smooth weakly convex losses [Zhang et al., 2022], (nonsmooth) weakly
convex/strongly convex min-max approach of [Yan et al., 2020],
CVaR-based approach with O(1/ε6) complexity [Soma & Yoshida, 2020], ..
Non-smooth nonconvex loss: For ”zero-one loss” in linear classification,
efficient algorithms for smoothed ramp loss [Ho-Nguyen, Wright, 2021].

For general non-smooth non-convex losses, no scalable algorithm with
convergence guarantees to our knowledge.
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Introduction

ModelingM(P) with mean semi-deviation risk I

The mean–semideviation risk measure is defined as follows:

ρ[Z ] = E[Z ] + κE
[

max
(
0,Z −E[Z ]

)]
, κ ∈ [0, 1].

It is known to be a coherent measure of risk.

In particular, it has the dual representation

ρ[Z ] = max
µ∈A

∫
Ω
Z (ω)µ(ω) P(dω) = max

Q : dQ
dP∈A

∫
Ω
Z (ω) Q(dω)

= max
Q : dQ

dP∈A
EQ[Z ],

where A is a convex and closed set defined as follows:

A =
{
µ = 1+ ξ −E[ξ] : ξ ∈ L∞(Ω,F ,P), ‖ξ‖∞ ≤ κ, ξ ≥ 0

}
.
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Introduction

ModelingM(P) with mean semi-deviation risk II

After plugging Z = `(x ,D) into this formulation, we obtain

min
x∈X

max
Q∈M(P)

EQ[`(x ,D)] = min
x∈X

E

[
`(x ,D)

+ κ max
(
0, `(x ,D)−E[`(x ,D)]

)]
,

with the perturbation set

M(P) =
{
Q :

dQ
dP
∈ A

}
.

Max over probability distributions is avoided.

Robust binary linear classification with Wasserstein ambiguity is
equivalent to unconstrained ”ramp loss” [Ho Nguyen, Wright, 2021]
or maximizing CVaR risk measure (of distance to misclassification)
and minimizing without finite-support assumption.
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Introduction

A composition optimization problem

This yields
min
x∈X

f (x , h(x)),

with the functions

f (x , u) = E

[
`(x ,D) + κ max

(
0, `(x ,D)− u

)]
,

h(x) = E[`(x ,D)].

The main difficulty is that neither values nor (sub)gradients of f (·),
h(·), and of their composition are available.

Instead, we postulate access to their random estimates.
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Introduction

Contributions

New modeling of the uncertainty set:
Uses mean-semideviation risk.
Computational advantage for the max step.

New single-time scale (STS) stochastic subgradient algorithm
Works for all generalized differentiable losses
Scalable (cost is at most 2 times that of SGD).
With probability one convergence to a stationary point.
Can handle the streaming data setting.

Iteration and sample complexity for (non-smooth or smooth) weakly
convex losses

References:
A Stochastic Subgradient Method for Distributionally Robust Non-Convex
and Non-Smooth Learning [Gurbuzbalaban, Ruszczynski, Zhu; Journal of
Optimization Theory and Applications, 2022]

Distributionally Robust Learning with Weakly Convex Losses: Convergence
and Finite-Sample Guarantees [Gurbuzbalaban, Ruszczynski and Zhu, 2023].
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STS Method

Assumptions

We make the following assumptions.

(A1) The set X ⊂ Rn is convex and compact;

(A2) For almost every (a.e.) ω ∈ Ω, the function `(·,D(ω)) is
differentiable in a generalized (Norkin) sense with the
subdifferential ∂x`(x ,D(ω)), x ∈ Rn and we can interchange
the expectation with the subderivative.

Definition

Given x ∈ Rn, by (A2), generalized subdifferential is well-defined:

GF (x) = conv
{
s ∈ Rn : s = gx + J>gu,

[
gx
gu

]
∈ ∂f (x , h(x)), J ∈ ∂h(x)

}
.

We say x∗ ∈ X stationary if 0 ∈ GF (x∗) + NX (x∗).

Stochastic estimates of subgradients and function values are “easy”.
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STS Method

Our method
For k = 0, 1, 2, . . . , with stepsize1 τk , any scalars a, b, c > 0;

yk = argmin
y∈X

{
〈zk , y − xk〉+

c

2
‖y − xk‖2

}
,

xk+1 = xk + τk(yk − xk).

Track subgradient and inner function with (exponential) averaging:

zk+1 = (1− aτk)zk + aτk

(
g̃k+1
x +

[
J̃ k+1

]>
g̃k+1
u

)
︸ ︷︷ ︸

Stochastic subgradient

,

uk+1 = (1− bτk)uk + +bτk h̃k+1︸︷︷︸
loss estimate

+τk J̃ k+1(yk − xk)︸ ︷︷ ︸
effect of updated solution

based on “cheap” stochastic estimates g̃k+1
x , g̃k+1

u , J̃ k+1, h̃k+1.

1limk→∞ τk = 0,
∑∞

k=0 τk = ∞,
∑∞

k=0E[τ 2
k ] <∞, τk ∈ (0,min(1, 1/a)
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Convergence analysis

Stochastic estimates

Draw a second independent sample Dk+1
2 only if the loss based on the

first sample Dk+1
1 looks “bad”.

g̃k+1
x ∈

{
∂x`(x

k+1,Dk+1
1 ) if `(xk+1,Dk+1

1 ) < uk ,

(1 + κ)∂x`(x
k+1,Dk+1

1 ) if `(xk+1,Dk+1
1 ) ≥ uk ,

g̃k+1
u =

{
0 if `(xk+1,Dk+1

1 ) < uk ,

−κ if `(xk+1,Dk+1
1 ) ≥ uk ,

h̃k+1 = `(xk+1,Dk+1
1 ),

J̃ k+1 ∈

{{
g̃k+1
x

}
if `(xk+1,Dk+1

1 ) < uk ,

∂x`(x
k+1,Dk+1

2 ) if `(xk+1,Dk+1
1 ) ≥ uk .
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Convergence analysis

Convergence result

Theorem (Informal)

If the assumptions (A1)–(A2) are satisfied, and stochastic subgradients
have (conditionally) bounded variance, then with probability 1 every
accumulation point x̂ of the sequence {xk} is stationary,
limk→∞(uk − h(xk)) = 0, and the sequence {F (xk)} is convergent.

2

Step 1: The Limiting Dynamical System is a “Differential Inclusion”.

Step 2: Descent Along a Path through our Lyapunov function.

Step 3: Analysis of the Limit Points.

2Assuming the set of optimal values do not contain an interval of positive length.
16
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Numerical experiments

Deep learning experiment

We consider a fully-connected network on two benchmark datasets:
MNIST and CIFAR10, where the model has the depth (the number of
layers) of 3 and the width (the number of neurons per hidden layer)
of 100.

In both MNIST and CIFAR10 datasets, the output variable y to be
predicted is an integer valued from 0 to 9.

We distort the distributions of MNIST and CIFAR10 training datasets
by deleting almost all the data points with a y value equal to 0.

If the training data are not contaminated at all, we have observed in
our experiments that STS generates a similar or slightly worse
solution than SGD.

When the data contains distributional shifts, we see a clear advantage
of the STS method over the SGD method.

17



Numerical experiments

MNIST dataset
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Figure: The CDFs of the SGD solution and the STS solutions.
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Numerical experiments

CIFAR10 dataset
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Figure: The CDFs of the SGD solution and the STS solutions.
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Numerical experiments

Logistic regression experiment

We consider binary logistic regression on the Adult dataset where the
loss function has the form `(x ,D) =

[
log(1 + exp(−b aT x))

]
.

We follow a similar methodology as before, where we distort the
training data by deleting 80% of the data points with the
corresponding income below $50,000.

We trained our model with STS and another state-of-the-art method
Bandit Mirror Descent (BMD).

We see that STS results in smaller errors and conclude that our
method has desirable robustness properties with respect to
perturbations in the input distribution.
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Numerical experiments

Adult dataset
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Figure: The CDFs of the BMD solution and the STS solutions.
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Convergence Rates

Smooth weakly convex problems I

When assuming a smooth loss function, we may adapt the STS
method to a projected subgradient descent framework, and use
gradient of the Moreau envelope as our new metric.

Consider an alternative formulation of the main problem:

min
x∈Rn

ϕ(x) := F (x) + r(x),

where F (x) = f (x , h(x)) and r(x) is the indicator function of a
convex and compact feasible set X ⊂ Rn.

The Moreau envelope and the proximal map are defined as:

ϕλ(x) := min
y
{ϕ(y) +

1

2λ
‖y − x‖2},

proxλϕ(x) := argmin
y
{ϕ(y) +

1

2λ
‖y − x‖2},
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Convergence Rates

Smooth weakly convex problems II

A δ-weakly convex function h(x) = E[`(x ,D)] has the following
property: at every point x ∈ Rn a vector g ∈ Rn exists such that

h(y) ≥ h(x) + 〈g , y − x〉 − δ

2
‖y − x‖2, ∀y ∈ Rn.

ϕλ(x) is smooth when λ ∈ (0, ρ−1). It has a gradient given by

∇ϕλ(x) = λ−1(x − proxλϕ(x)).

It can also be shown that the quantity ‖∇ϕλ(x)‖ is a measure of
stationarity, i.e. when ‖∇ϕλ(x)‖ is small, x will be near some nearly
stationary point x̂ , which in turn, has the subdifferential close to 0:

‖x̂ − x‖ = λ‖∇ϕλ(x)‖,
ϕ(x̂) ≤ ϕ(x),

dist(0; ∂ϕ(x̂)) ≤ ‖∇ϕλ(x)‖.
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Convergence Rates

The stochastic compositional subgradient (SCS) method

The algorithm can be summarized as

xk+1 = ΠX

(
xk − τ

(
g̃k
fx + g̃k

fu g̃
k
h

)T)
,

uk+1 = uk + τ
(
h̃k − uk) + J̃k

(
xk+1 − xk

)
.

And we also update our statistical estimates

G k ∈ ∂x`(xk ,Dk+1
1 ),

g̃k
fx =

{
0 if `(xk ,Dk+1

1 ) < uk ,

κG k if `(xk ,Dk+1
1 ) ≥ uk ,

g̃k
fu =

{
1 if `(xk ,Dk+1

1 ) < uk ,

1− κ if `(xk ,Dk+1
1 ) ≥ uk ,

g̃k
h ∈ ∂x`(xk ,Dk+1

2 ), J̃k ∈ ∂x`(xk ,Dk+1
3 ),

h̃k =
1

3
(`(xk ,Dk+1

1 ) + `(xk ,Dk+1
2 ) + `(xk ,Dk+1

3 )).
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Convergence Rates

Assumptions of SCS

(B1) The set X ⊂ Rn is convex and compact.

(B2) For all x in a neighborhood of the set X :

The function `(x , ·) is integrable;

The function `(·,D) is continuously differentiable and integrable
constants ∆̃h(D) and δ̃(D) exist such that

‖∇`(x ,D)‖ ≤ ∆̃h(D), ∀D ∈ Rd ,

and

‖∇`(x ,D)−∇`(y ,D)‖ ≤ δ̃(D)‖x − y‖, ∀ x , y ∈ X , ∀D ∈ Rd .

(B3) The stochastic estimates are unbiased and have finite error variances.
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Convergence Rates

Convergence rate for smooth weakly convex losses

Theorem

Suppose Assumptions (B1)–(B3) hold. For any given iteration budget N,
consider the trajectory {xk}N−1

k=0 of SCS. We have

E[‖∇ϕ1/ρ̄(xR)‖2] ≤ 2
C1 + NC2τ

3/2

Nτ
,

where ρ̄, C1 and C2 are constants determined by the loss function and our
choice of κ, the expectation is taken with respect to the trajectory
generated by SCS and the random variable R that is uniformly sampled
from {0, 1, ...,N − 1} independently of the trajectory.

If we choose τ = cN−2/3 for some constant c > 0, this theorem
indicates the sample complexity of SCS is O(ε−3).
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Convergence Rates

Nonsmooth weakly convex problems

If we only assume a weakly convex loss function, instead of a smooth
one, we can use the SPIDER estimator (a variant of SARAH [Nguyen
et al. 2017]) to estimate the expectation of the loss function:

uk = `Bk (xk), ‖Bk‖ = B, if k mod T == 0,

uk = uk−1 + `Bk (xk)− `Bk (xk−1), ‖Bk‖ = b, otherwise.

where T is the SPIDER cycle length.

Now the assumptions become

(B4) For all x in a neighborhood of the set X , the function `(x , ·) is
integrable; the function `(·,D) is weakly convex with an integrable
constant δ̃(D).

(B5) The Lipschitz constant L̃(D) of the loss function `(x ,D) with respect
to x is square-integrable:

L2 ≡ E[L̃2(D)] < +∞.
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Convergence Rates

Convergence rate for nonsmooth weakly convex losses

Theorem

Suppose Assumptions (B3)–(B5) hold. For any given iteration budget N,
consider the trajectory {xk}N−1

k=0 of SCS with SPIDER. We have

E[‖∇ϕ1/ρ̄(xR)‖2] ≤ 2
C3 + NC4τ

3/2

Nτ
,

where ρ̄, C3 and C4 are constants determined by the loss function and our
choice of κ, the expectation is taken with respect to the trajectory
generated by SCS and the random variable R that is uniformly sampled
from {0, 1, ...,N − 1} independently of the trajectory.

SPIDER estimator has a lower tracking error bound, but requires an
extra data batch, eventually the sample complexity is still O(ε−3).
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Numerical experiments

Deep learning

We consider a convolutional neural network applied to the MNIST
data set. The network consists of three convolutional layers followed
by a dense layer. All the hidden layers have ELU activations, and the
output layer has the softmax activation.

We train the CNN with different optimizers, namely SGD, SCS and
another state-of-the-art method Wasserstein Robust Method (WRM).

To investigate the robustness of the trained networks, we consider
two types of (adversarial attacks) perturbations to the test dataset:
the PGM attacks and the semi-deviation attacks.

The training data is the original (uncontaminated) MNIST data,
whereas the models are tested with the contaminated data subject to
PGM attacks and semi-deviation attacks.
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Numerical experiments

Deep Learning
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Figure: Test losses under PGM attacks (top) and semi-deviation attacks (bottom).
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Numerical experiments

Nonconvex penalties

We consider a regression task on the Blog Feedback data set.

The loss function has the form `(x ,D) = |aT x − b|+ r(x) where
D = (a, b) is the input data, and r(x) is the regularization term.

Lasso:
r(x) = λ|x |,

SCAD:

r(x) =


λ|x | if |x | ≤ λ,
γλ|x |−0.5(x2+λ2)

γ−1 if λ < |x | ≤ λγ,
λ2(γ+1)

2 if |x | > λγ ,

MCP:

r(x) =

{
λ|x | − x2

2γ if |x | ≤ λγ,
λ2γ

2 if |x | > λγ,
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Numerical experiments

Nonconvex penalties
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(a) Lasso
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(b) SCAD penalty
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(c) MCP penalty

Figure: Top: training loss vs iterations, bottom: distribution of the log test loss.
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Numerical experiments

Relevant work: stochastic composite optimization

In [Wang et al., 2017], the authors analyzed stochastic gradient
algorithms with different assumptions on the objective, and prove
sample complexities O(ε−3.5), O(ε−1.25) for smooth convex problems,
smooth strongly convex problems respectively. These rates can be
further improved with proper regularization [Wang et al., 2017].

In [Ghadimi et al., 2020], the authors propose a single time-scale
Nested Averaged Stochastic Approximation (NASA) method for
smooth nonconvex composition optimization problems and prove the
sample complexity of O(ε−2).

For higher-level (more than two) problems, [Ruszczynski, 2021]
establishes asymptotic convergence of a stochastic subgradient
method by analyzing a system of differential inclusions, along with a
sample complexity of O(ε−2) when smoothness is assumed.
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Numerical experiments

Related Work: Robustness to hyperparameters

Our Idea: For stochastic optimization, find stepsize and momentum
parameters to minimize the risk ρ(f (xk)− f (x∗)).
Trade-offs between risk and convergence rates.
For entropic risk ρ(Z ) := E[eθZ ]

Entropic Risk-Averse Generalized Momentum Methods [Can,
Gurbuzbalaban; Submitted, 2022]
Generalizes risk-neutral case: Robust Accelerated Gradient Methods for
Smooth Strongly Convex Functions [Aybat, Fallah, Gurbuzbalaban ,
Ozdaglar, SIOPT 2020].

Min-max setting [Laguel, Aybat, Gurbuzbalaban, In preparation].
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Summary
Our stochastic subgradient methods for distributionally robust
learning

Admit probability one guarantees to a stationary point.
Only method that applies to ReLU.
Finite-sample guarantees for weakly convex and smooth problems.

For convex problems, we developed robust/risk-averse triple
momentum methods to gradient noise.

Optimal performance trading convergence rate and tail probabilities.
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Sensitivity to noise/hyperparameters

Momentum methods are sensitive to persistent noise in the gradients
[d’Aspremont, 2008],[Devolder, 2013], may even diverge [Flammarion
& Bach, 2015].
Stochastic gradients: Trade-offs between averaging and acceleration
[Flammarion & Bach, 2015].
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Stationary points and the multifunction Γ

For a point x ∈ Rn, we define the set:

GF (x) = conv
{
s ∈ Rn : s = gx +J>gu, g ∈ ∂f (x , h(x)), J ∈ ∂h(x)

}
.

We call a point x∗ ∈ X stationary for the risk minimization problem, if

0 ∈ GF (x∗) + NX (x∗),

Consider the multifunction Γ : Rn ×Rn ×R⇒ R
n ×R:

Γ (x , z , u) =
{

(R, v) : ∃g ∈ ∂f (x , u), ∃J1, J2 ∈ ∂h(x),

v = J1

(
ȳ(x , z)− x

)
+ b(h(x)− u), R = a

(
gx + J>2 gu − z

)}
.

With this notation,[
zk+1

uk+1

]
∈
[
zk

uk

]
+ τkΓ (xk+1, zk , uk) + τkθ

k+1 + τkα
k+1

with higher-order terms θk+1 and αk+1.
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Proof of convergence I

Lemma

The multifunction Γ is compact and convex valued.

Take two points from the output set. Consider the convexity of the
input sets and the procedures to generate an arbitrary point in the
output set.

Lemma

The sequences {zk} and {uk} are bounded with probability 1.
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Relevant work: robust learning with smooth losses

The authors in [Sinha et al., 2018] formulate M(P) as a
ρ-neighborhood of the probability law P under the Wasserstein
metric. They show that for a smooth loss and small enough
robustness level ρ, the stochastic gradient descent (SGD) method can
achieve the same rate of convergence as that in the standard smooth
non-convex optimization.

In [Jin et al., 2021], the authors consider smooth and Lipschitz
non-convex losses and use a soft penalty term based on f -divergence.
They analyzed the mini-batch normalized SGD with momentum and
proved a O(ε−4) sample complexity.

In [Soma & Yoshida, 2020], the authors proposed a conditional
value-at-risk (CVaR) formulation. They show that for convex,
Lipschitz and smooth losses their SGD-based algorithm has a
complexity of O(1/ε2), whereas for non-convex, smooth and Lipschitz
losses, the authors obtain a complexity of O(1/ε6).
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Relevant work: robust learning with convex losses

If formulated as finite-dimensional convex programs [Esfahani &
Kuhn, 2018],[Abadeh et al., 2015], [Chen & Pashalidis 2018], the
distributionally robust problem can be solved in polynomial time.

When M(P) is defined via the f -divergences and the loss is convex
and smooth, a sample-based approximation can be solved with a
bandit mirror descent algorithm [Namkoong & Duchi, 2016] with the
number of iterations comparable to that of the SGD.

For convex losses in the same formulation, conic interior point solvers
or gradient descent with backtracking Armijo line-searches [Duchi &
Namkoong, 2021] can be used but can be computationally expensive.

When the uncertainty set M(P) is based on the empirical distribution
of the data and is defined via the χ2-divergence or CVaR, and the loss
is convex and Lipschitz, [Levy et al., 2020] proposed algorithms that
achieve an optimal O(ε−2) rate which is independent of the training
dataset size and the number of parameters.
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Stochastic Momentum Methods

Three-parameter momentum methods for minimizing f (x):

xk+1 =xk + β(xk − xk−1)− α∇̃f (yk)

yk+1 =xk + γ(xk − xk−1)

Particular choice of parameters (triple momentum methods) without
noise is studied in [Hu & Lessard, 2017],[Scoy et al., 2018],[Cyrus et
al., 2018].

Generalizes many methods:

γ = β = 0 =⇒ Stochastic Gradient
γ = 0 =⇒ Stochastic Heavy Ball (HB)
γ = β =⇒ Stochastic Accelerated Gradient Descent (AGD)
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Sensitivity to noise/hyperparameters

Momentum methods are sensitive to persistent noise in the gradients
[d’Aspremont, 2008],[Devolder, 2013], may even diverge [Flammarion
& Bach, 2015].

Stochastic gradients: Trade-offs between averaging and acceleration
[Flammarion & Bach, 2015].
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Sensitivity to noise/hyperparameters

A stochastic dominance effect based on the choice of parameter.

The performance can be really bad unless the parameters are finely
tuned!

How to control the tail probabilities and deviation from mean as a
function of parameters?
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Entropic risk

Finite-horizon entropic risk at a given risk averseness θ > 0:

rk,σ2(θ) =
2σ2

θ
logE[e

θ
2σ2 f (xk )−f (x∗)]

Infinite-horizon entropic risk:

rσ2(θ) = lim sup
k→∞

rk,σ2(θ)

First-order expansion in θ:

rk,σ2(θ) = E[f (xk)− f (x∗)] +
θ

4σ2
E[|f (xk)− f (x∗)|2] + o(θ)

Chernoff bound

P
{
f (xk)− f (x∗) ≥ rk,σ2(θ) +

2σ2

θ
log(1/ζ)

}
≤ ζ

where ζ ∈ (0, 1) is the confidence level.
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Results

We invent a new Lyapunov function.

First-time fast deterministic rates 1−Θ(
√
α) for heavy ball

First-time rate, entropic risk, tail probability bounds for triple
momentum methods for general choice of parameters.

Show that there are trade-offs between convergence rate and
asymptotic risk level.

We optimally trade-off asymptotic risk and convergence rate.
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