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Pipeline of (classical) supervised learning

Assumption: Both “training data” and “test data” drawn from P
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Pipeline of supervised learning

Data distributions change due to
e time drift, dynamics (external effects)
e data generation itself reacts to learning rule

Training data
s&ip

Phase I: Training

Phase II: Deployment




Prior work: performative prediction

[Perdomo, Zrnic,Diinner,Hardt, 2020] data z includes features-+label; decision rule given by x
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Prior work: performative prediction

Q&L@EZND Uz,x) — QiQEzND(x) 0z, x)

Problem in x is nonconvex in general. Two paths forward:

e instead of optimality, check for performative stablility [Perdomo et al '20], [Mendler-Dunner
et al '20],[Drusvyatskiy, Xiao '20]

X = arg min E, p(x) 4z, x)

o describes fixed point of “retraining” (commonly used method)

e identify conditions that make the problem convex [Miller et al 2021], then use convex
optimization (e.g., [lzzo et al 2021])



Learning systems in real world: algorithms interact!

e multiple algorithms operate in an ecosystem
 population data reacts to the decisions of all algorithms (players)

10/25
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e multiple algorithms operate in an ecosystem
 population data reacts to the decisions of all algorithms (players)
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Post admissions
requirements

other settings: ride-share platforms, driving-map apps, loan decisions, ...
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This talk: Multi-player performative games

e model as an N-player game: each player solves for its own x; (where x_; denotes actions
of other players):

erngl)r}f B D, (%) Li(2isxi) i=1...,N
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This talk: Multi-player performative games

e model as an N-player game: each player solves for its own x; (where x_; denotes actions
of other players):

erngl)r}f B D, (%) Li(2isxi) i=1...,N

e consider:

o performatively stable points
e Nash equilibria: no incentive to deviate unilaterally

e study algorithms that converge to these points—under suitable conditions
e with access to different information/oracles, e.g., stochastic gradients

[Narang et al, AISTATS '22; arxiv], min-max: [Wood, Dall'Anese, '22]
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convex X; and

1. (Strong convexity, smoothness of losses)
(i) 4i(x, z;) is a-strongly convex in x
(ii) zi — Vili(x, z;) is pi-Lipschitz V x € X

2. (Lipschitz distributions) for some ; > 0,
Wi(Di(x), Di(y)) <villx=yll,  Vx,y € X =41 x... x A,

(Wasserstein-1 distance)

3. for all x € X, the map u; — E,  p, « li(x, zi) is
differentiable at u; = x; and its derivative is continuous



Challenge: two parts the gradient

Let’s write the product rule for the gradient at x for a single player:

minE, p() £(x, 2)

d
\Y EZND(X) E(X,Z) = EZND(X) vXE(X’Z) + EEZND(U) E(X’Z)‘U:X
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Challenge: two parts the gradient

Let's write the product rule for the gradient at x for a single player:

min EZND(X) E(X, Z)

d
\Y% EZND(X) €(x, Z) = ZND V f(X Z) + EEZN'D(U) E(X7Z)‘U:X

can compute by sampling  can't compute without knowing D

* naive (myopic): ignore 2nd term, just retrain

e non-myopic: estimate the 2nd term
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What does naive retraining converge to?

A fixed-point problem:

x*1 = argmin under D(x")

e when this map is a contraction, repeated retraining, repeated SGD, and variants converge
(linearly) to fixed point X

« contraction holds under assumptions 1,2, and p < 1 where p := 2/>" (B;v/)?

e generalizes “performative stability” from single-player case
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Non-myopic: Nash equilibrium for strongly monotone Games

o Definition: H is an a-strongly monotone map if
(H(z) = H(Z),z = Z) > al|lz = Z|? Yz, 7 e RY
e in our setting, let Hy(y) = (Hix(y), ..., Hnx(y)) where

d
HI,X(y) = E]EZ,'ND(U,',X,,')KI'(}/7 ZI)

Uj=Xxj

With assumptions 1-3, p < % and if x — Hy(y) is monotone in x for each y, then the game is
strongly monotone with parameter (1 — 2p) v, and admits a unique Nash equlibrium.

e generalizes "mixture dominance” of distribution from single player case
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Algorithms

For strongly monotone game, let x* be Nash equilibrium

1. Derivative Free Method:
e needs only samples from D(X;, x_;) and ¢(z;, X;) with random X; on a sphere around x;
o complexity: E[|[x — x*||?] < ¢ after O(g—j) iterations
[Drusvyatskiy, F., Ratliff, 2022],[Bravo et al, 2018]
e simple to use, but slow
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Algorithms

For strongly monotone game, let x* be Nash equilibrium

1. Derivative Free Method:
e needs only samples from D(X;, x_;) and ¢(z;, X;) with random X; on a sphere around x;
o complexity: E[||x — x*||?] < ¢ after O(g—j) iterations
[Drusvyatskiy, F., Ratliff, 2022],[Bravo et al, 2018]
e simple to use, but slow
2. Adaptive Method: (with parametric model for D;)

e learn parameters from data: inject noise and query, update parameter estimates, update
actions using estimated distribution
o complexity: O(2) iterations (for ‘nice’ distribution family)
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Numerical example: rideshare platforms

Companies seek to maximize revenues by adjusting prices
e x;: price adjustments across different locations for company i
e demand z; seen by company i: zi=C( 4+ Aixi+ A_ix_;

e (;: empirical demands
e x; and x_;: price adjustments
o A;, A_; price elasticities

o Company i's loss: Ui(xiyzi) = =z x; + %Hx,-H2



Numerical example: rideshare platforms

Companies seek to maximize revenues by adjusting prices
e x;: price adjustments across different locations for company i
e demand z; seen by company i: zi=C( 4+ Aixi+ A_ix_;
e (;: empirical demands
e x; and x_;: price adjustments
o A;, A_; price elasticities

o Company i's loss: Ui(xiyzi) = =z x; + %Hx,-H2

data from Kaggle: Uber & Lyft, 1 month, Boston. ride data (location, time) and weather

semi-synthetic experiments



Numerical example: rideshare platforms
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Numerical example: rideshare platforms

Revenue change by location over the myopic case (=not modeling performative term)
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Summary & remarks

In addition to ‘indirect’ coupling in distribution map D(x;, x_;), can handle ¢;(x;, x_;, z;)

Retraining algorithms converge to fixed points under mild assumptions

Under stronger assumption of strongly monotone game, convergence to Nash (with
different oracle settings)

Open directions: non-Lipschitz distributions; more empirical studies



