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Thank you Steve!

• NSF TRIPODS Phase II: Washington, Wisconsin, UC Santa Cruz, U Chicago

• Not possible (nor any fun!) without Steve... THANK YOU!
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Pipeline of (classical) supervised learning

Assumption: Both “training data” and “test data” drawn from P

Pipeline of Supervised Learning

Training data

S
i.i.d⇠ P

Learning system
(Algorithm)

Learning Rule

x 2 Rd

New data
z ⇠ P Prediction

Learning Rule

x 2 Rd
Phase I: Training

Phase II: Deployment

Key Assumption: Both test data and training data drawn from P

Example (passive interaction):
Bank loan approval influences debt/credit score/#loans.

Example (active interaction):

[strategic behavior/gaming]

Individuals alter features to increase likelihood of loan approval.

Perdomo-Zrnic-Dünner-Hardt ’20 call this setting performative prediction
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Pipeline of supervised learning

Data distributions change due to
• time drift, dynamics (external effects)
• data generation itself reacts to learning rule

Learning systems do not exist in isolation. . .

Training data

S
i.i.d⇠ P

Learning system
(Algorithm)

Learning Rule

x 2 Rd

New data
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Prior work: performative prediction

[Perdomo,Zrnic,Dünner,Hardt, 2020] data z includes features+label; decision rule given by x

min
x∈X

Ez∼D `(z , x) −→ min
x∈X

Ez∼D(x) `(z , x)

Post admissions 
requirements

Strategically create application 
in response
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Prior work: performative prediction

min
x∈X

Ez∼D `(z , x) −→ min
x∈X

Ez∼D(x) `(z , x)

Problem in x is nonconvex in general. Two paths forward:

• instead of optimality, check for performative stablility [Perdomo et al ’20], [Mendler-Dunner

et al ’20],[Drusvyatskiy, Xiao ’20]

x̄ = arg min
x∈X

Ez∼D(x̄) `(z , x)

• describes fixed point of “retraining” (commonly used method)

• identify conditions that make the problem convex [Miller et al 2021], then use convex
optimization (e.g., [Izzo et al 2021])
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Learning systems in real world: algorithms interact!

• multiple algorithms operate in an ecosystem
• population data reacts to the decisions of all algorithms (players)

Post admissions 
requirements

Strategically create applications 
in response

Post admissions 
requirements

other settings: ride-share platforms, driving-map apps, loan decisions, . . .
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This talk: Multi-player performative games

• model as an N-player game: each player solves for its own xi (where x−i denotes actions
of other players):

min
xi∈Xi

Ezi∼Di (xi ,x−i ) `i (zi , xi ) i = 1 . . . ,N

• consider:
• performatively stable points
• Nash equilibria: no incentive to deviate unilaterally

• study algorithms that converge to these points—under suitable conditions
• with access to different information/oracles, e.g., stochastic gradients

[Narang et al, AISTATS ’22; arxiv], min-max: [Wood, Dall’Anese, ’22]
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Assumptions

convex Xi and

1. (Strong convexity, smoothness of losses)
(i) `i (x , zi ) is α-strongly convex in x
(ii) zi 7→ ∇i`i (x , zi ) is βi -Lipschitz ∀ x ∈ X

2. (Lipschitz distributions) for some γi > 0,

W1(Di (x),Di (y)) ≤ γi ‖x − y‖, ∀x , y ∈ X = X1 × . . .×XN ,

(Wasserstein-1 distance)

3. (Smoothness of distribution) for all x ∈ X , the map ui 7→ Ezi∼D(ui ,x−i )`i (x , zi ) is
differentiable at ui = xi and its derivative is continuous
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Challenge: two parts the gradient

Let’s write the product rule for the gradient at x for a single player:

min
x

Ez∼D(x) `(x , z)

∇ Ez∼D(x) `(x , z) = Ez∼D(x) ∇x`(x , z) +
d

du
Ez∼D(u) `(x , z)|u=x
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Challenge: two parts the gradient

Let’s write the product rule for the gradient at x for a single player:

min
x

Ez∼D(x) `(x , z)

∇ Ez∼D(x) `(x , z) = Ez∼D(x) ∇x`(x , z)︸ ︷︷ ︸
can compute by sampling

+
d

du
Ez∼D(u) `(x , z)|u=x︸ ︷︷ ︸

can’t compute without knowing D

• naive (myopic): ignore 2nd term, just retrain

• non-myopic: estimate the 2nd term
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What does naive retraining converge to?

A fixed-point problem:
x t+1 = argmin under D(x t)

• when this map is a contraction, repeated retraining, repeated SGD, and variants converge
(linearly) to fixed point x̄

• contraction holds under assumptions 1,2, and ρ < 1 where ρ := 1
α

√∑
i (βiγi )

2

• generalizes “performative stability” from single-player case
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Non-myopic: Nash equilibrium for strongly monotone Games

• Definition: H is an α-strongly monotone map if

〈H(z)− H(z ′), z − z ′〉 ≥ α‖z − z ′‖2 ∀ z , z ′ ∈ Rd .

• in our setting, let Hx(y) = (H1,x(y), . . . ,Hn,x(y)) where

Hi ,x(y) :=
d

dui
Ezi∼D(ui ,x−i )`i (y , zi )

∣∣∣
ui=xi

Theorem

With assumptions 1-3, ρ < 1
2 , and if x 7→ Hx(y) is monotone in x for each y, then the game is

strongly monotone with parameter (1− 2ρ)α, and admits a unique Nash equlibrium.

• generalizes “mixture dominance” of distribution from single player case
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Algorithms

For strongly monotone game, let x? be Nash equilibrium

1. Derivative Free Method:
• needs only samples from D(x̂i , x−i ) and `(zi , x̂i ) with random x̂i on a sphere around xi
• complexity: E[‖x − x?‖2] ≤ ε after O( d2

ε2 ) iterations
[Drusvyatskiy, F., Ratliff, 2022],[Bravo et al, 2018]

• simple to use, but slow

2. Adaptive Method: (with parametric model for Di )
• learn parameters from data: inject noise and query, update parameter estimates, update

actions using estimated distribution
• complexity: O( d

ε ) iterations (for ‘nice’ distribution family)

19 / 25



Algorithms

For strongly monotone game, let x? be Nash equilibrium

1. Derivative Free Method:
• needs only samples from D(x̂i , x−i ) and `(zi , x̂i ) with random x̂i on a sphere around xi
• complexity: E[‖x − x?‖2] ≤ ε after O( d2

ε2 ) iterations
[Drusvyatskiy, F., Ratliff, 2022],[Bravo et al, 2018]

• simple to use, but slow

2. Adaptive Method: (with parametric model for Di )
• learn parameters from data: inject noise and query, update parameter estimates, update

actions using estimated distribution
• complexity: O( d

ε ) iterations (for ‘nice’ distribution family)

20 / 25



Numerical example: rideshare platforms

Companies seek to maximize revenues by adjusting prices

• xi : price adjustments across different locations for company i

• demand zi seen by company i : zi = ζi + Aixi + A−ix−i

• ζi : empirical demands
• xi and x−i : price adjustments
• Ai , A−i price elasticities

• Company i ’s loss: `i (xi , zi ) = −z>i xi + λi
2 ‖xi‖2

• data from Kaggle: Uber & Lyft, 1 month, Boston. ride data (location, time) and weather

• semi-synthetic experiments
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Numerical example: rideshare platforms

• Companies’ price adjustments
across locations given in xi (for
company i)

• Convergence to Nash for
strongly monotone game

23 / 25



Numerical example: rideshare platforms

Revenue change by location over the myopic case (=not modeling performative term)

© Mapbox © OpenStreetMap

Uber
Lyft
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Summary & remarks

• In addition to ‘indirect’ coupling in distribution map D(xi , x−i ), can handle `i (xi , x−i , zi )

• Retraining algorithms converge to fixed points under mild assumptions

• Under stronger assumption of strongly monotone game, convergence to Nash (with
different oracle settings)

• Open directions: non-Lipschitz distributions; more empirical studies
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