Multiplayer performative prediction

Maryam Fazel Univ. of Washington

Joint work with:

Adhyyan Narang, Evan Faulkner, Dima Druvsyatskiy, Lillian Ratliff

Oaxaca Workshop on Optimization, Jan 9-13 2023

Thank you Steve!

- NSF TRIPODS Phase II: Washington, Wisconsin, UC Santa Cruz, U Chicago
- Not possible (nor any fun!) without Steve... THANK YOU!

Pipeline of (classical) supervised learning

Assumption: Both "training data" and "test data" drawn from ${\cal P}$

Pipeline of supervised learning

Data distributions change due to

- time drift, dynamics (external effects)
- data generation itself reacts to learning rule

[Perdomo, Zrnic, Dünner, Hardt, 2020] data z includes features+label; decision rule given by x

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ \ell(\mathbf{z}, \mathbf{x}) \quad \longrightarrow \quad \min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(\mathbf{x})} \ \ell(\mathbf{z}, \mathbf{x})$$

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ \ell(\mathbf{z}, \mathbf{x}) \quad \longrightarrow \quad \min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(\mathbf{x})} \ \ell(\mathbf{z}, \mathbf{x})$$

Problem in x is nonconvex in general. Two paths forward:

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ \ell(\mathbf{z}, \mathbf{x}) \quad \longrightarrow \quad \min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(\mathbf{x})} \ \ell(\mathbf{z}, \mathbf{x})$$

Problem in x is nonconvex in general. Two paths forward:

 instead of optimality, check for performative stablility [Perdomo et al '20], [Mendler-Dunner et al '20], [Drusvyatskiy, Xiao '20]

$$ar{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(ar{\mathbf{x}})} \ \ell(\mathbf{z}, \mathbf{x})$$

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ \ell(\mathbf{z}, \mathbf{x}) \quad \longrightarrow \quad \min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(\mathbf{x})} \ \ell(\mathbf{z}, \mathbf{x})$$

Problem in x is nonconvex in general. Two paths forward:

 instead of optimality, check for performative stablility [Perdomo et al '20], [Mendler-Dunner et al '20], [Drusvyatskiy, Xiao '20]

$$ar{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(ar{\mathbf{x}})} \ \ell(\mathbf{z}, \mathbf{x})$$

describes fixed point of "retraining" (commonly used method)

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}} \ \ell(\mathbf{z}, \mathbf{x}) \quad \longrightarrow \quad \min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(\mathbf{x})} \ \ell(\mathbf{z}, \mathbf{x})$$

Problem in x is nonconvex in general. Two paths forward:

 instead of optimality, check for performative stablility [Perdomo et al '20], [Mendler-Dunner et al '20], [Drusvyatskiy, Xiao '20]

$$ar{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim \mathcal{D}(ar{\mathbf{x}})} \ \ell(\mathbf{z}, \mathbf{x})$$

- describes fixed point of "retraining" (commonly used method)
- identify conditions that make the problem convex [Miller et al 2021], then use convex optimization (e.g., [Izzo et al 2021])

Learning systems in real world: algorithms interact!

- multiple algorithms operate in an ecosystem
- population data reacts to the decisions of all algorithms (players)

Learning systems in real world: algorithms interact!

- multiple algorithms operate in an ecosystem
- population data reacts to the decisions of all algorithms (players)

other settings: ride-share platforms, driving-map apps, loan decisions, ...

This talk: Multi-player performative games

• model as an N-player game: each player solves for its own x_i (where x_{-i} denotes actions of other players):

$$\min_{\mathsf{x}_i \in \mathcal{X}_i} \mathbb{E}_{\mathsf{z}_i \sim \mathcal{D}_i(\mathsf{x}_i, \mathsf{x}_{-i})} \ell_i(\mathsf{z}_i, \mathsf{x}_i) \qquad i = 1 \dots, \mathsf{N}$$

This talk: Multi-player performative games

• model as an N-player game: each player solves for its own x_i (where x_{-i} denotes actions of other players):

$$\min_{x_i \in \mathcal{X}_i} \mathbb{E}_{z_i \sim \mathcal{D}_i(\mathbf{x}_i, \mathbf{x}_{-i})} \ell_i(z_i, x_i) \qquad i = 1 \dots, N$$

- consider:
 - performatively stable points
 - Nash equilibria: no incentive to deviate unilaterally
- study algorithms that converge to these points—under suitable conditions
 - with access to different information/oracles, e.g., stochastic gradients

[Narang et al, AISTATS '22; arxiv], min-max: [Wood, Dall'Anese, '22]

Assumptions

convex \mathcal{X}_i and

- 1. (Strong convexity, smoothness of losses)
 - (i) $\ell_i(x, z_i)$ is α -strongly convex in x
 - (ii) $z_i \mapsto \nabla_i \ell_i(x, z_i)$ is β_i -Lipschitz $\forall x \in \mathcal{X}$
- 2. (Lipschitz distributions) for some $\gamma_i > 0$,

$$W_1(\mathcal{D}_i(x), \mathcal{D}_i(y)) \leq \gamma_i \|x - y\|, \quad \forall x, y \in \mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_N,$$

(Wasserstein-1 distance)

3. (Smoothness of distribution) for all $x \in \mathcal{X}$, the map $u_i \mapsto \mathbb{E}_{z_i \sim \mathcal{D}(u_i, x_{-i})} \ell_i(x, z_i)$ is differentiable at $u_i = x_i$ and its derivative is continuous

Challenge: two parts the gradient

Let's write the product rule for the gradient at x for a single player:

$$\min_{x} \mathbb{E}_{z \sim \mathcal{D}(x)} \ \ell(x, z)$$

$$\nabla \mathbb{E}_{z \sim \mathcal{D}(x)} \ell(x, z) = \mathbb{E}_{z \sim \mathcal{D}(x)} \nabla_x \ell(x, z) + \frac{d}{du} \mathbb{E}_{z \sim \mathcal{D}(u)} \ell(x, z)|_{u = x}$$

Challenge: two parts the gradient

Let's write the product rule for the gradient at *x* for a single player:

$$\min_{x} \mathbb{E}_{z \sim \mathcal{D}(x)} \ \ell(x, z)$$

$$\nabla \mathbb{E}_{z \sim \mathcal{D}(x)} \ell(x, z) = \underbrace{\mathbb{E}_{z \sim \mathcal{D}(x)} \nabla_x \ell(x, z)}_{\text{can compute by sampling}} + \underbrace{\frac{d}{du} \mathbb{E}_{z \sim \mathcal{D}(u)} \ell(x, z)|_{u = x}}_{\text{can't compute without knowing } \mathcal{D}}$$

- naive (myopic): ignore 2nd term, just retrain
- non-myopic: estimate the 2nd term

What does naive retraining converge to?

A fixed-point problem:

$$x^{t+1} = \operatorname{argmin} \operatorname{under} \mathcal{D}(x^t)$$

- when this map is a contraction, repeated retraining, repeated SGD, and variants converge (linearly) to fixed point \bar{x}
- contraction holds under assumptions 1,2, and $\rho < 1$ where $\rho := \frac{1}{\alpha} \sqrt{\sum_i (\beta_i \gamma_i)^2}$
- generalizes "performative stability" from single-player case

Non-myopic: Nash equilibrium for strongly monotone Games

• Definition: H is an α -strongly monotone map if

$$\langle H(z) - H(z'), z - z' \rangle \ge \alpha ||z - z'||^2 \quad \forall z, z' \in \mathbb{R}^d.$$

• in our setting, let $H_x(y) = (H_{1,x}(y), \dots, H_{n,x}(y))$ where

$$H_{i,\mathbf{x}}(\mathbf{y}) := \frac{d}{du_i} \mathbb{E}_{z_i \sim \mathcal{D}(u_i,\mathbf{x}_{-i})} \ell_i(\mathbf{y}, z_i) \Big|_{u_i = \mathbf{x}_i}$$

Theorem

With assumptions 1-3, $\rho < \frac{1}{2}$, and if $x \mapsto H_x(y)$ is monotone in x for each y, then the game is strongly monotone with parameter $(1-2\rho)\alpha$, and admits a unique Nash equilibrium.

generalizes "mixture dominance" of distribution from single player case

Algorithms

For strongly monotone game, let x^* be Nash equilibrium

- 1. Derivative Free Method:
 - needs only samples from $\mathcal{D}(\hat{x}_i, x_{-i})$ and $\ell(z_i, \hat{x}_i)$ with random \hat{x}_i on a sphere around x_i
 - complexity: $\mathbb{E}[\|x-x^\star\|^2] \le \varepsilon$ after $O(\frac{d^2}{\varepsilon^2})$ iterations [Drusvyatskiy, F., Ratliff, 2022],[Bravo et al, 2018]
 - simple to use, but slow

Algorithms

For strongly monotone game, let x^* be Nash equilibrium

- 1. Derivative Free Method:
 - needs only samples from $\mathcal{D}(\hat{x}_i, x_{-i})$ and $\ell(z_i, \hat{x}_i)$ with random \hat{x}_i on a sphere around x_i
 - complexity: $\mathbb{E}[\|x-x^\star\|^2] \le \varepsilon$ after $O(\frac{d^2}{\varepsilon^2})$ iterations [Drusvyatskiy, F., Ratliff, 2022],[Bravo et al, 2018]
 - simple to use, but slow
- 2. Adaptive Method: (with parametric model for \mathcal{D}_i)
 - learn parameters from data: inject noise and query, update parameter estimates, update actions using estimated distribution
 - complexity: $O(\frac{d}{\varepsilon})$ iterations (for 'nice' distribution family)

Companies seek to maximize revenues by adjusting prices

- x_i : price adjustments across different locations for company i
- demand z_i seen by company i: $z_i = \zeta_i + A_i x_i + A_{-i} x_{-i}$
 - ζ_i : empirical demands
 - x_i and x_{-i} : price adjustments
 - A_i , A_{-i} price elasticities
- Company *i*'s loss: $\ell_i(x_i, z_i) = -z_i^{\top} x_i + \frac{\lambda_i}{2} ||x_i||^2$

Companies seek to maximize revenues by adjusting prices

- x_i : price adjustments across different locations for company i
- demand z_i seen by company i: $z_i = \zeta_i + A_i x_i + A_{-i} x_{-i}$
 - ζ_i : empirical demands
 - x_i and x_{-i} : price adjustments
 - A_i , A_{-i} price elasticities
- Company i's loss: $\ell_i(x_i, z_i) = -z_i^{\top} x_i + \frac{\lambda_i}{2} ||x_i||^2$
- data from Kaggle: Uber & Lyft, 1 month, Boston. ride data (location, time) and weather
- semi-synthetic experiments

- Companies' price adjustments across locations given in x_i (for company i)
- Convergence to Nash for strongly monotone game

Revenue change by location over the myopic case (=not modeling performative term)

Summary & remarks

- In addition to 'indirect' coupling in distribution map $\mathcal{D}(x_i, x_{-i})$, can handle $\ell_i(x_i, x_{-i}, z_i)$
- Retraining algorithms converge to fixed points under mild assumptions
- Under stronger assumption of strongly monotone game, convergence to Nash (with different oracle settings)
- Open directions: non-Lipschitz distributions; more empirical studies