Weighted Trust-Region Methods

Johannes J. Brust¹ Philip E. Gill¹

¹Department of Mathematics University of California, San Diego, CA

US & Mexico Workshop on Optimization and its Applications

January 9 -13th, 2023

Problem formulation

Method

Numerical Experiments

Conclusions

Problem Formulation

Nonlinear unconstrained optimization

 $\underset{\mathbf{x}\in\mathbb{R}^{n}}{\text{minimize }}f(\mathbf{x})$

where $f : \mathbb{R}^n \to \mathbb{R}$.

Problem Formulation

Nonlinear unconstrained optimization

 $\underset{\mathbf{x}\in\mathbb{R}^{n}}{\text{minimize }}f(\mathbf{x})$

where $f : \mathbb{R}^n \to \mathbb{R}$.

Assumptions:

- f is twice continuously differentiable
- Gradients $\nabla f(\mathbf{x})$ are available
- Second derivatives are unavailable

Trust-Region Step

Iterates are updated in a trust-region method: $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$

Trust-Region Step

Iterates are updated in a trust-region method: $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$

A quadratic subproblem defines a step:

$$\underset{\|\mathbf{s}\| \leq \Delta_k}{\operatorname{argmin}} \ \mathbf{s}^\top \mathbf{g}_k + \frac{1}{2} \mathbf{s}^\top B_k \mathbf{s}$$

 $0 < \Delta_k$ (radius), $\mathbf{g}_k = \nabla f(\mathbf{x}_k)$, B_k (symmetric $n \times n$)

Trust-Region Step

Iterates are updated in a trust-region method: $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$

A quadratic subproblem defines a step:

$$\underset{\|\mathbf{s}\| \leq \Delta_k}{\operatorname{argmin}} \ \mathbf{s}^\top \mathbf{g}_k + \frac{1}{2} \mathbf{s}^\top B_k \mathbf{s}$$

 $0 < \Delta_k$ (radius), $\mathbf{g}_k = \nabla f(\mathbf{x}_k)$, B_k (symmetric $n \times n$)

Typical norms are the two-norm or infinity-norm.

Typical subproblem norms

Computing the trust-region step is normally challenging.

Related Work

For efficiency, often approximate solutions to the trust-region subproblem are effective, with a family of methods:

[Moré and Sorenson, '81]: Sequence of Cholesky factorizations

[Steihaug, '83]: Truncated conjuage-gradient

[Gertz, '04]: Infinity norm trust-region quasi-Newton

[Nocedal and Wright, '06]: Dogleg method

Related Work

For efficiency, often approximate solutions to the trust-region subproblem are effective, with a family of methods:

[Moré and Sorenson, '81]: Sequence of Cholesky factorizations

[Steihaug, '83]: Truncated conjuage-gradient

[Gertz, '04]: Infinity norm trust-region quasi-Newton

[Nocedal and Wright, '06]: Dogleg method

Even these methods can be computationally intensive for large problems, or not applicable to indefinite subproblems.

Suppose a stable symmetric indefinite factorization is obtained

$$B_k = L_k D_k L_k^{\top},$$

 L_k is lower triangular with **normalized columns**, D_k is diagonal.

Suppose a stable symmetric indefinite factorization is obtained

$$B_k = L_k D_k L_k^{\top},$$

 L_k is lower triangular with **normalized columns**, D_k is diagonal.

Properties:

- D_k and B_k share the same inertia
- Solves with the factorization are efficient
- Effective rank-1 updates to the factorization

Use the factorization for a change of variable: $\mathbf{v} = L_k^{\top} \mathbf{s}$ and

$$\mathbf{s}^{ op} B_k \mathbf{s} = \mathbf{s}^{ op} L_k D_k L_k^{ op} \mathbf{s} = \mathbf{v}^{ op} D_k \mathbf{v}$$

A diagonal Hessian in the new variables.

Use the factorization for a change of variable: $\mathbf{v} = L_k^{\top} \mathbf{s}$ and

$$\mathbf{s}^{\top}B_k\mathbf{s} = \mathbf{s}^{\top}L_kD_kL_k^{\top}\mathbf{s} = \mathbf{v}^{\top}D_k\mathbf{v}$$

A diagonal Hessian in the new variables.

Consider the weighted norm

$$\|\mathbf{v}\| = \|L_k^ op \mathbf{s}\| \leq \Delta_k$$

Use the factorization for a change of variable: $\mathbf{v} = L_k^{\top} \mathbf{s}$ and

$$\mathbf{s}^{\top} B_k \mathbf{s} = \mathbf{s}^{\top} L_k D_k L_k^{\top} \mathbf{s} = \mathbf{v}^{\top} D_k \mathbf{v}$$

A diagonal Hessian in the new variables.

Consider the weighted norm

$$\|\mathbf{v}\| = \|L_k^{ op}\mathbf{s}\| \leq \Delta_k$$

The trust-region subproblem simplifies this way.

Use the factorization for a change of variable: $\mathbf{v} = L_k^{\top} \mathbf{s}$ and

$$\mathbf{s}^{\top} B_k \mathbf{s} = \mathbf{s}^{\top} L_k D_k L_k^{\top} \mathbf{s} = \mathbf{v}^{\top} D_k \mathbf{v}$$

A diagonal Hessian in the new variables.

Consider the weighted norm

$$\|\mathbf{v}\| = \|L_k^ op \mathbf{s}\| \leq \Delta_k$$

The trust-region subproblem simplifies this way.

Note: $\mathbf{s}^{\top}\mathbf{g}_k = \mathbf{v}^{\top}L_k^{-1}\mathbf{g}_k$

The weighted trust-region subproblem (WTR)

$$\min_{\|\boldsymbol{L}_{k}^{\top}\mathbf{s}\|\leq\Delta_{k}}\mathbf{s}^{\top}\mathbf{g}_{k}+\frac{1}{2}\mathbf{s}^{\top}B_{k}\mathbf{s} = \min_{\|\mathbf{v}\|\leq\Delta_{k}}\mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}$$

The weighted trust-region subproblem (WTR)

$$\min_{\|\boldsymbol{L}_{k}^{\top}\mathbf{s}\|\leq\Delta_{k}}\mathbf{s}^{\top}\mathbf{g}_{k}+\frac{1}{2}\mathbf{s}^{\top}B_{k}\mathbf{s} = \min_{\|\mathbf{v}\|\leq\Delta_{k}}\mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}$$

Properties:

- The solution \mathbf{v}_k to (WTR) can be found straightforwardly
- The step from a triangular solve $\mathbf{s}_k = L_k^{-\top} \mathbf{v}_k$

The weighted trust-region subproblem (WTR)

$$\min_{\|\boldsymbol{L}_{k}^{\top}\mathbf{s}\|\leq\Delta_{k}}\mathbf{s}^{\top}\mathbf{g}_{k}+\frac{1}{2}\mathbf{s}^{\top}B_{k}\mathbf{s} = \min_{\|\mathbf{v}\|\leq\Delta_{k}}\mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}$$

Properties:

- The solution \mathbf{v}_k to (WTR) can be found straightforwardly
- The step from a triangular solve $\mathbf{s}_k = L_k^{-\top} \mathbf{v}_k$

Different weighted norms are possible, e.g. $\|L_k^{\top} \mathbf{s}\|_2$ or $\|L_k^{\top} \mathbf{s}\|_{\infty}$

Weighted Subproblems: WTR

Computing the weighted trust-region step $L^{\top} \mathbf{s}_k = \mathbf{v}_k$ is less challenging.

Solve the trust-region subproblem

minimize
$$\mathbf{v}^{\top} L_k^{-1} \mathbf{g}_k + \frac{1}{2} \mathbf{v}^{\top} D_k \mathbf{v}.$$

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_2 \leq \Delta_k}{\text{minimize}} \mathbf{v}^\top L_k^{-1} \mathbf{g}_k + \frac{1}{2} \mathbf{v}^\top D_k \mathbf{v}.$$

Find a pair (\mathbf{v}_k, σ_k) that satisfies the optimality conditions: $\sigma_k \ge 0$,

$$(D_k + \sigma_k I) \succeq 0, \quad (D_k + \sigma_k I) \mathbf{v}_k = -L_k^{-1} \mathbf{g}_k, \quad \sigma_k (\|\mathbf{v}_k\|_2 - \Delta_k) = 0$$

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_2 \leq \Delta_k}{\text{minimize}} \mathbf{v}^\top L_k^{-1} \mathbf{g}_k + \frac{1}{2} \mathbf{v}^\top D_k \mathbf{v}.$$

Find a pair (\mathbf{v}_k, σ_k) that satisfies the optimality conditions: $\sigma_k \ge 0$,

$$(D_k + \sigma_k I) \succeq 0, \quad (D_k + \sigma_k I) \mathbf{v}_k = -L_k^{-1} \mathbf{g}_k, \quad \sigma_k (\|\mathbf{v}_k\|_2 - \Delta_k) = 0$$

A **1D Newton iteration** can efficiently determine σ_k and \mathbf{v}_k , since D_k is diagonal.

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_2 \leq \Delta_k}{\text{minimize}} \mathbf{v}^\top L_k^{-1} \mathbf{g}_k + \frac{1}{2} \mathbf{v}^\top D_k \mathbf{v}.$$

Find a pair (\mathbf{v}_k, σ_k) that satisfies the optimality conditions: $\sigma_k \ge 0$,

$$(D_k + \sigma_k I) \succeq 0, \quad (D_k + \sigma_k I) \mathbf{v}_k = -L_k^{-1} \mathbf{g}_k, \quad \sigma_k (\|\mathbf{v}_k\|_2 - \Delta_k) = 0$$

A **1D Newton iteration** can efficiently determine σ_k and \mathbf{v}_k , since D_k is diagonal.

Obtain the step from a triangular solve $\mathbf{s}_k = L_k^{-\top} \mathbf{v}_k$.

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_{\infty}\leq\Delta_{k}}{\text{minimize}} \mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}.$$

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_{\infty}\leq\Delta_{k}}{\text{minimize}} \mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}.$$

Note: Since D_k is diagonal the problem is separable

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_{\infty}\leq\Delta_{k}}{\text{minimize}} \mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}.$$

Note: Since D_k is diagonal the problem is separable

The analytic solution, when D_k is positive definite is

$$(\mathbf{v}_k)_i = \min(\Delta_k, \max(-\Delta_k, -(D_k^{-1}L_k^{-1}\mathbf{g}_k)_i))$$

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_{\infty}\leq\Delta_{k}}{\text{minimize}} \mathbf{v}^{\top}L_{k}^{-1}\mathbf{g}_{k}+\frac{1}{2}\mathbf{v}^{\top}D_{k}\mathbf{v}.$$

Note: Since D_k is diagonal the problem is separable

The analytic solution, when D_k is positive definite is

$$(\mathbf{v}_k)_i = \min(\Delta_k, \max(-\Delta_k, -(D_k^{-1}L_k^{-1}\mathbf{g}_k)_i))$$

Obtain the step from a triangular solve $\mathbf{s}_k = L_k^{-\top} \mathbf{v}_k$.

Solve the trust-region subproblem

$$\underset{\|\mathbf{v}\|_{\infty} \leq \Delta_{k}}{\text{minimize}} \mathbf{v}^{\top} L_{k}^{-1} \mathbf{g}_{k} + \frac{1}{2} \mathbf{v}^{\top} D_{k} \mathbf{v}.$$

Note: Since D_k is diagonal the problem is separable

The analytic solution, when D_k is positive definite is

$$(\mathbf{v}_k)_i = \min(\Delta_k, \max(-\Delta_k, -(D_k^{-1}L_k^{-1}\mathbf{g}_k)_i))$$

Obtain the step from a triangular solve $\mathbf{s}_k = L_k^{-\top} \mathbf{v}_k$. (An analytic solution is also found when D_k is indefinite)

Theoretical Bounds

Bounds of the weighted norms: $\|L_k^{\top} \mathbf{s}\|_2$ and $\|L_k^{\top} \mathbf{s}\|_{\infty}$

Theoretical Bounds

Bounds of the weighted norms: $\|L_k^{\top} \mathbf{s}\|_2$ and $\|L_k^{\top} \mathbf{s}\|_{\infty}$

Lower triangular matrix with normalized columns

$$L_k^{\top} = \begin{bmatrix} l_{11} & l_{21} & l_{31} & l_{41} \\ & l_{22} & l_{32} & l_{42} \\ & & l_{33} & l_{43} \\ & & & 1 \end{bmatrix}, \quad \text{diag}(L_k^{\top} L_k) = I$$

Theoretical Bounds

Bounds of the weighted norms: $\|L_k^{\top} \mathbf{s}\|_2$ and $\|L_k^{\top} \mathbf{s}\|_{\infty}$

Lower triangular matrix with normalized columns

$$L_k^{ op} = egin{bmatrix} l_{11} & l_{21} & l_{31} & l_{41} \ & l_{22} & l_{32} & l_{42} \ & & l_{33} & l_{43} \ & & & 1 \end{bmatrix}, \qquad ext{diag}(L_k^{ op}L_k) = I$$

For σ_1 the smallest singular value of L_k then

$$\sigma_1 \|\mathbf{s}\|_2 \le \|L_k^\top \mathbf{s}\|_2 \le \sqrt{n} \|\mathbf{s}\|_2,$$

 $|s_n| \le \|L_k^\top \mathbf{s}\|_\infty \le n \|\mathbf{s}\|_\infty$

Implementation

The Hessian is estimated by a BFGS matrix.

$$B_{k+1} = B_k - \frac{1}{\mathbf{s}_k^\top B_k \mathbf{s}_k} B_k \mathbf{s}_k^\top B_k + \frac{1}{\mathbf{s}_k^\top \mathbf{y}_k} \mathbf{y}_k^\top$$

Here, $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, $\mathbf{y}_k = \mathbf{g}_{k+1} - \mathbf{g}_k$ and $\mathbf{s}_k^\top \mathbf{y}_k > 0$ ensures positive definiteness.

Implementation

The Hessian is estimated by a BFGS matrix.

$$B_{k+1} = B_k - \frac{1}{\mathbf{s}_k^\top B_k \mathbf{s}_k} B_k \mathbf{s}_k^\top B_k + \frac{1}{\mathbf{s}_k^\top \mathbf{y}_k} \mathbf{y}_k \mathbf{y}_k^\top$$

Here, $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, $\mathbf{y}_k = \mathbf{g}_{k+1} - \mathbf{g}_k$ and $\mathbf{s}_k^\top \mathbf{y}_k > 0$ ensures positive definiteness.

[Gill, Saunders et al., '74]: Updates for the factorization

$$L_{k+1}D_{k+1}L_{k+1}^{\top} = L_kD_kL_k^{\top} - [\text{rank-1}] + [\text{rank-1}]$$

Implementation

The Hessian is estimated by a BFGS matrix.

$$B_{k+1} = B_k - \frac{1}{\mathbf{s}_k^\top B_k \mathbf{s}_k} B_k \mathbf{s}_k \mathbf{s}_k^\top B_k + \frac{1}{\mathbf{s}_k^\top \mathbf{y}_k} \mathbf{y}_k \mathbf{y}_k^\top$$

Here, $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$, $\mathbf{y}_k = \mathbf{g}_{k+1} - \mathbf{g}_k$ and $\mathbf{s}_k^\top \mathbf{y}_k > 0$ ensures positive definiteness.

[Gill, Saunders et al., '74]: Updates for the factorization

$$L_{k+1}D_{k+1}L_{k+1}^{\top} = L_kD_kL_k^{\top} - [\text{rank-1}] + [\text{rank-1}]$$

Other Hessian estimates (e.g., SR1) are possible.

Example: Rosenbrock 2D function

WOA 23 | johannesbrust.com | 25 of 58

WOA 23 | johannesbrust.com | 46 of 58

Additional Settings

A. If $d_n/d_1 \ge 10^{16}$ restart (conditioning)

B. Skip update if $\mathbf{s}_k^{\top} \mathbf{y}_k < 0$ If ≥ 20 consecutive skips restart (definiteness)

C. If
$$\frac{\|\mathbf{g}_k\|}{\|\mathbf{g}_{\mathsf{RST}}\|} \le 10^{-2}$$
 and $\left(\frac{|\gamma_k|}{|\gamma_{\mathsf{RST}}|} \ge 10 \text{ or } \frac{|\gamma_k|}{|\gamma_{\mathsf{RST}}|} \le 10^{-1}\right)$ restart (only for large problems, i.e., $n > 1000$) (scaling)

D. Initialization $\gamma_k I = B_0$ on restart $\gamma_k = \frac{\|\mathbf{g}_k\|}{\alpha_k}$ α_k is the step size of a line search after restart

Additional Settings

Count near:

If $\Delta_k \leq 10^{-4} \times \epsilon$ and

$$\begin{split} \| \mathbf{g}_k \|_2 &\leq 5 \times 10^{-8} \| \mathbf{g}_0 \|_2 & \text{or} \\ |f_k| &\leq 5 \times 10^{-11} |f_0| & \text{or} \\ \| \mathbf{g}_k \|_2 &\leq \sqrt{n} \times \epsilon \end{split}$$

Parameters:

maxiter = 15000, $\epsilon = 10^{-4}$, optimal if $\|\mathbf{g}_k\|_2 < \epsilon$
Additional Settings

Count near:

If $\Delta_k \leq 10^{-4} \times \epsilon$ and

$$\begin{split} \| \mathbf{g}_k \|_2 &\leq 5 \times 10^{-8} \| \mathbf{g}_0 \|_2 & \text{or} \\ |f_k| &\leq 5 \times 10^{-11} |f_0| & \text{or} \\ \| \mathbf{g}_k \|_2 &\leq \sqrt{n} \times \epsilon \end{split}$$

Parameters:

maxiter = 15000, $\epsilon = 10^{-4}$, optimal if $\|\mathbf{g}_k\|_2 < \epsilon$

Experiments on 250 CUTEst problems

WTR-L2: First 29 CUTEst Problems

Problem	n	lter	nF	Time	Optimal
ALLINITU	4	11	12	0.008	Optimal
ARGLINA	200	2	4	0.026	Optimal
ARGLINB	200	33	35	0.213	Near
ARGLINC	200	24	31	0.053	Near
ARGTRIGLS	200	470	472	3.354	Optimal
ARWHEAD	5000	5	10	3.239	Optimal
BA-L1LS	57	20	22	0.038	Optimal
BA-L1SPLS	57	19	21	0.046	Optimal
BDQRTIC	5000	129	134	57.147	Optimal
BEALE	2	14	15	0.007	Optimal
BENNETT5LS	3	35	37	0.023	Optimal
BIGGS6	6	41	43	0.018	Optimal
BOX	5000	28	31	12.677	Optimal
BOX3	3	9	10	0.013	Optimal
BOXBODLS	2	71	88	0.054	Optimal
BOXPOWER	5000	43	48	19.138	Optimal
BRKMCC	2	5	7	0.009	Optimal
BROWNAL	200	27	28	0.177	Optimal
BROWNBS	2	37	42	0.021	Optimal
BROWNDEN	4	42	43	0.018	Optimal
BROYDN3DLS	5000	24	66	10.646	Optimal
BROYDN7D	5000	442	449	190.664	Optimal
BROYDNBDLS	5000	56	64	24.661	Optimal
BRYBND	5000	56	64	24.778	Optimal
CERI651ALS	7	449	453	0.288	Optimal
CERI651BLS	7	325	329	0.344	Near
CERI651CLS	7	205	209	0.097	Optimal
CERI651DLS	7	280	298	0.177	Near
CERI651ELS	7	297	301	0.160	Near

250 CUTEst Problems

250 CUTEst Problems

Conclusions

- Symmetric indefinite factorization of the Hessian approximation
- Weighted L-2 and L-INF norms
- Effective subproblem solutions in the weighted norms
- Method can be robust for large class of problems

Future extension can be a trust-region line-search combination

References

- Philip E. Gill, Gene H. Golub, Walter Murray, and Michael A. Saunders, Methods for modifying matrix factorizations, *Math. Comput.*, 28:505–535 (1974)
- Jorge J. Moré and Danny C. Sorensen, Computing a trust region step, *SIAM J. Sci. Statist. Comput.*, 4:553–572 (1983)
- Trond Steihaug, The Conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal., 20:626–637 (1983)
- Michael E. Gertz, A quasi-Newton trust-region method, *Mathematical Programming A*, 100:447–470 (2004)
- Jorge Nocedal and Stephen J. Wright Numerical Optimization, Springer-Verlag, New York (2006)

References

- Philip E. Gill, Gene H. Golub, Walter Murray, and Michael A. Saunders, Methods for modifying matrix factorizations, *Math. Comput.*, 28:505–535 (1974)
- Jorge J. Moré and Danny C. Sorensen, Computing a trust region step, *SIAM J. Sci. Statist. Comput.*, 4:553–572 (1983)
- Trond Steihaug, The Conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal., 20:626–637 (1983)
- Michael E. Gertz, A quasi-Newton trust-region method, *Mathematical Programming A*, 100:447–470 (2004)
- Jorge Nocedal and Stephen J. Wright Numerical Optimization, Springer-Verlag, New York (2006)

Thank you

Extra: Line-search comparison

Extra: Line-search comparison

