## Adaptive Sampling Stochastic Sequential Quadratic Programming

## Raghu Bollapragada

Joint work with Albert S. Berahas (Univ. of Michigan) and Baoyu Zhou (Chicago Booth)

The University of Texas at Austin

January 2023
$12^{\text {th }}$ US - Mexico Workshop on Optimization and its Applications
In the honor of Steve Wright's 60th birthday
Huatulco, Mexico

## Optimization Problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)=\mathbb{E}_{\zeta}[F(x, \zeta)] \\
& \text { s.t. } \quad c(x)=0
\end{aligned}
$$

－Assumptions：
－$F: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}, c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$－smooth differentiable functions
－Only equality constraints
－Constraint qualifications hold
－Applications：Constrained machine learning，optimal power flow， portfolio optimization，PDE constrained optimization，．．．

## Stochastic Gradient (SG)

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\mathbb{E}_{\zeta}[F(x, \zeta)]
$$

- SG and its variants are quite popular

$$
x_{k+1}=x_{k}-\alpha_{k} \bar{g}_{k}, \quad \bar{g}_{k}=\frac{1}{\left|S_{k}\right|} \sum_{\zeta_{i} \in S_{k}} \nabla F\left(x_{k}, \zeta_{i}\right)
$$

where $\mathbb{E}_{k}\left[\bar{g}_{k}\right]=g_{k}=\nabla f\left(x_{k}\right)$

- Used extensively in machine learning
- Recently SG methods are developed for constrained stochastic optimization based on the SQP paradigm
[Berahas et al., 2021], [ Na et al., 2022]


## Stochastic SQP - Main Idea

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x)=\mathbb{E}_{\zeta}[F(x, \zeta)] \\
& \text { s.t. } c(x)=0
\end{aligned}
$$

Stochastic SQP iterate update:

$$
x_{k+1}=x_{k}+\bar{\alpha}_{k} \bar{d}_{k}
$$

where $\bar{d}_{k}$ is an approximate solution of

$$
\begin{gathered}
\min _{d \in \mathbb{R}^{n}} f\left(x_{k}\right)+\bar{g}_{k}^{T} d+\frac{d}{2}^{T} H_{k} d \\
\text { s.t. } c\left(x_{k}\right)+J_{k}^{T} d=0
\end{gathered} \quad\left[\begin{array}{cc}
H_{k} & J_{k}^{T} \\
J_{k} & 0
\end{array}\right]\left[\begin{array}{l}
\bar{d}_{k} \\
\bar{\delta}_{k}
\end{array}\right] \approx-\left[\begin{array}{c}
\bar{g}_{k}+J_{k}^{T} y_{k} \\
c\left(x_{k}\right)
\end{array}\right]
$$

$J_{k}=\nabla c\left(x_{k}\right) ; H_{k}$ assumed to be positive definite on $\operatorname{Null}(\nabla c) ; y_{k}$ - Lagrangian multiplier.

## Stochastic SQP - Details

- Merit Function: guides algorithm, $\tau>0$ (merit parameter)

$$
\phi(x, \tau)=\tau f(x)+\|c(x)\|_{1}
$$

- Model of Merit Function:

$$
I(x, \tau, g, d)=\tau\left(f(x)+g^{T} d\right)+\|c(x)+\nabla c(x) d\|_{1}
$$

- Given $\left(\bar{g}_{k}, \bar{d}_{k}\right)$, update $\bar{\tau}_{k}$ to ensure reduction in the model

$$
\begin{aligned}
\Delta I\left(x_{k}, \bar{\tau}_{k}, \bar{g}_{k}, \bar{d}_{k}\right) & =I\left(x_{k}, \bar{\tau}_{k}, \bar{g}_{k}, 0\right)-I\left(x_{k}, \bar{\tau}_{k}, \bar{g}_{k}, \bar{d}_{k}\right) \\
& =-\bar{\tau}_{k} \bar{g}_{k}^{T} \bar{d}_{k}+\left\|c\left(x_{k}\right)\right\|_{1}-\left\|c\left(x_{k}\right)+\nabla c\left(x_{k}\right) \bar{d}_{k}\right\|_{1} \gg 0
\end{aligned}
$$

- Choose $\bar{\alpha}_{k}$ sufficiently small based on Lipschitz constants that reduces an upper bound on the decrease in stochastic merit function


## SQP - Details

## Theorem (Berahas et al., 2021)

If $\left\{\bar{\tau}_{k}\right\}$ eventually remains fixed at sufficient small $\tau_{\text {min }}$, the for large $k$

$$
\begin{array}{cl}
\bar{\alpha}_{k}=\mathcal{O}(1): & \mathbb{E}\left[\frac{1}{K} \sum_{k=0}^{K-1}\left(\left\|\nabla f\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} y_{k}\right\|_{2}^{2}+\left\|c\left(x_{k}\right)\right\|_{2}\right)\right] \leq \mathcal{O}(M) \\
\bar{\alpha}_{k}=\mathcal{O}\left(\frac{1}{k}\right): & \liminf _{k \rightarrow \infty} \mathbb{E}\left[\left(\left\|\nabla f\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} y_{k}\right\|_{2}^{2}+\left\|c\left(x_{k}\right)\right\|_{2}\right)\right]=0
\end{array}
$$

- Diminishing stepsizes, slow convergence, difficult to parallelize


## SQP - Details

## Theorem (Berahas et al., 2021)

If $\left\{\bar{\tau}_{k}\right\}$ eventually remains fixed at sufficient small $\tau_{\text {min }}$, the for large $k$

$$
\begin{array}{cl}
\bar{\alpha}_{k}=\mathcal{O}(1): \quad \mathbb{E}\left[\frac{1}{K} \sum_{k=0}^{K-1}\left(\left\|\nabla f\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} y_{k}\right\|_{2}^{2}+\left\|c\left(x_{k}\right)\right\|_{2}\right)\right] \leq \mathcal{O}(M) \\
\bar{\alpha}_{k}=\mathcal{O}\left(\frac{1}{k}\right): \quad \liminf _{k \rightarrow \infty} \mathbb{E}\left[\left(\left\|\nabla f\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} y_{k}\right\|_{2}^{2}+\left\|c\left(x_{k}\right)\right\|_{2}\right)\right]=0
\end{array}
$$

- Diminishing stepsizes, slow convergence, difficult to parallelize
- Is it possible to obtain results similar to deterministic case without diminishing stepsizes?


## Unconstrained Settings

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\mathbb{E}_{\zeta}[F(x, \zeta)]
$$



GD - Gradient Descent
SG - Stochastic Gradient

## Unconstrained Settings

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\mathbb{E}_{\zeta}[F(x, \zeta)]
$$



GD - Gradient Descent
SG - Stochastic Gradient

## Adaptive Sampling Methods

$$
\bar{g}_{k}=\frac{1}{\left|S_{k}\right|} \sum_{\zeta_{i} \in S_{k}} \nabla F\left(x_{k}, \zeta_{i}\right)
$$

- Gradually increase sample sizes $\left|S_{k}\right|$
- To increase accuracy in gradient estimation
- Optimal theoretical sampling rates and practical adaptive sampling rules have been established in the literature
[Friedlander \& Schmidt 2012], [Pasupathy et al., 2015], [Byrd et al., 2015], [Bollapragada et al., 2019]
- Recently, adapted to projected gradient methods [Xie et al., 2021]
- Overcomes the limitations of SG methods

Goal: Develop an adaptive sampling method based on the SQP. paradigm

## AdaSQP Framework

## Ada SQP

Input: $x_{0}$ (initial iterate); $\tau_{-1}>0$ (initial penalty parameter)
1: for $k=0,1,2, \ldots$ do
2: $\quad$ Choose a set $S_{k}$ consisting of random realizations of $\zeta$
3: $\quad$ Compute the stochastic gradient approximation $\bar{g}_{k}$
Solve Newton-SQP system to compute ( $\bar{d}_{k}, \bar{\delta}_{k}$ )
Update $\bar{\tau}_{k}>0$ to ensure $\Delta I\left(x_{k}, \tau_{k}, \bar{g}_{k} \bar{d}_{k}\right) \gg 0$
Compute stepsize $\bar{\alpha}_{k}$ based on estimates of Lipschitz constants
Update $x_{k+1} \leftarrow x_{k}+\bar{\alpha}_{k} \bar{d}_{k} ; y_{k+1} \leftarrow y_{k}+\bar{\alpha}_{k} \bar{\delta}_{k} ;$
end for

Key Questions: How to choose sample size $S_{k}$, merit parameter $\tau_{k}$, step size $\bar{\alpha}_{k}$ ?

Note: In this talk - linear systems are solved exactly

## Sample Size Selection

- A popular test in unconstrained settings - norm test

$$
\mathbb{E}_{k}\left[\left\|\bar{g}_{k}-\nabla f\left(x_{k}\right)\right\|^{2}\right] \leq \theta\left\|\nabla f\left(x_{k}\right)\right\|^{2}, \quad \theta>0
$$

- Control variance relative to the norm of the gradient
- Not readily applicable to constrained settings
- Note: $g_{k}=\nabla f\left(x_{k}\right) \nrightarrow 0$ as we approach optimal solution
- Need a different optimality measure on the right-hand side


## Sample Size Selection

- A popular test in unconstrained settings - norm test

$$
\mathbb{E}_{k}\left[\left\|\bar{g}_{k}-\nabla f\left(x_{k}\right)\right\|^{2}\right] \leq \theta\left\|\nabla f\left(x_{k}\right)\right\|^{2}, \quad \theta>0
$$

- Control variance relative to the norm of the gradient
- Not readily applicable to constrained settings
- Note: $g_{k}=\nabla f\left(x_{k}\right) \nrightarrow 0$ as we approach optimal solution
- Need a different optimality measure on the right-hand side
- Observation: Linear reduction in the model $\Delta I(x, \tau, g, d) \rightarrow 0$ as we approach optimal solution

$$
\Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)=-\tau_{k} g_{k}^{T} d_{k}+\left\|c\left(x_{k}\right)\right\|_{1}
$$

## Modified Norm Test

- Modified Norm test for SQP settings:

$$
\mathbb{E}_{k}\left[\left\|\bar{g}_{k}-\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right] \leq \theta_{1} \beta^{\sigma} \Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)
$$

where $\theta_{1}>0, \beta \in(0,1), \sigma \in[2,4]$.

- Boils down to norm test when there are no constraints where $g_{k}=-d_{k}$

$$
\begin{aligned}
\Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right) & =-\tau_{k} g_{k}^{T} d_{k}+\left\|c\left(x_{k}\right)\right\|_{1} \\
& =\left\|g_{k}\right\|^{2}=\left\|\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

## Practical Implementation

- Can be approximated as

$$
\frac{\mathbb{E}_{k}\left[\left\|\nabla F\left(x_{k}, \xi\right)-\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right]}{\left|S_{k}\right|} \leq \theta_{1} \beta^{\sigma} \Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)
$$

- Requires knowledge of unknown population quantities
- Practical Settings: Approximate population quantities with sample quantities

$$
\begin{aligned}
\mathbb{E}_{k}\left[\left\|\nabla F\left(x_{k}, \xi\right)-\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right] & \approx \frac{1}{\left|S_{k}\right|-1} \sum_{\zeta_{i} \in S_{k}}\left\|\nabla F\left(x_{k}, \xi_{i}\right)-\bar{g}_{k}\right\|^{2} \\
\Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right) & \approx \Delta I\left(x_{k}, \bar{\tau}_{k}, \bar{g}_{k}, \bar{d}_{k}\right)
\end{aligned}
$$

## Merit Parameter Update

- Ensures sufficient reduction in

$$
\begin{gathered}
\Delta l\left(x_{k}, \bar{\tau}_{k}, \bar{g}_{k}, \bar{d}_{k}\right) \geq \bar{\tau}_{k} \omega_{1} \max \left\{\bar{d}_{k}^{T} H_{k} \bar{d}_{k}, \epsilon_{d}\left\|\bar{d}_{k}\right\|_{2}^{2}\right\}+\omega_{1}\left\|c_{k}\right\|_{1} \\
\bar{\tau}_{k}^{\text {trial }} \leftarrow \begin{cases}\infty & \text { if }\left(\bar{g}_{k}^{T} \bar{d}_{k}+\max \left\{\bar{d}_{k}^{\top} H_{k} \bar{d}_{k}, \epsilon_{d}\left\|\bar{d}_{k}\right\|_{2}^{2}\right\}\right) \leq 0 \\
\frac{\left(1-\omega_{1}\right)\left\|c_{k}\right\|_{1}}{\left(\bar{g}_{k}^{\top} \bar{d}_{k}+\max \left\{\bar{d}_{k}{ }^{\top} H_{k} \bar{d}_{k}, \epsilon_{d}\left\|\bar{d}_{k}\right\|_{2}^{2}\right\}\right.} & \text { otherwise, }\end{cases} \\
\bar{\tau}_{k} \leftarrow \begin{cases}\bar{\tau}_{k-1} & \text { if } \bar{\tau}_{k-1} \leq\left(1-\epsilon_{\tau}\right) \bar{\tau}_{k}^{\text {trial }} \\
\left(1-\epsilon_{\tau}\right) \bar{\tau}_{k}^{t r i a l} & \text { otherwise, }\end{cases}
\end{gathered}
$$

- Results in a discontinuous update formulae which involves multiple cases depending on

$$
\left(\bar{g}_{k}^{T} \bar{d}_{k}+\max \left\{\bar{d}_{k}^{T} H_{k} \bar{d}_{k}, \epsilon_{d}\left\|\bar{d}_{k}\right\|_{2}^{2}\right\}\right) \leq \text { or }>0
$$

## Merit Parameter Update

- Need to analyze the difference between $\tau_{k}$ and $\bar{\tau}_{k}$ to establish strong non-asymptotic results
- Could differ a lot due to discontinuous update formula
- Need additional assumption that avoids difficult scenarios


## Assumption

$$
\begin{aligned}
\mid\left(\bar{g}_{k}^{\top}{ }^{\top} \bar{d}_{k}+\max \left\{\bar{d}_{k}^{\top} H_{k} \bar{d}_{k}, \epsilon_{d}\left\|\bar{d}_{k}\right\|_{2}^{2}\right\}\right)- & \left(g_{k}^{\top} d_{k}+\max \left\{d_{k}^{\top} H_{k} d_{k}, \epsilon_{d}\left\|d_{k}\right\|_{2}^{2}\right\}\right) \mid \\
& \leq \theta_{3} \beta^{\sigma / 2}\left|g_{k}^{\top} d_{k}+\max \left\{d_{k}^{\top} H_{k} d_{k}, \epsilon_{d}\left\|d_{k}\right\|_{2}^{2}\right\}\right|
\end{aligned}
$$

- Trivially satisfied in the unconstrained settings $\left(\bar{d}_{k}=-\bar{g}_{k}\right)$
- Ensures $\bar{\tau}_{k} \geq \bar{\tau}_{\text {min }}$


## Merit Parameter Analysis

## Theorem

Under the standard assumptions and if the previously mentioned assumption is satisfied then,

$$
\left|\left(\bar{\tau}_{k}-\tau_{k}\right) g_{k}^{T} d_{k}\right| \leq c \beta^{\sigma / 2} \Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)
$$

for some $c>0$.

- Non-asymptotic merit parameter analysis
- Additional assumption is not necessary for asymptotic analysis


## Stepsize selection

- Choose $\bar{\alpha}_{k}$ sufficiently small based on Lipschitz constants that reduces an upper bound on the decrease in stochastic merit function
- The formula for $\bar{\alpha}_{k}$ satisfies

$$
\underline{\alpha} \beta \leq \bar{\alpha}_{k} \leq \alpha_{u} \beta^{(2-\sigma / 2)}
$$

- $\sigma \in[2,4]$ balances gradient accuracy with stepsize

$$
\frac{\mathbb{E}_{k}\left[\left\|\nabla F\left(x_{k}, \xi\right)-\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right]}{\left|S_{k}\right|} \leq \theta_{1} \beta^{\sigma} \Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)
$$

- Higher $\sigma$ results in higher gradient accuracy (or larger sample sizes) and potentially lead to the acceptance of large stepsizes (higher upper bound)


## Convergence Results

## Theorem

Under standard assumptions and if the previously mentioned conditions are satisfied with sufficiently small $\beta$, then,

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[\Delta /\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)\right]=0
$$

## Convergence Results

## Theorem

Under standard assumptions and if the previously mentioned conditions are satisfied with sufficiently small $\beta$, then,

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[\Delta /\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)\right]=0
$$

Consequently,

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[\left\|d_{k}\right\|_{2}^{2}\right]=0, \quad \lim _{k \rightarrow \infty} \mathbb{E}\left[\left\|c_{k}\right\|_{2}\right]=0, \quad \lim _{k \rightarrow \infty} \mathbb{E}\left[\left\|g_{k}+J_{k}^{T}\left(y_{k}+\delta_{k}\right)\right\|_{2}\right]=0 .
$$

- Results are similar to deterministic case


## Iteration Complexity Results

- Consider iteration complexity to achieve

$$
\mathbb{E}\left[\left\|g_{k}+J_{k}^{T}\left(y_{k}+\delta_{k}\right)\right\|_{2}\right] \leq \epsilon_{L}, \quad \text { and } \quad \mathbb{E}\left[\left\|c_{k}\right\|_{1}\right] \leq \epsilon_{c}
$$

## Theorem

Under the previously mentioned conditions, algorithm generates iterates $\left\{\left(x_{k}, y_{k}\right)\right\}$ that satisfies the above condition in at most

$$
K_{\epsilon}=\mathcal{O}\left(\max \left\{\epsilon_{L}^{-2}, \epsilon_{c}^{-1}\right\}\right)
$$

iterations. Moreover, if $\epsilon_{L}=\epsilon$ and $\epsilon_{c}=\epsilon^{2}$, then $K_{\epsilon}=\mathcal{O}\left(\epsilon^{-2}\right)$.

- Matches with complexity results of the deterministic case
- Significant computational savings in number of linear system solves compared to Stochastic SQP $\left(\mathcal{O}\left(\epsilon^{-4}\right)\right)$
- Note: More samples required as iterations progress
- Need to analyze sample complexity


## Predetermined Sampling

- Instead of adaptively controlling the sample sizes - use predetermined sublinear sampling schemes
- That is, consider,

$$
\frac{\mathbb{E}_{k}\left[\left\|\nabla F\left(x_{k}, \xi\right)-\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right]}{\left|S_{k}\right|} \leq \frac{\theta_{1} \beta^{\sigma}}{(k+1)^{\nu}}, \quad \nu>1
$$

- Note: Right hand side is monotonically decreasing
- Not efficient in practice but provides guidance on sampling complexity
- Similar theoretical convergence and iteration complexity results


## Sample Complexity

$$
\mathbb{E}\left[\left\|g_{k}+J_{k}^{T}\left(y_{k}+\delta_{k}\right)\right\|_{2}\right] \leq \epsilon_{L}, \quad \text { and } \quad \mathbb{E}\left[\left\|c_{k}\right\|_{1}\right] \leq \epsilon_{c}
$$

## Theorem

Under the previously mentioned conditions, algorithm generates iterates $\left\{\left(x_{k}, y_{k}\right)\right\}$ that satisfies the above condition in at most

## Sample Complexity

$$
\mathbb{E}\left[\left\|g_{k}+J_{k}^{T}\left(y_{k}+\delta_{k}\right)\right\|_{2}\right] \leq \epsilon_{L}, \quad \text { and } \quad \mathbb{E}\left[\left\|c_{k}\right\|_{1}\right] \leq \epsilon_{c}
$$

## Theorem

Under the previously mentioned conditions, algorithm generates iterates $\left\{\left(x_{k}, y_{k}\right)\right\}$ that satisfies the above condition in at most

$$
W_{\epsilon}=\mathcal{O}\left(\left(\max \left\{\epsilon_{L}^{-2}, \epsilon_{c}^{-1}\right\}\right)^{(\nu+1)}\right), \quad \nu>1
$$

stochastic gradient evaluations.

## Sample Complexity

$$
\mathbb{E}\left[\left\|g_{k}+J_{k}^{T}\left(y_{k}+\delta_{k}\right)\right\|_{2}\right] \leq \epsilon_{L}, \quad \text { and } \quad \mathbb{E}\left[\left\|c_{k}\right\|_{1}\right] \leq \epsilon_{c}
$$

## Theorem

Under the previously mentioned conditions, algorithm generates iterates $\left\{\left(x_{k}, y_{k}\right)\right\}$ that satisfies the above condition in at most

$$
W_{\epsilon}=\mathcal{O}\left(\left(\max \left\{\epsilon_{L}^{-2}, \epsilon_{c}^{-1}\right\}\right)^{(\nu+1)}\right), \quad \nu>1
$$

stochastic gradient evaluations. Moreover, if $\epsilon_{L}=\epsilon$ and $\epsilon_{c}=\epsilon^{2}$, then $W_{\epsilon}=\mathcal{O}\left(\epsilon^{-2(\nu+1)}\right) \approx \mathcal{O}\left(\epsilon^{-4}\right)$.

- $W_{\epsilon}$ arbitrarily close to the typical expected work complexity for stochastic SQP


## Inexact Linear Systems

- So far, the linear systems are solved exactly - Expensive

$$
\left[\begin{array}{cc}
H_{k} & J_{k}^{T} \\
J_{k} & 0
\end{array}\right]\left[\begin{array}{l}
\bar{d}_{k} \\
\bar{\delta}_{k}
\end{array}\right]=-\left[\begin{array}{c}
\bar{g}_{k}+J_{k}^{T} y_{k} \\
c\left(x_{k}\right)
\end{array}\right]
$$

- Instead, solve the linear system inexactly to get $\left(\tilde{d}_{k}, \tilde{\delta}_{k}\right)$ that satisfies

$$
\left\|\left[\begin{array}{l}
\tilde{d}_{k} \\
\tilde{\delta}_{k}
\end{array}\right]-\left[\begin{array}{l}
\bar{d}_{k} \\
\bar{\delta}_{k}
\end{array}\right]\right\|_{2}^{2} \leq \theta_{2} \beta^{\sigma} \Delta I\left(x_{k}, \tau_{k}, g_{k}, d_{k}\right)
$$

where $\theta_{2}>0, \beta \in(0,1), \sigma \in[2,4]$.

- Practical Settings: Use residuals on the left hand side and approximate population quantities with sample quantities
- Similar theoretical convergence, iteration complexity and sample complexity results as in the exact case


## Numerical Experiments - Constrained Logistic Regression

$$
\min _{x \in \mathbb{R} n} f(x)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left(X_{i}^{\top} x\right)}\right) \quad \text { s.t } \quad A x=b_{1}, \quad\|x\|_{2}^{2}=b_{2}
$$



- PAIS-SQP: Our Method


## Numerical Experiments - Constrained Logistic Regression

$$
\min _{x \in \mathbb{R} n} f(x)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+e^{-y_{i}\left(X_{i}^{\top} x\right)}\right) \quad \text { s.t } \quad A x=b_{1}, \quad\|x\|_{2}^{2}=b_{2}
$$

$$
\begin{array}{ll}
10^{0} \\
\hline
\end{array}
$$

- PAIS-SQP: Our Method


## Numerical Experiments - Constrained Logistic Regression



## Numerical Experiments - Constrained Logistic Regression




Australian Dataset

## Numerical Experiments - CUTE problems


(a) Feasibility vs. Epochs

(b) Feasibility vs. Linear Sys. Iter.

## Numerical Experiments - CUTE problems


(a) Stationarity vs. Epochs

(b) Stationarity. vs. Linear Sys. Iter.

## Summary \& Future Work

- Developed adaptive sampling framework for SQP Paradigm
- Non-asymptotic convergence and iteration complexity results - similar to deterministic SQP
- Sample complexity results - comparable to stochastic SQP
- Promising numerical results


## Summary \& Future Work

- Developed adaptive sampling framework for SQP Paradigm
- Non-asymptotic convergence and iteration complexity results - similar to deterministic SQP
- Sample complexity results - comparable to stochastic SQP
- Promising numerical results


## Future Research Directions

- Quasi-Newton variants
- Subsampled Hessians
- Inequality constraints
https://arxiv.org/abs/2206.00712


## Thank you

https://arxiv.org/abs/2206.00712

## Questions?

https://arxiv.org/abs/2206.00712

