

Modeling Electrical Conductivity in Metallic Crystals using a Lattice-Site Model

Predictive Science and Engineering Design Cluster 2011

Pritha Ghosh Randy Snurr (advisor)

Department of Chemical and Biological Engineering

James Magargee Jian Cao (advisor)

Department of Mechanical Engineering

Motivation and Applications

Electrical Conductivity in Metal Organic Frameworks

- Metal Organic Frameworks are pourous crystalline materials
- MOFs are well suited to adsorption and separation applications
- Electrically conductive MOFs can be used as novel sensing devices

Forming

- Electric current changes mechanical properties of
- ☐ Electrical effect occurs in addition to thermal effects (resistive heating)
- Effect is linked to resistivity and conductivity of material

Objectives

- Develop a simple and computationally inexpensive model that can simulate movement of electrons
- Design the framework so users can easily implement material defects and observe their implications
- · Use model to bridge gap between atomistic and continuum scale models

Our Model

- Each site in lattice corresponds to unit cell of crystal
- Periodic boundary conditions allow a finite lattice size to represent infinitely-large material body
- Populate lattice with specified density of electrons
- Use random and field-driven motion to propel electrons
- Compute electron flux and conductivity over time

Random Walk and Self-Diffusion of Electrons

- Electrons have random, but equal, probability to move in any direction in the lattice space
- Random motion under zero applied field mimics 'self-diffusion' of particles through lattice
- Displacements of electrons are measured over time Self-Diffusivity is proportional to rate-of-change in
- mean-squared displacement of particles

[Left-top]: Small lattice size (3x3 particles) shows unstable self-diffusivity (non-

[Left-bottom]: Larger lattice (9x9 particles) shows stable, linear self-diffusivity

[Right]: Large lattices and long simulation times show most stable and convergent solution for diffusivity

Conduction of Electrons under Applied Electric Field (with Random Material Defects)

- · Apply electric field by increasing probability of electron motion in a specified direction (ie. 'right')
- At defect sites, electrons regain random walk motion
- · Measure flux of electrons through wall of lattice (wall is perpendicular to flow of electrons)
- •Flux of electrons is proportional to conductivity

$$\mathbf{J} = -\frac{D}{RT}czF\mathbf{E} \implies \sigma = \frac{N_v e^2 D}{k_B T}$$

- · Increasing % charge carriers (up to 50%) increases conductivity
- · Increasing % defects decreases conductivity
- Maximum conductivity occurs between 50-75% charge carrier density

Influence of Random vs. Ordered Defects on Conductivity

[Right]: Various configurations of ordered defects and their corresponding defect density

[Top]: When comparing random and ordered defects, certain configurations of ordered defects (especially at low densities) can greatly influence overall conductivity

Conclusions

- Our model provides a computationally inexpensive means of determining trends between charge carrier density, defect density, and defect structure in lattices
- Due to the nonlinearities and interactions in the model, the model is well suited for parameter optimization

Future Work

- Build material complexity into model framework: -Alloying, defect-interaction, electron occupancy -Lattice packing structure
- Further investigate structures of ordered defects: -Construct 'grain boundaries' in lattice model
- Apply model for design and optimization of conductive and metallic materials in electronic applications