Modeling Electrical Conductivity in Metallic Crystals using a Lattice-Site Model

Pritha Ghosh
Randy Snurr (advisor)
Department of Chemical and Biological Engineering

James Magargee
Jian Cao (advisor)
Department of Mechanical Engineering

Motivation and Applications

Electrical Conductivity in Metal Organic Frameworks
- Metal Organic Frameworks are porous crystalline materials
- MOFs are well suited to adsorption and separation applications
- Electrically conductive MOFs can be used as novel sensing devices

Electrically-Assisted Metal Forming
- Electric current changes mechanical properties of metals
- Electrical effect occurs in addition to thermal effects (resistive heating)
- Effect is linked to resistivity and conductivity of material

Objectives
- Develop a simple and computationally inexpensive model that can simulate movement of electrons
- Design the framework so users can easily implement material defects and observe their implications
- Use model to bridge gap between atomistic and continuum scale models

Our Model
- Each site in lattice corresponds to unit cell of crystal
- Periodic boundary conditions allow a finite lattice size to represent infinitely-large material body
- Populate lattice with specified density of electrons
- Use random and field-driven motion to propel electrons
- Compute electron flux and conductivity over time

Random Walk and Self-Diffusion of Electrons
- Electrons have random, but equal, probability to move in any direction in the lattice space
- Random motion under zero applied field mimics ‘self-diffusion’ of particles through lattice
- Displacements of electrons are measured over time
- Self-Diffusivity is proportional to rate-of-change in mean-squared displacement of particles

Conduction of Electrons under Applied Electric Field (with Random Material Defects)
- Apply electric field by increasing probability of electron motion in a specified direction (ie. ‘right’)
- At defect sites, electrons regain random walk motion
- Measure flux of electrons through wall of lattice (wall is perpendicular to flow of electrons)
- Flux of electrons is proportional to conductivity

Influence of Random vs. Ordered Defects on Conductivity

Conclusions
- Our model provides a computationally inexpensive means of determining trends between charge carrier density, defect density, and defect structure in lattices
- Due to the nonlinearities and interactions in the model, the model is well suited for parameter optimization

Future Work
- Build material complexity into model framework:
 - Alloying, defect-interaction, electron occupancy
 - Lattice packing structure
- Further investigate structures of ordered defects:
 - Construct ‘grain boundaries’ in lattice model
- Apply model for design and optimization of conductive and metallic materials in electronic applications