Materials science is the study of processing-structure-property relationships in materials that are important to society. Special attention is paid to “microstructure,” i.e., how materials (polymers, ceramics, semiconductors, superalloys, and biomaterials) are constructed on the microscopic, sub-microscopic and even atomic level, and how this affects their properties.

QUICK FACTS:
- 24 faculty members
- 111 undergraduate students
- 26 average students per course

UPPERLEVEL COURSES
- MSE 376 Nanomaterials
- MSE 382 Electrochemical energy materials and devices
- MSE 370 Biomaterials
- MSE 360 Electron microscopy

RESEARCH AREAS
- Materials for energy (batteries, capacitors, photovoltaics)
- Biomaterials (tissue engineering, biomimetic materials, bio-compatible materials)
- Electrical materials (conductors, semiconductors, dielectrics, magnetic materials)
- Materials synthesis and processing
- Materials characterization
- Materials computation and design

5 CHALLENGES in the NEXT 5 YEARS
To develop advanced materials for solutions to problems with:
1. Energy
2. Environment
3. Healthcare
4. National Security
5. Infrastructure

PLANS of GRADUATING SENIORS ’08-’12
(reported at time of graduation)

INDUSTRY: Examples of Positions held by ’12 Grads
- Test Engineer, Cobham SATCOM, Sea Tel
- Project Engineer, Illinois Tool Works—Ramset
- Design Engineer, GE Energy
- Materials and Processing Engineer, The Boeing Company

WANT TO LEARN MORE?
Take: MatSci 301: Materials Science Principles
Join: MatSci Club, Material Advantage, Design for America, Formula SAE, Engineers for a Sustainable World
Ask: Kathleen Stair
Explore the Department website