Spring 2024 ME495: Applied Computational Intelligence for Engineering Instructor: Professor Wing Kam Liu (<u>w-liu@northwestern.edu</u>), Walter P. Murphy Professor and Co-Founder of HIDENN-AI, LLC Days and Times: Tuesday/Thursday -- 9:30 to 11:00 Location: TBD Office hours: Before or after the class Who should attend: Graduate students and senior undergraduate students with a background in applied mathematics and an interest in data science applications. Graders/Computer Instructors: TBD

This course will introduce students to computational intelligence methodologies for converting scientific or engineering problems into data-driven *optimization* problems with solution obtained by *training and/or solving* using available data from mathematical scientific principles and *auto differentiation*. Materials, manufacturing, and multiphysics problems will be discussed and demonstrated, showing how large-scale problems in these fields can be reformulated using the new paradigm of *deep-learning-based* computations.

Project: Students must complete a final project. The proposal is due in the 5th week.

Homework: Four computer assignments related to the subject materials will be given.

Grading: Reading assignments (15%) + Homework (HW) (30%) + Midterm Project Proposal (20%) + Final project presentation and report (35%)

Week	Date	Торіс	Contents	Homework and		
	(day)			Reading		
				Assignments		
	Module 1: Training and optimization using kernel learning					
1		Opportunities in next generation of data-driven	Papers/lecture notes	Reading		
		scientific computation: Tools of computational	will be provided	assignment		
		intelligence		assigned-1		
2		Introduction to kernel, convolution, and integral	Papers/lecture notes	Reading		
		transform	will be provided	assignment		
		Discussion Topic: Determining mathematical		assigned-2		
		operators with kernel learning				
		Feature extraction with Kernels: Fourier Transform;	Papers/lecture notes.	Reading		
		Short time Fourier transform	programs will be	assignment-1		
			provided	due.		
				HW1 (assigned)		
3		Feature extraction with Kernels: Fourier Transform;	Papers/lecture notes,	HW2 (assigned)		
		Short time Fourier transform	programs will be			
		Discussion Topic: Short time Fourier transform in	provided			
		Signal Analysis				
		Kernel feature extraction: Wavelet transform.	Papers/lecture notes.	HW1 (due)		
			programs will be			
			provided			
4		Interpolation using reproducing kernel	Papers/lecture notes,			
			programs will be			
			provided			

Prerequisites: Multivariate calculus, MATLAB, introductory knowledge of Python programming.

		Papers/lecture notes,	
	Kernel Learning: Formulation of the method	programs will be	
		provided	
5	Kernel Learning: Applications	Papers/lecture notes,	HW 2 (Due)
	Discussion Topic: Wavelet transform and learning	programs, data will	
	features in Additive Manufacturing Process Design	be provided	
	Midterm Proposal Pre	esentation	
	Module 2: Hierarchical Deep Learning	Neural Networks	
6		Papers/lecture notes,	HW 3 (assigned)
	From Interpolation to Neural Network and	programs, data will	
	Hierarchical deep learning neural network (HiDeNN)	be provided	
	Solving and Training Partial Differential Equations	Papers/lecture notes,	
	(PDE) using HiDeNN	programs, data will	
	Discussion Topic: Applying Pruning and HiDeNN for	be provided	
	Efficient Construction of Neural Network	be provided	
7		Papers/lecture notes,	Reading
,	Convolution-HiDeNN (C-HiDeNN) for space-time-	programs, data will	Assignment 3
	parametric problems	be provided	assigned
	Solving and training Partial Differential Equations	Papers/lecture notes,	assigned
	(PDE) using HiDeNN	programs, data will	
	(PDE) using Hidenin		
0	Coluing and training Doutiel Differential Equations	be provided	
8	Solving and training Partial Differential Equations	Papers/lecture notes,	HW 3 (Due)
	(PDE) using C-HiDeNN	programs, data will	
		be provided	
IVI	odule 3: Parameterized physics-based reduced-order met	nods for large-scale pro	blems
8	Introduction to dimensionality reduction: Singular	Papers/lecture notes	Reading
	value decomposition (SVD)	will be provided	Assignment 3
		in se provided	due
9	Proper generalized decomposition (PGD) and tensor	Papers/lecture notes,	HW 4 (assigned)
5	decomposition (TD)	programs, data will	
	Discussion Topic: Applying Tensor Decomposition for	be provided	
	compressing a Neural Network	be provided	
	Convolution-HiDeNN-TD: parameterized physics-	Papers /lecture notes	
		Papers/lecture notes,	
	based reduced order method	programs, data will	
10	Application of C LUD-NNLTD for desire and	be provided	
10	Application of C-HiDeNN-TD for design and	Papers/lecture notes	HW 4 (Due)
	topology optimization	will be provided	
	Lecture and Discussion on Integrating three	Summary	
	modules to solve a design problem		
	Final project review and	I presentation	

• Each HW will involve a theoretical analysis and computer implementation. HW will be announced at the beginning of the module, and the relevant concepts will be discussed in the class.

- The reading assignments will be designed to expose the students to the broader application of the methods and some necessary materials for comprehension of the lectures. These will be in written report format.
- **Final project:** students are encouraged to propose a project based on their own research using the methods taught in this course. Students without research projects will be given ideas for projects.