Freestanding Crystalline Oxide Membranes and Heterostructures

The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, the atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite oxides. We present a general method to create freestanding complex oxide membranes and heterostructures with millimeter-scale lateral dimensions and nanometer-scale thickness. This facilitates many new opportunities we are beginning to explore, including the topological melting transition of 2D crystalline order, the application of extreme strain states, and integration with other materials families.

Harold Y. Hwang is a Professor of Applied Physics and Photon Science (SLAC) at Stanford University. He received a B.S. in Physics, B.S. and M.S. in Electrical Engineering from MIT (1993), and a Ph.D. in Physics from Princeton University (1997). He was formerly a Member of Technical Staff at Bell Labs (1996-2003) and Professor at the University of Tokyo (2003-2010). His current research focuses on correlated electrons and emergent phenomena at artificial interfaces and in confined systems; atomic-scale synthesis of heterostructures of quantum materials; low-dimensional superconductivity; oxide heterostructures for energy applications; and novel devices based on interface states. Recognitions include the MRS Outstanding Young Investigator Award (2005), the IBM Japan Science Prize (Physics, 2008), Fellowship in the American Physical Society (2011), the Ho-Am Prize (Science, 2013), and the Europhysics Prize (2014, with Jochen Mannhart and Jean-Marc Triscone).