BIG-PICTURE THINKERS. BOLD IDEA DESIGNERS. TOUGH PROBLEM SOLVERS. REAL-TIME COLLABORATORS. NEW BUSINESS STARTERS. ALL-OUT INNOVATORS.

IT TAKES WHOLE-BRAIN THINKING.
IT TAKES WHOLE-BRAIN ENGINEERING.

"At Northwestern, no single thing defines me. I'm a whole-brain engineer."
— DREW LEVORSEN

Northwestern University
Office of Undergraduate Engineering
2145 Sheridan Road, Room L265
Evanston, Illinois 60208-3102
Discover the tree-lined streets of Evanston and meet other students to get a feel for life at Northwestern Engineering. Campus visits give you a chance to attend a student-led campus tour, sit in on a class, attend an information session, and truly discover what our campus has to offer.

SCHEDULING A VISIT

Schedule your campus visit at ugadm.northwestern.edu/visit/plan-your-visit

Please write, call, or visit our website to learn more about the McCormick School of Engineering and Applied Science at Northwestern University.

www.mcormick.northwestern.edu
twitter.com/NorthwesternEng
Facebook.com/northwesternengineering

Robert R. McCormick
School of Engineering and Applied Science
Northwestern University
Office of Undergraduate Engineering
2145 Sheridan Road, Room L265
Evanston, Illinois 60201-3102
Phone: 847/491-7379
Email: uedoffice@northwestern.edu
We mean the kind of mind that spends hours taking things apart and builds something better in its place. The kind of student who excels in math but also dabbles in art or poetry. The kind of engineer who wants to solve great problems and will lead the world in a Northwestern Direction.

That takes bright minds at the intersection of careful analysis and wild creativity. It takes the foresight to see what’s next, the openness to unite disparate fields, and the flexibility to shift thinking in divergent ways.

It takes Whole-Brain Engineers.
Problem solvers gaining new perspective.

This is how we’re taking the world in a whole new direction.

WE ARE WHOLE-BRAIN ENGINEERS.
In every problem we solve, we use a systematic method that combines left-brain logic with right-brain intuition. That’s because with the right mindset, anything is possible. And by framing the problem correctly, working together, and communicating our ideas clearly, we create solutions the world has never seen before.

ASK

The right questions lead to the most innovative solutions. Frame the problem correctly to gain an understanding of what really needs to be done.

COLLABORATE

Working across disciplines means everyone achieves more. Solve it collectively, by bringing together the biggest thinkers in all relevant fields.

SHARE

Communicate your solution effectively. Refine your message. Inspire your clients. Change the world.
New materials and designs allow batteries to hold more energy and recharge 10 times faster than current technology.

Can a cell phone battery recharge in just 15 minutes?

New mathematical model and experimental results on “haptic illusions” could lead to flat-screen displays that could make our touchscreen keyboards actually feel like a keyboard. How could this benefit the blind? Or improve dashboard technology in cars? Or make video games better?

What if our touchscreens could touch back?

A new mathematical model and experimental results on “haptic illusions” could lead to flat-screen displays that could make our touchscreen keyboards actually feel like a keyboard. How could this benefit the blind? Or improve dashboard technology in cars? Or make video games better?

What if our touchscreens could touch back?

Could we reprogram cells to work for us?

Synthetic biologists are using cells as tiny machines to create low-cost biofuels and therapeutics.

What if electronics could bend, stretch, and be transparent?

New nanomaterials are paving the way for future electronics to be incorporated into clothes or the human body. What else could they be used for?
We know. Our walls are covered with them. And as whole-brain engineers, our days are spent thinking up new ideas and making them real.

Could we keep senior citizens safer through automated night-lights?

The Centers for Disease Control say one in every three adults aged 65 or older will fall this year, many of them at night. Could a thin, pressure-sensing pad help save energy and lives?

What if an interactive game could improve motor skills in children with cerebral palsy?

Can children with cerebral palsy and paralysis improve their communication and motor skills through switch-activated toys?

Could we help preserve master artworks?

Imaging technology allows engineers to study how artists created their works—and more importantly, how we can help keep them vibrant for generations to come.

Could we keep senior citizens safer through automated night-lights?

How do you play with otters?

Could a maze-like puzzle enrich the minds of intelligent otters? Design an idea to test with these clever animals.
NUMBERS SET THE STAGE.
OUR IMAGINATIONS RUN THE SHOW.

SEGAL DESIGN INSTITUTE
WHERE EXCEPTIONAL THINKERS IN EVERY DISCIPLINE MEET, WE’RE REIMAGINING WHAT IT MEANS TO IMAGINE.

At the Segal Design Institute, you’ll put cross-disciplinary ideas into action. Across every program, you’ll find an energizing culture of collaboration. And through a variety of engaging courses and degrees for both graduates and undergraduates, you’ll strive to improve the process of good design, drawing on skills from engineering, social sciences, design, and management theory. Join tomorrow’s engineering innovators as you expand the research frontiers of human-centered design and integrate design thinking into all aspects of your education.
IGNITE THE POWER OF RIGHT-BRAIN THINKING.

STUDY THE PROBLEM

You’ll look at every problem from a variety of perspectives, bringing together multiple points of view from different disciplines.

FRAME THE PROBLEM

Step back and consider what context to define what challenge you’re facing, then bring focus and clarity to your thinking.

IDEATE, PROTOTYPE, ITERATE

You’ll generate many possible solutions. Blue-sky time. Then physically create these potential solutions and test to see what works.

TELL THE STORY

Determine the best way to effectively communicate your ideas — it’s the only way to ensure that they spread.

Solving big problems starts with asking big questions. And with design thinking, you’ll start by asking the right ones.
First-Year Experiences

This is where you’ll see what it feels like to be a practicing engineer. Making an immediate impact through hands-on learning is what sets Northwestern Engineering apart. Working with real clients, solving complex problems, and delivering tangible results — all within your first year — help create a transformative curriculum and engaging first year experience.
Our innovative Engineering First program introduces freshmen to the fundamentals of a rigorous engineering education alongside practical applications and experiences that emphasize the power of communication. Through partnerships with organizations like the Rehabilitation Institute of Chicago, students address critical problems across industries including healthcare and education with creative solutions. And because the Engineering First program is a thoughtful dichotomy of design thinking and highly developed communications, you’ll solve problems while developing the communication skills to help maximize their solutions.

DESIGN THINKING AND COMMUNICATION (DTC)

Students work on solving real clients’ problems while strengthening their communication skills so that others can better understand and use their results. This two-course sequence puts students to work immediately, training them to distinguish the real issue behind a perceived problem. And as they gain proficiency in communicating, DTC students master design thinking, a process that leads to effective problem solving and the presentation skills necessary to thrive in a competitive marketplace.

ENGINEERING ANALYSIS

Students engage in engineering concepts from the beginning of their first year, including linear algebra, engineering mechanics, physics, differential equations, and MATLAB programming. Each course integrates these topics with engineering applications, and MATLAB is used throughout the sequence to provide students with important tools to augment their professional development.
During your first-year Design Thinking and Communication course, you’ll work directly with an actual client — an individual, an institution, or a company — to find a practical solution to a problem or challenge they face. Here are some recent projects designed by students:

PIVOT POWER
Created a device that secures a cordless screwdriver to a prosthetic arm.

ZIP-IT
Developed a device to help a stroke victim zip her jacket with one hand.

SCOPE-X
Developed an adjustable chair-mounted footrest for people with disabilities whose feet do not reach the floor when they sit in a standard chair.

SWIVEL SHOPPER
Created a device that helps people in wheelchairs transport groceries.

ROTAGRIP
Developed a device that helps patients rehabilitate their arms and regain motor function in their wrists.
TIERED CAKE DISPLAY
Developed a sustained store display for greeting cards that’s easy to ship and assemble and promotes customer interaction and cross-merchandising.

LAUNCH MASTER
Designed a low-cost, efficient, and environmentally conscious boat launch for a local park.

LONE ROLLER
Created a training device for wheelchair athletes that could simulate an increase in elevation.

DISPENSETRON
Designed a pill dispenser for a client who does not have use of his arms or legs.

JARCANO
Created a utensil that helps users open jars with just one hand.

SERVICECELL
Created a device that helps users with vision and fine-motor-skill impairments use small phones and keypads.

BACKPACK BUDDY
Created a backpack to better hold a special-needs child’s communication device.

HANDY LAP
Created a portable workstation that helps patients increase fingertip dexterity.

BEDSIDE BUTTON BUDDY
Developed a device that helps track the sleeping patterns of the developmentally disabled.

C@23 M@83 Y@8 K@53
143197BDY_r4_NWU-002B_Viewbook_FA3.indd 11 9/26/15 12:38 AM
The Farley Center for Entrepreneurship and Innovation is an incubator where you’ll turn big ideas into successful business ventures, and it’s home to some of the most enterprising young talent at Northwestern Engineering. The unique curriculum includes courses, competitions, and other resources that will help you apply your thinking across the innovation/business life cycle—from ideation to prototyping and business plan development.
ADAPTLY

Started by Northwestern undergraduate Nikhil Sethi in 2010, Adaptly provides autonomous marketing platforms in one media-buying technology. With more than $13 million in funding and an office in NYC, Adaptly streamlines marketing to provide a complete solution for all industries.

INNOBLATIVE DESIGNS

Curtis Wang was an engineering undergrad when he co-founded Innoblative Designs, a company that was recently named one of 15 Chicago Startups to Watch by ChicagoInno. By helping develop a novel medical device specifically designed to fit the post-lumpectomy cavity, Wang works to improve patient outcomes by targeting and destroying residual cancer cells through non-ionizing energy delivered to the breast tissue.

SPROUTEL

Undergraduates from the Design for America studio created Sproutel in 2012, along with its flagship product, Jerry the Bear. By playing with this mechatronic animal and its game-based apps, kids learn how to properly manage their diabetes and their overall health.

SWIPESENSE

In 2009, undergrads in Design for America, a network of student-led studios, developed SwipeSense, a portable hand sanitizer that clips onto a healthcare practitioner’s belt or pocket. The group of students also participated in the Wall Street Journal Startup of the Year competition in 2013 and recently received $9.6 million in funding.
At the Office of Career Development, you’ll gain tools for lifelong success throughout your career and your life. Through the Walter P. Murphy Cooperative Engineering Education Program, one of the most prestigious in the country, you’ll alternate periods of academic study with full-time periods of paid work experience related to your area of study. And through various internships, research experience, and service learning opportunities, you’ll extend your career plan beyond the classroom, and out into the workforce and the larger world.

Fostering whole-brain engineers means empowering students to take ownership for their learning and personal growth. At the Office of Personal Development, students focus on exploring new opportunities to develop a lifelong love of learning. From refining core competencies to encouraging students to consider all academic and extracurricular activities, we help inspire whole-brain engineers to approach obstacles from every angle.

Each year, 90-95% of Northwestern Engineering seniors already have a career opportunity lined up at the time of graduation.

At Northwestern Engineering, Personal Development means:

- Exploration of a wide range of experiences and extracurricular activities
- Engagement in meetings and seminars where students discuss work and development
- Transformation by critically examining and reflecting on experiences
Between interning at Google’s New York office and developing an interactive game funded by Disney, Franklin’s work at Northwestern Engineering has engaged people around the globe. Intended to promote healthy living, his jump-based video game could soon be empowering visitors at the Walt Disney World theme park in Orlando to live healthier lives. And through his internship at Google as a software engineer, he’s gained the invaluable hands-on experience that will guide his career path after graduation.
AT THE COLLISION OF CAREFUL ANALYSIS AND WILD CREATIVITY, WE’RE SOLVING GLOBAL PROBLEMS.

UNDERGRADUATE RESEARCH

We believe that between what’s known and what hasn’t been tried yet, there’s untapped possibility. That’s why we provide a powerful, hands-on research experience so students can develop an advanced understanding of today’s complex engineering and scientific challenges. Undergraduate research begins as early as freshman year, with students collaborating alongside world-class faculty and some of the brightest minds in engineering. And because our faculty members are on the forefront of groundbreaking innovation, it’s common for our students to be part of teams that publish notable results that move engineering theory and practice forward.
ENGINEERING
THE FUTURE OF
CLEAN ENERGY

SARAH RAPPAPORT
Materials Science and Engineering, Music
Sarah Rappaport put her interest in creating clean energy to work through undergraduate research focusing on electrocatalysis. She prepares and analyzes samples of MoS2, and their promising applications in hope of creating what she calls “a deconstructed battery” to catalyze reactions.

ERIC YANG
Biomedical Engineering
As a recipient of a McCormick Summer Research Award, Eric Yang spends his time in the lab exploring non-invasive diagnostics for breast cancer patients. Yang hopes to develop a way to filter out circulating tumor cells in late-stage patients to help control the spread of the disease and save lives.

SAMUEL DAVIDSON
Chemical Engineering
From a young age, Davidson knew that he wanted to pursue a career in research. At Northwestern Engineering, he puts his passion to work studying protein kinases, common and essential enzymes found in the human body. His method involves cell free protein synthesis and amber suppression, and he hopes that groundbreaking treatments for disease will result from his novel approach. In the meantime, he’s developing skills in the lab that will help him attain an authorship and improve his chances of being accepted into a highly selective graduate program.
THE JOURNEY FROM IDEA TO BREAKTHROUGH IS NEVER A SIMPLE PATH.
Professor Mark Hersam spends his time researching across scientific boundaries to create new materials for use in technology, biotechnology, energy, and flexible electronics for personalized health monitoring. The Hersam Research Group also applies the fundamental paradigm of materials science and engineering to hybrid hard and soft materials at the nanometer length scale. This highly interdisciplinary ongoing research ranges from fundamental studies to applied technology development.

Associate Professor Wendy Murray analyzes the biomechanics of baseball pitching through computer simulation to help athletes prevent elbow injuries. Because the technology currently used is not sophisticated enough to estimate an individual player’s injury risk, Murray’s new approach may one day give high-risk players more personalized muscle feedback and a better chance at avoiding injury.

Professor Larry Birnbaum plays a major role in helping his undergraduate students collaborate with their journalism school counterparts on an artificial intelligence platform that writes news articles from statistical data. The interdisciplinary work, which led to the start-up Narrative Science, emerged from the University’s Knight Laboratory, where teams of technologists, journalists, designers, and educators work in partnership to advance news media through engineering exploration and experimentation.
With a notable 9:1 student-faculty ratio, our engineering classes are taught by 180 full-time professors and faculty who spend one-on-one time with undergraduates and play active roles in their research opportunities. But small class sizes are just one of the many advantages you’ll receive.

Meet some of our remarkable faculty and learn more about powerful mentorship opportunities.

IT TAKES WHOLE-BRAIN THINKING. AND IT TAKES AWARD-WINNING FACULTY.

CONOR HETLAND
Computer Engineering

Hetland’s work focuses on designing and implementing a formally constructed language that easily compiles to the C programming language. In creating an eloquent way to describe and reveal structures of certain parallel problems, his research enables programmers to take advantage of hardware capabilities that were previously unavailable.
BECAUSE NORTHWESTERN UNDERGRADUATES ARE SOME OF THE BEST IN THE WORLD, I’VE FOUND UNDERGRADUATE RESEARCH TO BE AN ALL-AROUND WIN.

IT GIVES THE STUDENT A CHALLENGE BEYOND COURSEWORK AND AN OPPORTUNITY TO EXPERIENCE RESEARCH, AND GIVES ME AN OPPORTUNITY TO TRY OUT ‘CRAZIER’ IDEAS THAT MIGHT NOT OTHERWISE BE POSSIBLE.

Peter Dinda, Professor of Electrical Engineering and Computer Science
Student projects often have a meaningful impact on underserved communities. Here are just a few of the groups through which our students regularly give of their time:

- Baja SAE
- Engineers for a Sustainable World
- Engineering World Health
- Formula SAE
- Global Water Brigades
- National Society of Black Engineers
- Northwestern University Space Technology and Rocketry Society
- NU Robotics Club
- Society of Hispanic Professional Engineers
- Society of Women Engineers
- Solar Car Team

More information here:
www.mccormick.northwestern.edu/academics/undergraduate/student-groups.html
STUDENT ORGANIZATIONS

Our students benefit from a wide range of engaging activities on campus. We foster an unwavering appreciation for diversity and encourage students to explore more than 500 organizations and opportunities offered by the University. These pursuits take students beyond the classroom, promoting professionalism, networking, community service projects, tutoring, and mentorship. Students can participate in Big Ten athletics or intramural sports, perform in the student theater, give back at our annual dance marathon for charity, and network with their peers, among other opportunities.

DESIGN FOR AMERICA

Initiated as a creation of Northwestern Engineering students and a faculty adviser, Design for America empowers students to work throughout the school year, tackling significant challenges like childhood obesity, climate change, aging population, literacy, and other pressing social issues. Since its founding in 2009, DFA has grown to a network of more than 1000 students at 28 college campuses nationwide, helping students impact social change in the Evanston and greater Chicago communities and across the world.
Go to the Chicago Field Museum to explore natural history, and learn how Northwestern researchers are teaming up with resident experts to study the world’s diminishing coral reefs.

50 MINUTES

Downtown Chicago, home to companies like Boeing, United Airlines, and Motorola, where students intern during school and begin their careers after graduation.

45 MINUTES

Catch a concert at Millennium Park.

45 MINUTES

Visit the Art Institute of Chicago, where engineering professors use high-tech imaging to understand artistic methods and create new conservation techniques.

45 MINUTES

Argonne National Laboratory, our primary research partner in the areas of sustainability and energy.

60 MINUTES
The Second City is more than Chicago’s nickname. It’s also a famous comedy club where stars like Bill Murray, Tina Fey, and Northwestern alum Stephen Colbert got their start.

30 MINUTES

GETTING TO CHICAGO.
- Hop on the El Train for 30 minutes.
- Take the intercampus shuttle for 35 minutes.
- Drive 10 minutes along Lake Michigan.
- Bike the trails along Lakeshore Drive.

Chicago is a great place to let your curiosity run wild. Go catch a Cubs game, hunt for the perfect deep-dish, or seek out some world-class culture in River North. At Northwestern Engineering, one of the largest, most economically vibrant cities in the country is less than 10 miles away.

30 MINUTES

Oak Street Beach, always one of the best ways to spend a Saturday in the Windy City.

40 MINUTES

Find the latest trends and gadgets on Michigan Avenue’s Magnificent Mile—one of the world’s top fashion districts.

40 MINUTES

Grab a hot dog and enjoy a Cubs game at Wrigley Field.

30 MINUTES

Get to Chicago.
- Hop on the El Train for 30 minutes.
- Take the intercampus shuttle for 35 minutes.
- Drive 10 minutes along Lake Michigan.
- Bike the trails along Lakeshore Drive.

Times indicated are approximate via the El Train.
THE FORESIGHT TO ENVISION WHAT’S NEXT.

THE COMMITMENT TO MAKE IT HAPPEN

Northwestern Engineering students create a better world by giving back to the communities where it’s needed most. Through an investment in service learning, our students make a global impact with every inspiring cause they put into action. Notable student projects are as diverse as low-cost digital x-ray systems for developing countries, and the inventive Design for America studio, which tackles big social problems like climate change, literacy, and food waste to generate powerful social change.

"Our students in this program get a true sense of design; they take their engineering skills and seek solutions that could actually work in resource-limited settings."

Matthew Glucksberg, Professor of Biomedical Engineering and head of the Center for Innovation in Global Health Technologies
Every year, Northwestern Engineering students work to improve the lives of underserved communities around the world. When 16 students traveled to Cape Town in 2015 as part of the Global Health Technologies study-abroad program, they tackled some of the region’s most pressing issues, creating devices and processes to help improve the delivery of essential healthcare. At the end of the quarter, the group had created four significant prototypes: a simple carbon dioxide detector to help paramedics intubate patients, a tablet app to help clinic nurses diagnose diseases and prescribe treatments, a new mask for protecting against tuberculosis, and an app for a clinic kiosk that would help patients book appointments.

Students involved with Engineers for a Sustainable World work to build a more environmentally friendly world both at home and around the globe. In recent years, they’ve developed campaigns to encourage students to forgo bottled water on campus and traveled abroad to find clean water solutions in Chile and design new processes for hulling rice in Panama.

DEVELOPING MEDICAL DEVICES FOR DEVELOPING COUNTRIES.

KELSEY BERNING
Biomedical Engineering

Berning applied the communication skills she gained in workshops that empower teenagers to live healthier lives and encourage biomedical and public health professionals to address disparities in healthcare, socioeconomics, and biomedical interventions. She also focused on a study of body-powered prostheses that gained global recognition at the 2012 International Society of Prosthetics and Orthotics World Congress in India and has already helped amputees to improve their quality of life.

NATHANIEL EZOLINO
Industrial Engineering

Through a partnership with the National Society of Black Engineers, Ezolino helps make a positive impact through community outreach and service learning. Hosting interactive experiments for local elementary schools and leading Museum Takeovers at the Museum of Science and Industry in Chicago, Ezolino sparks interest in engineering for children who might otherwise miss the opportunity to gain hands-on experience in the field. And by combining disparate principles like humanitarianism and engineering, he hopes to show students that not only is creating your own path not only possible, but it can also be a force for good.
When you graduate from Northwestern Engineering, you become part of our global alumni network, a widely diverse and successful group of individuals exemplifying the concepts of whole-brain engineering.
Daniel Cornew ('11)
Lead airframe engineer, Titan Aerospace Project, Google

David Nichols ('91)
Senior Principal
Americas Inorganic Growth Leader
EY

Anoop Jain ('09)
Founder, Humanure Power

Yie-Hsin Hung ('84)
CEO, New York Life Investments

Tony Vasquez ('13)
Associate, Booth Hansen Architects

Nikhil Sethi ('11)
Co-founder and CEO, Adapty

Alicia Boler-Davis ('91)
Senior vice president, global connected customer experience, General Motors

Carolyn Duran (PhD '98)
Conflict minerals program manager and supply chain director, Intel

Hannah Chung ('12) and Aaron Horowitz ('12)
Co-founders, Sproutel

Brian Flucht ('98)
Corporate development, Nike

Cindy Kent ('91)
President and general manager, 3M Drug Delivery Systems Division

Carolyn Duran (PhD '98)
Conflict minerals program manager and supply chain director, Intel
It will start with a notion and result in a breakthrough. But it’s never a simple path. What starts in one discipline will always be influenced and informed by many other ways of thinking and a variety of academic approaches. Here are a few areas where your own journey might begin.
APPLIED MATHEMATICS
Learn to apply mathematical ideas, modeling, and techniques to problems that arise in engineering and science.

BIOMEDICAL ENGINEERING
Learn to apply engineering techniques to the analysis of biological systems, providing full integration of biology and engineering.

CHEMICAL ENGINEERING
Solve practical problems that involve chemistry and biochemistry, as well as the composition or structure of materials.

CIVIL ENGINEERING
Learn to plan, design, build, and operate the public infrastructure, including roads, airports, bridges, tunnels, water supplies, and power facilities.

COMPUTER ENGINEERING
Explore the design and engineering of computer hardware and software. This area of study synthesizes computer engineering, computer science, and electrical engineering.

COMPUTER SCIENCE
Take on the challenges posed by the world of ubiquitous, interactive, networked, multimedia computing.

ELECTRICAL ENGINEERING
Investigate the development and application of electronic and optical technologies for generating, communicating, and processing information.

ENVIRONMENTAL ENGINEERING
Develop and apply scientific and technological knowledge to eliminate or reduce environmental problems.

INDUSTRIAL ENGINEERING
Learn about the design, analysis, implementation, operation, and improvement of the complex systems that provide society’s vital goods and services.

INTEGRATED ENGINEERING
Create your own self-guided major, one that is uniquely you, by learning across fields and combining engineering with art, economics, social science, and many other subjects of interest.

MANUFACTURING AND DESIGN ENGINEERING
Learn to integrate design and manufacturing processes into an effective system, including all aspects of product realization, from product design to manufacturing technologies and operations.

MATERIALS SCIENCE AND ENGINEERING
Explore the development of high-technology materials, with an emphasis on the scientific reasons why materials behave the way they do.

MECHANICAL ENGINEERING
Study in a rapidly diversifying field that includes areas such as robotics, biological molecular machines, microelectromechanical systems (MEMS), nanotechnology, product design, and computer-aided manufacturing.
THINK YOU’RE A WHOLE-BRAIN ENGINEER?
TAKE THE NEXT STEP.
Discover the tree-lined streets of Evanston and meet other students to get a feel for life at Northwestern Engineering. Campus visits give you a chance to attend a student-led campus tour, sit in on a class, attend an information session, and truly discover what our campus has to offer.

SCHEDULING A VISIT

Schedule your campus visit at: ugadm.northwestern.edu/visit/plan-your-visit

Please write, call, or visit our website to learn more about the McCormick School of Engineering and Applied Science at Northwestern University.

www.mccormick.northwestern.edu
twitter.com/NorthwesternEng
Facebook.com/northwesternengineering

Robert R. McCormick
School of Engineering and Applied Science
Northwestern University
Office of Undergraduate Engineering
2145 Sheridan Road, Room L265
Evanston, Illinois 60208-3102
Phone: 847/491-7379
Email: uedoffice@northwestern.edu

Please write, call, or visit our website to learn more about the McCormick School of Engineering and Applied Science at Northwestern University.

www.mccormick.northwestern.edu
twitter.com/NorthwesternEng
Facebook.com/northwesternengineering

Robert R. McCormick
School of Engineering and Applied Science
Northwestern University
Office of Undergraduate Engineering
2145 Sheridan Road, Room L265
Evanston, Illinois 60208-3102
Phone: 847/491-7379
Email: uedoffice@northwestern.edu
BIG-PICTURE THINKERS. BOLD IDEA DESIGNERS. TOUGH PROBLEM SOLVERS. REAL-TIME COLLABORATORS. NEW BUSINESS STARTERS. ALL-OUT INNOVATORS.

IT TAKES WHOLE-BRAIN THINKING.
IT TAKES WHOLE-BRAIN ENGINEERING.

“At Northwestern, no single thing defines me. I’m a whole-brain engineer.”
— DREW LEVORSEN