

Computer Science Department

Technical Report
Number: NU-CS-2023-14

November, 2023

Uncovering Latent Hardware/Software Parallelism

Vijay Kandiah

Abstract

With the breakdown of Dennard Scaling, modern heterogeneous systems necessitate parallelism
at both the hardware and software layers to meet today's demands for performance and energy
efficiency. However, today's processors do not fully utilize the available parallel resources,
leaving a lot of the system performance and energy efficiency unrealized. I postulate that the
performance and energy efficiency of modern systems can be improved by leveraging
information across system abstraction layers to uncover latent parallelism in hardware and
software. Achieving peak throughput on modern CPUs often requires high CPU single-
instruction, multiple-data (SIMD) unit utilization. To maximize the use of these SIMD/vector
units in a user-friendly manner, I present Parsimony, a single-program, multiple-data (SPMD)
programming model that exposes SIMD-level parallelism within general-purpose languages like
C++. To further improve system throughput, we must also improve memory performance. To
this end, I introduce Hybrid Consistency (HC), a hardware design that blends strong and weak
memory consistency models by performing fine grained memory reordering to uncover memory
level parallelism. Besides improving the performance of modern systems, we must improve their
energy efficiency to meet today's performance targets while staying within a practical power
budget. I demonstrate that GPU energy efficiency can be improved by uncovering parallelism in
hardware computation structures with ST2 GPU. To evaluate ST2 GPU, we need accurate

performance and power models of modern GPUs. While GPU performance modeling has
progressed in great strides, the community lacks an accurate power model for modern GPUs. To
address this decade-long gap, I present AccelWattch, a robust power modeling framework for
modern GPUs.

Keywords

Parallel Computing, Computer Architecture, Compilers, Memory Consistency, Energy
Efficiency, Graphics Processing Units, Single-instruction Multiple-data

NORTHWESTERN UNIVERSITY

Uncovering Latent Hardware/Software Parallelism

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Computer Engineering

By

Vijay Kandiah

EVANSTON, ILLINOIS

November 2023

2

Vijay Kandiah

vijayk@u.northwestern.edu

ORCID iD: 0000-0002-6853-9964

© Copyright by Vijay Kandiah 2023

All Rights Reserved

3

ABSTRACT

With the breakdown of Dennard Scaling, modern heterogeneous systems necessitate paral-

lelism at both the hardware and software layers to meet today’s demands for performance and

energy efficiency. However, today’s processors do not fully utilize the available parallel resources,

leaving a lot of the system performance and energy efficiency unrealized. I postulate that the per-

formance and energy efficiency of modern systems can be improved by leveraging information

across system abstraction layers to uncover latent parallelism in hardware and software. Achiev-

ing peak throughput on modern CPUs often requires high CPU single-instruction, multiple-data

(SIMD) unit utilization. To maximize the use of these SIMD/vector units in a user-friendly man-

ner, I present Parsimony, a single-program, multiple-data (SPMD) programming model that ex-

poses SIMD-level parallelism within general-purpose languages like C++. To further improve

system throughput, we must also improve memory performance. To this end, I introduce Hybrid

Consistency (HC), a hardware design that blends strong and weak memory consistency models by

performing fine grained memory reordering to uncover memory level parallelism. Besides improv-

ing the performance of modern systems, we must improve their energy efficiency to meet today’s

performance targets while staying within a practical power budget. I demonstrate that GPU energy

efficiency can be improved by uncovering parallelism in hardware computation structures with

ST2 GPU. To evaluate ST2 GPU, we need accurate performance and power models of modern

GPUs. While GPU performance modeling has progressed in great strides, the community lacks an

accurate power model for modern GPUs. To address this decade-long gap, I present AccelWattch,

a robust power modeling framework for modern GPUs.

4

ACKNOWLEDGEMENTS

My Ph.D. journey has been an incredible experience thanks to the support and mentorship I

have received from a number of people over the last six years.

First and foremost, I would like to express my deepest gratitude to my advisor, Professor Nikos

Hardavellas, for introducing me to academic research, for teaching me how to be a better re-

searcher, and for his unwavering support and mentorship throughout my time at Northwestern. My

decision to pursue a Ph.D. was undoubtedly motivated by his support and encouragement while

I was trying my hand at research during my first summer at Northwestern as a Master’s student.

This work would not exist without his help.

I would also like to thank my dissertation committee members, Professor Simone Campanoni,

Professor Russ Joseph, and Dr. David Nellans, for their insightful feedback and support in helping

structure my dissertation into its current format. I thank my industry collaborators Dr. Oreste Villa,

Dr. Daniel Lustig, and Dr. David Nellans for their invaluable guidance and mentorship in bringing

the Parsimony project to fruition.

Additionally, I would like to express my gratitude to all my colleagues and collaborators at

Northwestern: Professor Peter Dinda, Ali Murat Gok, Georgios Tziantzioulis, Enrico Armenio

Deiana, Haiyang Han, Brian Suchy, Mike Wilkins, Atmn Patel, Connor Selna, and everyone else

who contributed to this work and offered companionship and support throughout my Ph.D. journey.

Furthermore, I would like to thank my collaborators from the University of British Columbia and

Purdue University for their important contributions to the AccelWattch project.

Lastly, I would like to sincerely thank my parents, my sister, and my girlfriend for their uncon-

ditional love, support, and sacrifice, all of which made this journey possible.

5

THESIS STATEMENT

Modern hardware has evolved to become highly parallel. Today’s processors and software

do not fully utilize these parallel resources, leaving a lot of the system performance and energy

efficiency unrealized. I postulate that leveraging information across system abstraction layers can

bridge the gap between what is possible and what is realized today.

6

TABLE OF CONTENTS

Acknowledgments . 3

List of Figures . 11

List of Tables . 14

Chapter 1: Introduction . 15

Chapter 2: Programmer-friendly Hardware-accelerated SIMD/vector Parallelism . . . 21

2.1 Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows1 . . 21

2.1.1 Introduction . 21

2.1.2 Background . 24

2.1.2.1 Mapping SPMD Programs to SIMD/Vector Units 26

2.1.3 Motivating Improved SPMD Semantics 27

2.1.4 Parsimony Programming Model . 31

2.1.5 Parsimony Compiler Implementation . 35

2.1.5.1 Front-End . 35
1This section is based on our CGO’23 paper about Parsimony [25].

7

2.1.5.2 Middle-End Vectorizer . 37

2.1.5.3 Back-End . 43

2.1.6 Evaluation Methodology . 44

2.1.7 Experimental Results . 45

2.1.8 Discussion . 46

2.1.9 Related Work . 48

2.1.10 Conclusion . 48

Chapter 3: Unlocking Memory Parallelism through Flexible Memory Reordering . . . 50

3.1 HC: Fine grained Dynamic Blending of Memory Consistency Models2 50

3.1.1 Introduction . 50

3.1.2 Background . 55

3.1.2.1 Dynamic memory reordering with End-to-End SC 55

3.1.2.2 Low Latency TLB Shootdowns 56

3.1.3 HC Design Exploration . 58

3.1.4 OS/Hardware co-design for HC . 63

3.1.4.1 Extending the Page Table and TLB 63

3.1.4.2 Memory Pipeline Design . 66

3.1.4.3 HC State Transitions . 66

3.1.5 Evaluation Methodology . 70

2This section is based on our (to be submitted) ISCA’24 paper about HC [68].

8

3.1.6 Experimental Results . 71

3.1.7 Related Work . 76

3.1.8 Conclusions . 78

Chapter 4: Enabling In-compute Parallelism for GPU Energy Efficiency 80

4.1 ST2 GPU: An Energy-Efficient GPU Design with Spatio-Temporal Shared-Thread
Speculative Adders3 . 80

4.1.1 Introduction . 80

4.1.2 Background . 83

4.1.2.1 Volta Architecture and Execution Model 83

4.1.2.2 Speculative Adders . 84

4.1.3 Spatio-Temporal Value Correlation in GPUs 84

4.1.4 ST2 Design and Space Exploration . 88

4.1.4.1 ST2 Adder Slice Design . 88

4.1.4.2 ST2 Carry Speculation Mechanism and Comparison to VaLHALLA 89

4.1.4.3 ST2 GPU Microarchitecture . 93

4.1.5 ST2 GPU Evaluation Methodology . 94

4.1.5.1 Workloads . 94

4.1.5.2 Circuit Design . 95

4.1.5.3 Power Modeling . 96

3This section is based on our DAC’21 paper about ST2 GPU [105].

9

4.1.6 Evaluation . 97

4.1.7 Related Work . 100

4.1.8 Conclusions . 100

4.2 AccelWattch: A Power Modeling Framework for Modern GPUs4 101

4.2.1 Introduction . 101

4.2.2 AccelWattch Modeling Workflow . 104

4.2.3 The Architecture of NVIDIA Volta . 106

4.2.4 Constant, Static and Idle Power Modeling 107

4.2.4.1 Hardware Experimentation Methodology 107

4.2.4.2 DVFS-Aware Constant Power Modeling 107

4.2.4.3 Power-Gating-Aware Static Power Model 110

4.2.4.4 Divergence-Aware Static Power Modeling 112

4.2.4.5 ILP and Execution Divergence 114

4.2.4.6 Power Modeling for Idle SMs 115

4.2.4.7 Putting It All Together . 116

4.2.5 Dynamic Power Modeling . 117

4.2.5.1 Dynamic Power Model Formulation 117

4.2.5.2 Performance Modeling Framework 120

4.2.5.3 Microbenchmarking for Dynamic Power 121

4This section is based on our MICRO’21 paper about AccelWattch [121].

10

4.2.5.4 Quadratic Programming Optimization 123

4.2.6 Validation . 124

4.2.6.1 Target Architecture and Workloads 124

4.2.6.2 Validation Results . 127

4.2.7 Case Studies . 130

4.2.7.1 Modeling Pascal and Turing Architectures 130

4.2.7.2 AccelWattch for Deep Learning Workloads 135

4.2.7.3 Comparison to GPUWattch . 137

4.2.8 Related Work . 138

4.2.9 Conclusions . 139

Chapter 5: Conclusions and Future Work . 141

5.1 Conclusions . 141

5.2 Other Contributions from Collaborative Work . 143

5.3 Future Directions . 143

5.4 Acknowledgements of Funding Sources . 145

References . 161

11

LIST OF FIGURES

1.1 42 Years of Microprocessor Trend Data [6]. 16

2.1 Existing SPMD vectorizers are effective but have shortcomings. Whole-Function
Vectorization [37] and Region Vectorizer (RV) [38] do not clearly specify their
intended semantics. Others (e.g. ispc) are overly-restrictive and hard to integrate
into large projects. Parsimony targets well-defined SPMD semantics compatible
with standard compilers, while achieving similar performance targets. 23

2.2 SIMD/Vector operations can occur both per-lane and across lanes in high perfor-
mance ISAs. 27

2.3 The Parsimony SPMD programming model. 32

2.4 Parsimony and ispc performance compared to LLVM Auto-vectorization. 45

2.5 Speedup over LLVM scalar compilation, i.e., with vectorization disabled, on 72
Simd Library benchmarks. 46

3.1 Normalized CPI stack breakdown of multithreaded applications from PARSEC[69]
and NAS[70] suites. To improve system performance, we need to improve memory
performance. 51

3.2 Classification of Memory Accesses as Private or Shared Read-Only. Access clas-
sification at the cache line granularity identifies double the number of reorder-safe
accesses as page granularity classification. 53

3.3 Performance impact of memory access classification granularity. Classifying at
256B granularity yields the same performance as classifying at cache line granularity. 59

12

3.4 Breakdown of accesses to private HC regions by number of unique threads to keep
track of per page. Keeping track of two unique threads per page is sufficient to
capture all private accesses. 60

3.5 Performance impact of increasing HC private transition count(PTC) threshold. The
maximum performance benefit of eager re-classifications comes from allowing just
one re-classification (HC2). 63

3.6 Extensions to the OS Page Table Entry and the TLB entry to support HC. Changes
are highlighted in blue. 64

3.7 State transitions of a HC region at the OS Page Table level and at the TLB level. . . 67

3.8 Performance impact of HC design choices. HC2 outperforms a no-cost oracle
page-based classification design, 4096B NC by a geomean 13% across our appli-
cations. 72

3.9 Performance of HC2 normalized to the performance of endToendSC. HC2 outper-
forms endToendSC by a geomean 24% across our applications. 73

3.10 Performance scalability of endToendSC and HC2. HC2 maintains a consistent 20-
24% performance lead over endToendSC while increasing application thread counts. 74

4.1 ALU and FPU operations are prevalent in GPU kernels. 81

4.2 Value evolution of addition results from the Pathfinder kernel. 85

4.3 8-bit slice carry-in correlation across the temporal & spatial axes. 87

4.4 Adder slice design. Slices 1-7 are similar. Changes over VaLHALLA are high-
lighted in red. 88

4.5 Design space exploration for ST2 carry speculation mechanism. 91

4.6 Thread misprediction rate for ST2 adders. 97

4.7 Normalized system energy for the baseline and ST2 GPU architectures. 97

4.8 AccelWattch power modeling flowchart. 105

13

4.9 Measured and curve-fitted total power with varying processor frequency on GV100. 109

4.10 Inferring the power consumption of activating power-gated chip-wide and SM-
wide components. 111

4.11 Hardware measurements and modeled power with varying number of active threads
in each warp. 114

4.12 Validation of Idle SM static power model. 117

4.13 Dynamic power heat-map of GPU hardware component categories exercised by
microbenchmarks. 123

4.14 Correlation plots for AccelWattch validation. 127

4.15 Normalized per-component power breakdown. 129

4.16 AccelWattch validation: AccelWattch SASS SIM modeling a Volta GV100. 130

4.17 Correlation plots for case studies. 132

4.18 Case studies: AccelWattch SASS SIM (tuned for Volta), applied to model Pascal
and Turing architectures. 133

4.19 Relative Modeled and Measured Power across three architectures for AccelWattch
SASS SIM. 134

4.20 Correlation plot for DeepBench benchmarks. 136

14

LIST OF TABLES

3.1 Modeled System Characteristics . 70

4.1 Dynamic power components in AccelWattch. 119

4.2 AccelWattch tuning µBenchmarks. 120

4.3 Target GPUs for validation and case studies. 124

4.4 List of kernels in validation suite. 126

15

CHAPTER 1

INTRODUCTION

The first 25 years of microprocessors saw an exponential growth in single-thread performance as

the number of onboard transistors grew exponentially along with the microprocessor clock frequen-

cies. As transistor sizes shrunk, the reduction in transistor power offered by Dennard Scaling [1]

allowed chip manufacturers to continue drastically increasing core clock frequencies without sig-

nificantly increasing the overall power consumption of the chip. However, Dennard scaling broke

down in 2005 [2]. Chip manufacturers could no longer keep the power envelope constant from

generation to generation and simultaneously achieve potential performance improvements. The

primary reason for this breakdown is that as transistor sizes go down, the static power losses as a

fraction of the supplied power increase even more rapidly. Static power dissipates as heat, causing

the chip to warm up. This increase in temperature exponentially increases static power, entering a

positive feedback loop that threatens thermal runaway. Thus, as seen in Figure 1.1, the breakdown

of Dennard scaling created a “power wall” that forced processor clock rates to stop increasing any

further, peaking at around 3 – 4 GHz, and processor power consumption peaked in the range of

a few hundred watts. Hence, chip manufacturers were no longer able to attain the likes of 2X

improvement in processor performance roughly every 18 months through clock frequency scaling.

Upon the breakdown of Dennard scaling, to continue increasing processor performance even

further without raising power consumption beyond the limits of practical cooling technology, the

industry has turned towards extensive parallelism. Modern systems introduce compute parallelism

in various flavors: with increase in the number of processor cores by introducing multicore proces-

sors, with wider single-instruction, multiple-data(SIMD)/vector units such as x86 AVX-512 [3],

16

and with heterogeneous computing using co-processors and/or accelerators such as Graphics Pro-

cessing Units (GPUs). However, sequential programs written in standard sequential programming

languages still dominate today’s important domains [4]. Adapting these programs to take ad-

vantage of parallel computing systems often requires considerable programmer effort. Hence,

there is now a necessity for system software to have user-friendly paradigms that allow program-

mers to leverage the various dimensions of parallelism offered by modern heterogeneous systems,

without having to worry about the complex hardware implementation details. However, current

user-friendly approaches targeting this goal, such as the widely popular OpenMP [5] paradigm,

generally maintain serial loop semantics which inhibits the full utilization of the parallel compute

resources available in hardware, as explained in Chapter 2.1.3.

Breakdown of
Dennard Scaling

Increase in
Number of Cores

Figure 1.1: 42 Years of Microprocessor Trend Data [6].

One avenue of parallelism in modern systems is at the SIMD/vector unit level. Maximizing

the utilization of these SIMD/vector compute units is often necessary to achieve the advertised

17

peak computational performance on modern CPUs. For instance, in Intel’s Cascade Lake mi-

croarchitecture [7], leveraging the vector units allows up to 68 32-bit integer operations to be

simultaneously executed within each core. On the other hand, without using any vector units, a

maximum of only 10 32-bit integer operations can be simultaneously executed within each core.

Although new ISA extensions such as x86 AVX-512 [3], ARM SVE [8], and RISC-V “V” exten-

sion [9] continue to introduce instructions with richer computational power, targeting these ISAs

still remains a major challenge for developers and toolchain providers. Single-program, multiple-

data (SPMD) programming models such as ispc [10] have been proven to be an effective way

to use high-level programming languages to target these vector ISAs. Unfortunately, many such

SPMD frameworks have evolved to have either overly restrictive language specifications or un-

der specified programming models as explained in Chapter 2.1. This has impeded the wide-scale

adoption of SPMD-style programming to leverage the SIMD-level parallelism offered by mod-

ern CPUs. To overcome such limitations of prior SPMD frameworks and facilitate SPMD-style

programming of SIMD/vector units, we introduce Parsimony (PARallel SIMd), a well-specified

SPMD programming approach and compiler flow that efficiently targets a CPU’s SIMD/vector

units while remaining compatible with standard programming models, languages, and compiler

toolchains. Parsimony’s programming model semantics enable a standalone compiler IR-to-IR

(Intermediate Representation) optimization pass that can “program” SIMD/vector units indepen-

dently of other compiler passes. In other words, the standalone Parsimony compiler pass translates

SPMD-annotated function(s) into architecture-independent vector IR. Hence, the standard com-

piler back-end for each architecture can optimize Parsimony generated vector IR for the target ISA

as it sees fit. We show that our prototype implementation of Parsimony in LLVM [11] achieves

performance parity with state-of-the-art SPMD frameworks (i.e., ispc) and custom handwritten

AVX-512 code, without requiring the use of a specialized programming language or compiler.

18

Generating SIMD/vector instructions alone is not enough to maximize system throughput. Un-

fortunately, the performance of memory is still the limiting factor for performance of several im-

portant applications [12]. Furthermore, this has been the case for several decades [13]. Rodrigues

et al. [14] found that High Performance Computing (HPC) programs are often dominated by mem-

ory instructions (45% of all executed instructions) and integer instructions (29.5% of all executed

instructions). Additionally, a majority of these integer instructions were found to be used to cal-

culate memory addresses. As such, to maximize system throughput, we also need to maximize

the performance of the memory system. We can improve memory performance in two ways, by

improving the latency of memory operations, and by improving memory throughput. This disser-

tation focuses on leveraging memory-level parallelism to improve memory throughput. Improving

the latency of memory accesses to a particular structure usually involves advancements in device

physics and is beyond the scope of this dissertation.

Parallelism in memory can be improved by relaxing memory ordering constraints to allow

memory accesses to execute out-of-order. Relatively strong Memory Consistency Models (MCMs)

such as x86-TSO [15] enforce needlessly restrictive ordering constraints that serialize memory ac-

cesses going to different locations at the load-store queue. On the other hand, weaker memory

models such as IBM Power [16]–[18] lay undue burden on the programmer or software layer

to specify ordering with memory fences/barriers for program correctness. We can bridge this

performance-programmability gap by enforcing strong MCM ordering only when absolutely nec-

essary; i.e., by allowing memory accesses to execute out-of-order when their reordering does not

affect observable program behavior. I capitalize on this observation and propose Hybrid Consis-

tency (HC), an efficient hardware design that blends strong and weak MCMs by enabling a fine

grained non-speculative reordering of memory operations at the load and store buffers. HC al-

lows the programmer to reason about the program with strong MCM guarantees, thus requiring

19

less programmer burden relative to weaker MCMs. Under the hood, HC selectively relaxes or-

dering constraints for memory operations whenever safe to do so, thus extracting memory-level

parallelism to improve system performance.

In addition to improving system performance, chip designers also need to improve energy ef-

ficiency to meet performance targets while staying within a reasonable power budget. GPUs are

becoming increasingly popular for accelerating both general-purpose and HPC applications. There

are 152 GPU-accelerated systems in the most recent TOP500 HPC list [19], and 70% of the top-50

HPC applications are GPU-accelerated [20]. Similarly, GPUs have become the dominant plat-

form for machine learning and AI acceleration [21]. To meet ever-increasing performance targets,

designers cram increasingly more cores per GPU chip, leading to a commensurate rise in power

consumption. However, the power budget of modern GPUs is already reaching the limits of prac-

tical cooling technology. For example, both NVIDIA’s Volta GV100 architecture [22] and the

previous-generation Pascal GP100 [23] are limited by the same 250 W thermal design power, even

though GV100 contains 43% more CUDA cores. To continue increasing the core count at a con-

stant power budget, the cores must become more energy efficient. One way to improve the energy

efficiency of GPUs is to leverage the parallelism inside computation structures such as arithmetic

units to make these CUDA cores more energy efficient. We observe that the computed values of

consecutive arithmetic computations from the same code location in real-world GPU applications

are often highly correlated. We leverage this important but overlooked program behavior to pro-

pose Spatio-Temporal Shared-Thread (ST2) adders, a power-efficient speculative adder design that

utilizes the spatio-temporal history of arithmetic operations in a GPU kernel to perform additions.

We show that ST2 adders guarantee correct results while saving 70% of the nominal adder power.

Furthermore, we estimate that ST2 GPU, our proposed GPU architecture that uses ST2 adders,

saves 21% of the GPU chip energy with practically no performance and area overheads.

20

To evaluate hardware advancements such as ST2 GPU, GPU architects require robust tools that

will enable them to quickly and accurately model both the performance and power consumption of

modern GPUs. However, while GPU performance modeling has progressed in great strides [24],

GPU power modeling has lagged behind. We address the lack of cycle-level power modeling tools

for modern GPUs by introducing AccelWattch, a GPU power model that is configurable, capable

of cycle-level calculations in emulation and trace-driven environments, and supports DVFS. We

validate AccelWattch on a NVIDIA Volta GPU, and show that it achieves strong correlation against

hardware power measurements. Additionally, we demonstrate that AccelWattch can enable reliable

design space exploration. Finally, we use a version of AccelWattch to perform the evaluation of

ST2 GPU.

The rest of this dissertation is structured as follows. Chapter 2 describes the Parsimony pro-

gramming model. Chapter 3 details Hybrid Consistency (HC). Chapter 4 presents ST2 GPU and

AccelWattch. Finally, Chapter 5 provides a summary of my contributions, discusses directions for

future work, and concludes this dissertation.

21

CHAPTER 2

PROGRAMMER-FRIENDLY HARDWARE-ACCELERATED SIMD/VECTOR

PARALLELISM

2.1 Parsimony: Enabling SIMD/Vector Programming in Standard Compiler Flows1

2.1.1 Introduction

Achieving high computational performance on modern CPUs often requires making effective use

of those CPUs’ SIMD or vector units. Although single-thread performance scaling has slowed in

recent years, single-instruction, multiple-data (SIMD) and vector ISAs continue to be an area of

active innovation [26]–[28]. SIMD/vector registers are getting wider, with 512b registers already

in widespread use. New ISA extensions such as x86 AVX-512 [29], ARM SVE [30], and the

RISC-V “V” extension [31] continue to introduce instructions with richer computational power.

For many workloads, these innovations can translate directly into improved throughput; however,

targeting these new ISAs remains a major challenge for developers and toolchain providers alike.

Programming approaches targeting CPU SIMD/vector units fall broadly into three categories

today. The simplest approach for programmers is to enable auto-vectorization of serial code. This

works well for some applications [32] but can partially or completely fail to vectorize in other

cases [33]. Moreover, the serial semantics of loops do not allow users to express synchroniza-

tion points across loop iterations. This restriction makes it impossible to express operations such

as “shuffles”, which are often performance-critical to parallel workloads. A second approach is

explicit SIMD/vector programming. This approach takes many forms including employing inline

1This section is based on our CGO’23 paper about Parsimony [25].

22

assembly, using low-level C intrinsics, or relying on pre-packaged SIMD-optimized libraries such

as Enoki [34] or SLEEF [35]. Forcing developers to write low level code that explicitly maps the

SIMD-amenable portions of their problem onto differing hardware ISAs is tedious, error-prone,

and burdensome. The third approach is using a single-program, multiple data (SPMD) program-

ming model that assumes a fixed number of threads or program instances executing in parallel.

SPMD programming models such as ispc [10] have already proven effective at extracting good

performance from CPU SIMD/vector units while retaining a user-friendly interface.

Unfortunately, current SPMD frameworks have made programming model decisions that make

it difficult to express certain classes of algorithms and hard to integrate their compilation logic into

existing compiler flows. For example, although ispc [10] delivers great performance, it requires

writing programs in a custom “C-like” programming language as well as using a specialized stan-

dalone compiler infrastructure (derived from LLVM [11]); this increases the burden of adopting

it into large projects. Another example, still from ispc, is the size of the thread “gang”2 which

is specified using a compiler flag. This approach is far from ideal. For instance, in a 512b SIMD

architecture, a gang size of 16 would be ideal for 32b values, but inefficient for 8b values. A gang

size of 64 would be ideal for 8b values but add tremendous register pressure with 32b values. Hav-

ing to select a single gang size for the entire compilation unit makes performance tuning extremely

tedious or impossible. Similarly, while threads in an ispc gang execute in synchronous fashion,

later innovations in GPU SPMD programming models such as CUDA [36] have deprecated such

“warp-synchronous” programming approaches in order to improve the soundness of the threading

model [22].

As such, the goal of Parsimony is to introduce a well-defined SPMD programming model and

compiler flow that efficiently targets a CPU’s SIMD/vector units while remaining compatible with

2A “gang” in ispc is a group of concurrent program instances.

23

Language Syntax

Unclear

Standard

Rigorous but
over-constrained

(gang-synchronous)

Custom

Rigorous
(threads w/ explicit

horizontal ops)

Standard

Under-Specified
Vectorizers, e.g., RV

Specialized Languages,
e.g., ispc

Parsimony

SPMD Semantics

Vectorization Method
Compiler

Pass
Full-Custom

Compiler
Compiler

Pass

Figure 2.1: Existing SPMD vectorizers are effective but have shortcomings. Whole-Function Vec-
torization [37] and Region Vectorizer (RV) [38] do not clearly specify their intended semantics.
Others (e.g. ispc) are overly-restrictive and hard to integrate into large projects. Parsimony tar-
gets well-defined SPMD semantics compatible with standard compilers, while achieving similar
performance targets.

standard programming models, languages, and compiler toolchains. As shown in Figure 2.1, Par-

simony’s design starts at the language semantics level and is designed to be compatible with any

number of front-end language syntax choices. A Parsimony-compatible language must only in-

troduce the ability to conceptually instantiate a programmer-specified set of threads—using the

term “thread” in the semantic sense, not necessarily as a true operating system (OS) thread. Inter-

thread communication is permitted, but only when obeying standard inter-thread communication

rules. Thus, Parsimony must expose efficient “horizontal synchronization” operations to facil-

itate synchronization within gangs. Due to this primarily single-threaded model, the code can

pass through any standard optimization flow in the compiler. Vectorization instead occurs through

a standalone IR-to-IR transformation pass that translates the SPMD-annotated function(s) into

architecture-independent vector IR. Each architecture’s standard back-end can then optimize the

translated IR for the target ISA as it sees fit.

Overall, the contributions of Parsimony are as follows:

1. We present Parsimony, a well-specified programming model and compiler framework de-

signed to remain fully compatible with standard language semantics and compiler flows.

24

2. We demonstrate a prototype implementation of Parsimony in LLVM, with performance re-

sults showing that our SPMD variant performs as well as state-of-the-art SPMD frameworks

(i.e., ispc) and custom AVX-512 code, without requiring the use of a specialized program-

ming language or compiler.

3. Based on our experience building Parsimony, we identify places where improvements/ex-

tensions to LLVM’s IR would facilitate better integration of SPMD flows, and we provide

takeaways for how languages and language extensions like C++ and OpenMP can integrate

the Parsimony approach to SPMD for improved performance and programmer productivity.

4. We publicly release our Parsimony compiler framework and benchmarks to facilitate further

research.

2.1.2 Background

SIMD ISA extensions employ a fixed-width SIMD register file and an instruction set that operates

on fixed-width operands, e.g., 128b, 256b, or 512b in the case of x86 AVX-512 [29]. Conversely,

“vector” ISA extensions such as ARM SVE [30] and RISC-V “V” [31] employ a vector-length-

agnostic (VLA) instruction set that allows for implementations with different vector widths to

support the same ISA. For example, ARM SVE supports hardware vector width implementations

that can vary between 128b and 2048b in 128b increments. This enables pre-compiled code to

run seamlessly across the supported vector widths without requiring recompilation or multiple

program versions targeting differing hardware. In this section, unless otherwise specified, we use

the terms “SIMD” and “vector” interchangeably as the differences between these approaches are

important only if programmers are using low-level intrinsics, and are generally not significant if

being targeted by a SPMD-style program.

25

The currently mainstream techniques to leverage SIMD and vector instruction sets and extract

SIMD-level parallelism on CPUs are briefly discussed below.

Auto-Vectorization: In classical loop auto-vectorization, the compiler attempts to transform

a region of serial code (usually a loop) into a block of vector instructions [39]–[41]. To do this,

it relies on algorithms such as alias analysis as well as target-dependent heuristics to determine

whether vectorization would be both legal and profitable. While this approach requires little

to no additional programmer effort, auto-vectorization is opportunistic and is generally limited

by the level of sophistication of the compiler’s analysis abilities. As such, it tends to produce

highly variable performance characteristics across systems. Language extensions such as C++

std::execution::unseq [42] or OpenMP #pragma omp simd [5] aim to improve the

efficiency of auto-vectorization by providing user annotations or hints to the compiler, e.g., to

ignore cases where the compiler cannot prove there are no loop-carried dependencies; however,

many of the same fundamental challenges remain.

Vectorization remains an active area of research. Outer-loop vectorization [43] focuses on

loops that are not the innermost in a hierarchy. This introduces additional challenges, as it raises

the probability that there will be divergent control flow among outer loop instances. SLP vector-

ization [44], [45] is another auto-vectorization technique that combines similar independent scalar

instructions to form vector instructions. Hence it offers more flexibility than loop vectorization

because it does not just target parallelism across loop iterations. Additionally, auto-vectorization

is performed on serial loops, and serial loops do not allow programmers to express horizontal

communication between iterations.

Low-Level Intrinsics: SIMD/vector intrinsics are small functions that map nearly 1:1 to as-

sembly instructions for a particular ISA. Manually inserting SIMD/vector intrinsics requires sig-

nificant low-level programmer effort and is inherently non-portable. Nevertheless, due to the lim-

26

itations of the other programming approaches described in this section, libraries aiming for peak

performance often contain extensive use of intrinsics in spite of the engineering costs [46].

SIMD Libraries: Libraries like enoki [34] and SLEEF [35] shift code portability into a library-

supported layer for different architectures. While using SIMD libraries does make the source code

more readable than the lower level intrinsics approach, similarly high performance can be achieved

only if the source code can be expressed in terms of the limited set of exposed APIs that are

specified by these libraries.

Dedicated SPMD Languages: SPMD-on-SIMD programming models such as ispc [10]

generate multiple conceptual program instances that operate on different data from scalar C-like

code. Each instance of the program is then mapped to a different SIMD lane to extract parallelism.

While such programming models are very appealing to efficiently utilize the CPU SIMD/vector

units, their use of non-trivial new keywords like “varying” and their reliance on non-standard

compilation toolchains has made their widespread adoption to be practically difficult.

2.1.2 Mapping SPMD Programs to SIMD/Vector Units

When viewed through the lens of a SPMD program, both SIMD and vector ISA extensions enable

traditional data-level parallel operations through “vertical” operations in which multiple logical

“lanes” all operate independently. The number of lanes that can concurrently execute in hardware

is thus a function of the SIMD/vector width and the data width of the operand being operated

upon. For example, Figure 2.2a shows a SIMD add instruction performing a vertical addition of

two 8-bit values across 16 lanes of two input 128b registers. In contrast, “horizontal” instruc-

tions operate across the lanes. For instance, a shuffle instruction exchanges values across a single

SIMD/vector input register as shown in Figure 2.2b. Modern SIMD/vector ISAs also include com-

plex instructions that are neither purely vertical nor purely horizontal. For example, AVX-512

27

15
128 bits

c
Lane 0 to 15 in c = corresponding lane in a + corresponding lane in b

b

a 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(a) A “Vertical” add instruction operating independently within each lane.

15
128 bits

output

input 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Each lane in output gets its value from any lane 0 to 15 in input

(b) A “Horizontal” shuffle operation permitting any-to-any lane output.

Figure 2.2: SIMD/Vector operations can occur both per-lane and across lanes in high performance
ISAs.

includes instructions that perform a vertical operation in combination with a horizontal operation

(e.g., vpsadbw [29]). Such instructions are harder for compilers to target, but recent work [47] has

improved the situation.

An enabling feature of modern SIMD and vector ISAs that allows for efficient SPMD pro-

gramming is the support for masked execution with per-lane predication of execution output. The

predication mask registers have one bit per lane and masked-off lanes will not modify their sub-

portion of the output register used by the SIMD instruction. This fine-grained predication is critical

when mapping programs onto a single thread executing SIMD instructions even though the SPMD

threads diverge along different control flow paths.

2.1.3 Motivating Improved SPMD Semantics

In the examples below, we analyze variants of a simple program that copies data from each position

in an array into an adjacent array position. This program is not as innocent as it may seem; it

28

1 // OpenMP version
2 template<typename T, unsigned N>
3 void foo(T* a) {
4 #pragma omp simd
5 for (unsigned i = 0; i < N; i++) {
6 T tmp = a[i];
7 // data race! cannot synchronize
8 a[i+1] = tmp;
9 }

10 }

Listing 2.1: OpenMP maintains serial execution semantics.

highlights several interesting subtleties that can arise in SPMD programming model decisions and

exposes compiler implementation issues that may appear.

Listing 2.1 presents a version of the program written in C++ with OpenMP. As required by

most #pragma implementations, the program semantics can be fully understood by ignoring the

#pragma: e.g., each loop iteration reads the value of a[i] and writes it to a[i+1], where the

latter is then read during the next loop iteration. In OpenMP the use of the #pragma allows the

compiler to legally ignore loop-carried dependencies that can be difficult to analyze (though in this

case the dependency is obvious). With the fall-back capability of generating single-threaded code

despite the program’s #pragma SIMD directive, many auto-vectorizing compilers will choose

to output functionally correct single-threaded execution and fail to vectorize this simple piece of

code. Neither OpenMP nor similar constructs as in C++ std::execution::unseq provide

an explicit way for programmers to specify that a loop-carried dependency should be ignored, al-

lowing vectorization of the load and the store, i.e., to have all loop iterations first perform the load

before any parallel execution path performs the store. Pragmatically specifying this type of syn-

chronization requires explicitly breaking the single loop into portions, and while straightforward

in this program, it becomes complex or impossible in large regions.

An ispc version of the same program is shown in Listing 2.2. Due to ispc’s gang-

29

1 // ispc version (limited support for templates)
2 void foo(uniform int a[]) {
3 foreach(uniform i : 0 ... N) {
4 int tmp = a[i];
5 // implicitly gang-synchronous!
6 // correct only if N <= compile time gang size
7 a[i+1] = tmp;
8 }
9 }

Listing 2.2: ispc code is “gang-synchronous”.

1 // Parsimony version:
2 template<typename T, unsigned N>
3 void foo(T* a) {
4 #psim gang_size(N) {
5 uint64_t i = psim_get_lane_num();
6 T tmp = a[i];
7 psim_gang_sync(); // explicit!
8 a[i+1] = tmp;
9 }

10 }

Listing 2.3: Parsimony makes gang size and horizontal synchronization explicit.

synchronous execution model, ispc requires all threads in the gang to execute the load before

any thread executes its store. However, in ispc, the gang size is a compilation flag that is tightly

coupled with the ISA SIMD width of the target machine. Programmers can access it through the

programCount variable, but not set it. Therefore, the correctness of this code changes depend-

ing on the relationship between gang size and N. This is less than ideal from a programming model

perspective.

Listing 2.3 now demonstrates how the running example would be written using Parsimony,

using #psim syntax as one example of how to demarcate an explicit SPMD parallel region. De-

scribed in more detail later in Section 2.1.4, Parsimony compatible code explicitly instantiates a

programmer-specified number of independent threads that can also be grouped into gangs. The

gang size need not match the hardware’s SIMD width; the compiler back-end can map any gang

30

1 // Parsimony version:
2 template<typename T, unsigned N>
3 void foo(atomic<T>* a) {
4 #psim gang_size(N) {
5 uint64_t i = psim_get_lane_num();
6 a[i].fetch_add(1, memory_order_relaxed);
7 a[i+1].fetch_add(1, memory_order_relaxed);
8 }
9 }

Listing 2.4: Example showing how “gang-synchronous” behavior can break compiler
optimizations legal for single-threaded code.

size onto any target ISA. Because the number of threads is specified at the program level, a de-

veloper can reason about program correctness strictly based on the programming model. There is

no requirement to know the compiler options being specified nor the SIMD/vector width of future

hardware the program will be executed on. As with modern GPUs [36], but differing from ispc,

Parsimony eschews a gang-synchronous programming model and instead requires the programmer

to explicitly synchronize across a gang when needed. This makes it easier to incorporate standard

sequential semantic compiler passes and facilitates the possible adoption of more flexible forward

progress guarantees in the future.

Listing 2.4 presents a different example showing how a gang-synchronous programming model

can introduce semantics incompatible with standard compiler optimizations in languages such as

C++. Because the example operations are atomics, there are no concerns about data races re-

gardless of the actual execution order in hardware. A typical single-thread compiler optimization

pass can tell that the atomics are performed to two adjacent non-aliasing addresses. Therefore, it

would be legal for the compiler to reorder the atomics arbitrarily. However, in a gang-synchronous

model, all threads in the gang are required to perform the first atomic before any thread in the

gang performs the second atomic. Therefore, the second atomic in each thread must read the result

written by the first atomic from the adjacent thread (except at the boundary condition). To pre-

31

serve this semantic, the compiler cannot reorder the atomics. Hence, optimization passes capable

of reordering memory operations in cases such as this have to be explicitly disabled, modified,

or specialized, making it difficult to integrate “gang-synchronous” SPMD models with modern

vectorizing compiler flows.

The examples above show three important takeaways that motivate Parsimony’s design. First,

the semantics of a SPMD programming model should be well-defined in a way that the programmer

can reason about at the language level, i.e., the semantics should not depend on any compile-time

flags. Second, designing the semantics independently from the syntax allows the SPMD semantics

to be integrated into widely used languages, facilitating adoption. Finally, the SPMD semantics

should strive to be compatible with standard single-thread semantics to facilitate integration into

standard compiler flows. The next subsection explains Parsimony’s programming model and how

it meets all of these goals.

2.1.4 Parsimony Programming Model

Parsimony is a general-purpose SPMD programming model designed to integrate cleanly into any

programming language that supports threading and shared memory semantics. For explanatory

purposes and in our implementation, we use standard C++ as the target language; however, the

same principles extend to other languages.

In Parsimony’s SPMD programming model, which is depicted in Figure 2.3, a SPMD region

is a region of code in which a fixed number of conceptually independent threads are created. The

SPMD region executes within the parent thread. This means the threads are conceptually “forked”

at the start of the region and “rejoined” at the end of the region, where the parent thread continues

its execution. However, no threads are actually forked in an operating system sense; the “fork” and

“join” describes the threads’ behavior within the language semantics. Within each thread, standard

32

1

Horizontal
Operations

Scalar Region

SPMD Region

Standard execution,
in-order

SPMD semantics
with explicit
synchronization

Gang 0 Gang 1

Scalar Region
Standard execution,
in-order

END SPMD Region

START SPMD Region

Conventional
C/C++

compilation

Compiles to
SIMD/vector

code

Conventional
C/C++

compilation

Figure 2.3: The Parsimony SPMD programming model.

intra-thread sequencing rules apply.

Threads are also grouped into gangs of a fixed size, determined by the programmer as part

of the syntax declaring the parallel region. This allows different SPMD regions in a program to

operate on different gang sizes, which is useful when differing functions operate on data structures

having different element sizes. This differs from ispc’s approach, which specifies the size of the

gang using a target-dependent compiler flag. Also unlike ispc, Parsimony threads are not “gang-

synchronous”; there is no implicit synchronization between threads at every sequence point (i.e.,

before or after each statement). As mentioned earlier, this choice provides more optimization and

scheduling flexibility to the compiler.

In Parsimony, synchronization between threads is instead performed using explicit horizon-

tal operations. In contrast to auto-vectorization of loops or other language constructs such as

std::execution::unseq, which is the current C++ standard recommendation for code tar-

geting SIMD units [42], Parsimony threads may also communicate through memory using standard

inter-thread memory ordering rules. As long as data races between threads are avoided, communi-

cation through memory is well-defined behavior.

33

1 void foo(uint32_t* a, uint32_t* b) {
2 #psim gang_size(16) num_spmd_threads(N) {
3 size_t i = psim_get_lane_num();
4 if (a[i] + i < b[i]) {
5 a[i] += 1;
6 }
7 b[i] = psim_shuffle_sync<uint32_t>(a[i], i + 4);
8 }
9 }

Listing 2.5: Parsimony syntax, as embedded in C++.

Parsimony guarantees concurrency among threads in each gang; if one thread in a gang has

started, other threads in the gang are also guaranteed to start. The fairness guarantee is that if

all threads in the gang individually make forward progress, then all threads will eventually make

forward progress. This rule is necessary to ensure that horizontal operations (that occur across

threads) behave correctly. However, Parsimony does not provide global forward progress guar-

antees, e.g., if one thread in a gang is waiting on a spinloop that will be signaled by another

thread in the same gang, then the stalling thread will block the progress of the entire gang. Ad-

ditionally, there is also no guarantee of concurrency or forward progress among different gangs.

These restrictions are tighter than those in place on modern GPUs [22] which support a single-

instruction multiple-thread (SIMT) programming model. GPUs may have hardware-assisted inde-

pendent thread scheduling [22], whereas Parsimony relies on a more restricted forward progress

model to ensure that there is no need for a software implementation of concepts such as SIMT

convergence stacks [48], [49] or launching of multiple OS threads to enable thread preemption.

Listing 2.5 shows the syntax we have used to prototype Parsimony and employed in the ex-

amples in this work. These syntax choices are not fundamental and could be adapted as needed

for different languages/frameworks. As shown, a SPMD region is identified with the #psim

construct and prefixed with syntax indicating the gang size (gang size) as well as the num-

ber of total threads (num spmd threads) or gangs (num spmd gangs). This gang size can

34

take any compile-time constant value; there is no dependency on the hardware vector width.

The last gang may be partially full depending on whether the number of threads is a multiple

of the gang size. The user can obtain the unique thread number within the SPMD region us-

ing psim get thread num(), the gang number with psim get gang num(), and the lane

number within the gang with psim get lane num().

To allow further compiler optimization, the user can call the routines psim is tail gang()

and psim is head gang() to explicitly identify the first and the last gang in the region. This

is unique and important because the first and last gang are typically used to perform operations

on the boundary of data structures. Hence, more expensive boundary condition checks are often

performed there and a programmer may not want to burden all threads with performing those. The

compiler can use this information to automatically extract the first and last gang into a copy of

the function that is separate from the rest, so that the boundary condition checks can be optimized

away from the non-boundary gang execution. Parsimony provides no guarantee of ordering among

gangs, so depending on the compiler implementation they can be executed sequentially, out of

order, and/or in parallel.

The body of the SPMD region automatically captures variables from outside the region by

reference, as needed; the SPMD region itself takes no explicit arguments. SPMD threads may con-

tain any arbitrary language constructs, including arbitrary control flow or memory access patterns,

subject to standard language semantics. Parsimony also provides a set of APIs for operations not

typically exposed in standard language APIs, such as saturating math operations and horizontal

shuffle and data exchange operations.

As mentioned earlier, the choices described above were made to facilitate the use of a stan-

dalone IR-to-IR vectorization pass that can be integrated easily into standard language toolchains.

The next section describes the details of how to implement such a pass.

35

2.1.5 Parsimony Compiler Implementation

We now describe how Parsimony SPMD semantics integrate into a typical compiler flow and our

prototype that manifests these concepts. We use LLVM for our implementation, though these

concepts should generalize to other compilers.

The overall flow for Parsimony compilation works as follows, with each step described in

further detail below. First, the program is compiled from source into the compiler’s intermediate

representation (IR) by the compiler front-end. The front-end is modified only in two ways: to

support SPMD semantics within the source language as needed, and to disable any early-stage

auto-vectorization that might occur by default. Second, the new Parsimony IR-to-IR vectorization

pass is added to the middle-end optimization process. This new pass vectorizes the SPMD regions

and is the core of the Parsimony design. Finally, the IR is translated to machine-specific assembly

using the unmodified compiler back-end.

2.1.5 Front-End

The job of the compiler front-end within Parsimony is to produce a list of SPMD regions to

be vectorized by the middle-end. We assume that the vectorizer operates at the level of whole

functions, and as such, the front-end must extract SPMD regions from serial code into standalone

SPMD-annotated functions. The vectorized function can later be re-inlined by the back-end in

order to avoid the overhead of an extra function call. The SPMD annotation attached to the function

must record relevant metadata such as the gang size and the total number of threads executing that

region as specified by the Parsimony programming model.

Our prototype implements SPMD function extraction by piggybacking on Clang support for

the extraction of #pragma omp parallel code regions. OpenMP parallel regions are imple-

mented in Clang by outlining the parallel region into a standalone function, implicitly capturing any

36

1 // Original source code, before extraction
2 void foo(int* a) {
3 // code before...
4 #psim gang_size(G) num_spmd_threads(N) {
5 // SPMD region code
6 }
7 // code after...
8 }
9

10 ///
11

12 // After extraction
13 void foo(int* a) {
14 // code before...
15 for (unsigned i = 0; i < N; i += G) {
16 if (i + G <= N) {
17 foo_extracted_full(/* captured vars */);
18 } else {
19 foo_extracted_partial(/* captured vars */);
20 }
21 }
22 // code after...
23 }
24

25 // SIMD annotation: gang size G
26 inline void foo_extracted_full(/* captured vars */) {
27 // SPMD region code
28 }
29

30 // SIMD annotation: gang size G
31 inline void foo_extracted_partial(/* captured vars */) {
32 if (thread_id < N) {
33 // SPMD region code
34 }
35 }

Listing 2.6: An abstracted representation of the SPMD region extraction process performed by the
front-end.

37

needed variables being referenced. After function extraction, the Parsimony front-end re-intercepts

the OpenMP thread fork API and replaces it with a loop around a call to the Parsimony-vectorized

function(s). This loop, which iterates over all of the gangs in the region, is specialized based

on whether the total number of threads is known to be an exact multiple of the gang size and

whether there are calls to APIs such as psim is head gang() or psim is tail gang().

Listing 2.6 shows a stylized example of the front-end flow.

2.1.5 Middle-End Vectorizer

The Parsimony vectorization phase is responsible for vectorizing SPMD-annotated functions gen-

erated by the front-end. This phase follows a flow similar to many existing vectorizers [10], [37],

[38] but is tailored specifically to Parsimony’s flavor of SPMD semantics. It is important to note

that existing vectorizers often rely on being placed at a particular point within a bespoke sequence

of optimization passes [50], whereas Parsimony’s vectorization pass can be placed anywhere in

the optimization pipeline. Parsimony’s middle-end flow starts with the analysis of the scalar code,

followed by transformation into vector code, as described below.

Control Flow and Mask Calculation: An SPMD annotation indicates that the function must

be translated into a version in which G independent threads execute the function in SIMD fashion,

where G is the gang size. The vectorized function’s control flow must account for the possibility

that the conceptually independent threads can diverge along different control flow paths. Capturing

this divergent behavior requires the SIMD thread to reach all control flow branches executed by any

of the conceptual SPMD threads. Threads that are not currently actively executing any particular

control flow path need to be masked off so as to not disturb the values in those threads’ lanes of

the vector values.

Parsimony uses the following process to calculate its vectorization masks. First, it uses pre-

38

existing LLVM support for “structurizing” the control flow graph into a state where all forward

control flow consists only of “if-then” patterns3 [51]. Then, similar to prior work [37], two masks

are prepared for each basic block: an entry mask and an active mask. In loop headers, the entry

mask represents the mask of threads that entered the loop, and hence those which must also col-

lectively exit the loop once all threads have finished iterating. In other basic blocks, both masks

are identical. The active mask for each basic block is calculated as the logical-AND of the prede-

cessor’s entry mask and (if applicable) the condition on the branch at the end of the predecessor

block. Loops also receive a dedicated mask for each exit; threads incrementally update these masks

as they exit the loop. Once all threads have reconverged at the loop exit, the exit masks are used to

steer subsequent control flow.

Shape Analysis: Shape analysis is a blanket term for various techniques described in literature

as stride, affine, uniform, convergence, or divergence analysis [52]–[55]. Shape analysis attempts

to track patterns in the value in all SPMD threads’ copies of a single variable. For example, if

the compiler can prove that a particular variable will always have identical contents in all SPMD

threads, then it is uniform. If the compiler can prove that a particular variable will always be equal

to some base value common to all threads plus a per-thread offset that is some fixed multiple of the

thread number, then it is strided.

Shape analysis is critical to the performance of vectorized code in several ways. First, uniform

values can be stored in scalar registers and be operated on by scalar instructions which can improve

latency, throughput, and/or register pressure in many CPU architectures. Second, branches for

which the condition is a uniform value can also be translated into scalar branches, rather than

relying on masking the successor blocks, thus decreasing execution of fully masked dead code

paths. Finally, shape analysis is crucial to the selection of efficient memory access instructions.

3This pass assumes the control flow is structured. For unstructured control flow, partial linearization [38] could be
used.

39

The naive vectorization of a load and store instruction where each SPMD thread may be accessing

unrelated memory addresses generate a SIMD gather or scatter operation, respectively. SIMD

gathers and scatters are very slow on most modern CPUs—often no faster than performing each

individual serialized scalar accesses. However, if the shape of the addresses accessed can be proven

to be either uniform or strided, the compiler can generate highly efficient scalar or packed SIMD

operations, respectively.

Parsimony classifies all value shapes into one of two categories: indexed or varying. Indexed

values can be represented as a fixed common base value that may or may not be known at compile

time, plus a per-thread offset that must be known at compile time. The common base values are

maintained as scalar values in the IR, but the offsets are stored as metadata within the compiler.

Varying values are those which are not indexed; these are stored as vector values in the IR. Note

that both uniform and strided values are subsets of indexed values; the broader indexed category

allows for more shape patterns to be captured, thus enabling more optimization.

Parsimony’s shape analysis iterates on a per-instruction basis. Constants and function argu-

ments are marked uniform. Calls to Parsimony APIs have operation-dependent shapes. For ex-

ample psim get lane num() is indexed with stride 1, while psim get num threads() is

uniform. The shape of each instruction is calculated by applying the semantics of the instruction

to the shapes of its operands and then, if possible, interpreting the result as a new indexed value.

If this is not possible, the output shape is marked as varying. If an instruction’s input operand is

not immediately available, e.g., due to a circular dependency within a loop, then the calculation

proceeds speculatively but optimistically; the process then advances iteratively, recalculating any

speculated shapes, until the result converges.

For example, consider an integer add or multiply instruction applied to two indexed operands

with values (abase + ai) and (bbase + bi), respectively, where abase and bbase are the common base

40

values and ai and bi are the offsets for lane i. Addition produces

(abase + ai) + (bbase + bi) = (abase + bbase) + (ai + bi),

which can easily be interpreted as a new indexed value. Multiplication produces

(abase × bbase) + (ai × bbase) + (bi × abase) + (ai × bi).

This value can only be interpreted as indexed if abase and bbase are known at compile time [53].

Otherwise, the two middle addends are neither common across all lanes nor per-lane values that

are known at compile time.

For many instructions, the ability to classify a shape as indexed depends on certain facts about

the input operands. For example, for a logical-AND operation, the outcome

(abase + ai)&(bbase + bi) = (abase&bbase) + (ai + bbase)

holds if b is a uniform negative power of two and a is an even multiple of −b, but may not hold

otherwise. To enable this, some vectorizers also track metadata about properties such as variable

alignment manually [10].

Parsimony performs shape analysis with the help of the z3 SMT solver [56] in two phases.

In an offline phase, a large set of conditional shape transformations (such as shown above for

logical-AND) are verified for correctness. At compilation time, known facts about IR values are

tracked as z3 model constraints and a particular shape transform is applied only after verifying

that its preconditions are satisfied by the operands. Although verifying the transformations can be

slow, checking the preconditions takes just fractions of a second, so this online checking imposes

41

negligible compile-time overhead. This two-phase validation of transformations allows any new

proposed transformation to be rigorously, yet easily, verified before being deployed in Parsimony.

Instruction Transformation: Transformation is the step where each instruction in the original

scalar function is converted into the form it will take in the vectorized function. Most instructions

will be vectorized, but some may remain scalar, e.g., if operating only on indexed values. We

describe the handling of various instruction types below.

Arithmetic instructions are converted into vector form if their output shape is varying. For

example, an instruction

%2 = mul nsw i32 %0, %1

operating on varying values %0 and %1 and producing varying value %2 will be transformed into

%2 = mul nsw <G x i32> %0, %1

where G is the gang size. Arithmetic instructions operating on and producing only indexed values

remain scalar, as only their common base value is stored at runtime.

In alloca instructions (stack allocation), the original size is multiplied by the gang size and

pointer types are adjusted accordingly. A more optimized implementation could also (where pos-

sible) swizzle the data layout from array-of-structs into struct-of-arrays to avoid unnecessary gath-

er/scatter operations on stack-allocated values [10].

Memory instructions are converted into a number of forms dependent on the shape of their

address operands. Loads from a uniform address remain as regular scalar loads into uniform values.

Stores to a uniform address are racy, unless only one thread is active; Parsimony chooses to emit

a compile time warning then chooses one active thread to perform the scalar store. Loads from, or

stores to, an address which is indexed with offset stride equal to the size S of the scalar type being

accessed are converted into packed vector loads or stores of G×S consecutive bytes, respectively.

42

These packed operations are typically an order of magnitude more efficient than gather/scatter on

all CPUs we have tested with Parsimony. Loads and stores of indexed values with other forms

of stride may be converted into a packed load/store plus shuffle operation(s) if the indices remain

within a particular bound (in our implementation, 4× the gang size), as the accesses plus the extra

shuffle(s) are still faster than performing gather/scatters. However, loads or stores of varying values

must be converted into gather/scatter operations. All vector memory accesses are masked by the

thread block’s active mask to ensure that inactive lanes do not clobber data in memory or perform

out-of-bounds accesses.

Branch instructions with varying values used as the condition are transformed into non-conditional

branches to the originally-taken branch. This ensures that all paths through the CFG, potentially

taken by any thread, will be properly evaluated. This can be further optimized by explicitly check-

ing at runtime if any thread takes the branch and following the not-taken branch if none do. Prior

projects have chosen to do this both implicitly [38] or explicitly via keywords such as ispc’s

cif [10]. Branch instructions with uniform condition values remain as conditional branches.

The behavior of function call transformations depends on the callee. Calls to Parsimony in-

trinsic functions are implemented to match the semantics of that function. In many cases, e.g., for

psim get thread num(), the function can be replaced by a scalar or vector constant. Calls

to functions with known vector interfaces can be made directly, adjusting for API peculiarities as

needed (e.g., only some gang sizes may be available). Annotations analogous to #pragma omp

declare simd [5] could be used to indicate that any standalone function should be vectorized

and exported. Our prototype currently supports interaction with vector functions in the SLEEF

math library [35], but we envision generalizing this in the future. Calls to scalar functions that can-

not be inlined are transformed into a serial loop of scalar calls by each active thread individually.

Note that this is another way in which the lack of gang-synchronous execution requirements makes

43

Parsimony code easier to compose, as separately-compiled scalar functions cannot be transformed

to execute in gang-synchronous fashion.

ϕ nodes that have varying output values and are the join point for two forward edges must be

converted into select operations. This operation picks the contents of each lane in the output

vector value individually, based on the active mask of whichever predecessor is the ‘then’ block in

the ‘if-then’ pattern that the entire CFG was earlier adapted into. This step is the key to ensuring

that live values are not clobbered by unmasked arithmetic instructions executed by active and

inactive lanes in the CFG predecessors. Other ϕ nodes can be transformed just as regular arithmetic

instructions are.

2.1.5 Back-End

Once the vectorization pass has completed, the result can be passed to any number of other op-

timization passes and then to the unmodified compiler back-end. As part of this process, the IR

will in most cases be further simplified. The back-end is also responsible for unrolling each vec-

tor instruction if the IR instruction’s vector width (i.e., usually the gang size) does not match the

width of the instructions available on the target. For example, with a gang size of 32 and a target

ISA with 512b vector registers, an integer add IR operation on 32b ints (32×32b=1024b) would

reduce down to two 512b SIMD assembly add instructions. The back-end is free to schedule these

instructions however it chooses, subject to not breaking the semantics of horizontal operations.

Our Parsimony prototype focuses on x86 and AVX-512, an ISA with fixed-width vector sup-

port. We explored support for ARM SVE, a vector length-agnostic ISA, but LLVM support for

such VLA ISAs in general is significantly less mature than for AVX-512, so we leave a full evalu-

ation on SVE as future work.

44

2.1.6 Evaluation Methodology

We evaluate the Parsimony prototype on two benchmark suites. First, we ported the ispc bench-

mark suite to Parsimony enabled C++. Comparing to ispc directly allows us to quantify if

ispc’s more restrictive SPMD model enables better, worse, or similar performance to the more

general Parsimony SPMD model. We adapted the ispc versions into Parsimony maintaining ex-

actly the same algorithms. Second, we ported 72 benchmarks from the Simd Library [57], a popu-

lar high-performance image processing and machine learning library. This suite contains multiple

versions of each benchmark, including serial and hand-coded versions specifically optimized for

SIMD/vector ISA back-ends using manually-tuned low-level intrinsics. Due to pragmatic limita-

tions, such as the Simd Library making heavy use of templates and custom C++ datatypes, we

were unable to port these benchmarks to ispc—demonstrating the need for maintaining language

and compiler level compatibility in SPMD programming systems.

Our IR-to-IR Parsimony pass is based on LLVM 15.0.1 [51] and our auto-vectorization compar-

isons were performed with LLVM’s default vectorization (loop + SLP) pipeline. We also compared

against various research and production auto-vectorizers, but elide the results because the broad

trends were similar to LLVM’s auto-vectorization, despite some variations in individual bench-

marks. We compiled the ispc code with the latest release version of ispc (v1.18.0) [58] with de-

fault compilation flags. For all results, we report averages collected over five workload executions

on a Intel® Xeon® Gold 6258R CPU with AVX-512 support compiled with Clang options -O3

-march=native -mprefer-vector-width=512. All experiments are single-threaded

from the OS’s point of view because Parsimony’s SPMD design focuses on efficient SIMD/vector

execution within a core.

45

0
2
4
6
8

10
12
14

Pe
rf

or
m

an
ce

 N
or

m
al

iz
ed

to

 L
LV

M
Au

to
-v

ec
to

riz
at

io
n

ispc Benchmarks

ispc Parsimony

Figure 2.4: Parsimony and ispc performance compared to LLVM Auto-vectorization.

2.1.7 Experimental Results

Figure 2.4 shows the performance of Parsimony and ispc on 7 ispc benchmarks provided in

the original ispc paper, normalized to the baseline LLVM 15.0.1 auto-vectorized serial imple-

mentation. Parsimony and ispc achieve a geomean speedup of 5.9× and 6× relative to auto-

vectorization respectively. Parsimony closely matches ispc’s performance on all benchmarks

except Binomial Options, for which Parsimony achieves 0.71× of ispc’s performance. We were

able to narrow this performance gap down to ispc’s use of its built-in SIMD math library func-

tion pow. Our Parsimony prototype uses the SLEEF [35] math library for math functions such as

pow, and SLEEF’s implementation of pow for x86 AVX-512 is 2.6× slower. This performance

difference is not inherent to the ispc or Parsimony SPMD design choices. This demonstrates that

gang-synchronous and non gang-synchronous SPMD designs can achieve nearly identical perfor-

mance on modern architectures, therefore we conclude that there is no performance penalty for

choosing our easier-to-adopt non-synchronous SPMD semantics.

To demonstrate the robustness of the Parsimony approach, Figure 2.5 shows the performance of

Parsimony SPMD implementations, auto-vectorized serial C++ implementations, and hand-written

46

0

1

10

100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Pe
rf

or
m

an
ce

 N
or

m
al

iz
ed

to

 S
ca

la
r L

LV
M

"The Simd Library" Benchmark Number
Hand-written AVX-512 (Geomean: 7.91) Parsimony (Geomean: 7.70) LLVM Auto-vectorization (Geomean: 3.46)

Figure 2.5: Speedup over LLVM scalar compilation, i.e., with vectorization disabled, on 72 Simd
Library benchmarks.

AVX-512 implementations of 72 Simd Library benchmarks normalized to un-vectorized scalar

implementations. LLVM’s Auto-vectorization yields a geomean 3.46× speedup over LLVM’s

scalar baseline, while Parsimony yields a geomean 7.7× speedup; this results in a geomean 2.23×

speedup for Parsimony over auto-vectorization. Furthermore, the handwritten AVX-512 intrin-

sics implementations perform negligibly better than Parsimony, as Parsimony achieves a geomean

0.97× performance relative to handwritten implementations. From these results, we conclude that

Parsimony’s flavor of SPMD semantics is capable of delivering near-peak SIMD performance

without requiring programmers to resort to architecture-specific low-level intrinsic programming.

Moreover, Parsimony manages to achieve high performance while having a 7× average code reduc-

tion relative to handwritten implementations while ensuring code portability with good compiler

and language compatibility.

2.1.8 Discussion

For pragmatic reasons Parsimony uses a small number of architecture-specific IR constructs dur-

ing instruction transformation. These operations are exposed in multiple SIMD and vector ISAs,

although not always in the same way. We envision that important, common operations such as

“multiply and return upper half” will be included as general-purpose compiler IR constructs in the

future in order to further decouple vectorization from architectural constraints. For existing in-

47

structions that are neither purely horizontal or vertical, we explored exporting language level APIs

with higher-level portable abstractions as part of this work. For instance, we abstracted the AVX-

512 vpsadbw instruction, which accumulates the sum of absolute differences of 8b values in sets

of eight lanes from the input register into a single 16b value shared by 8 lanes, using an opaque data

structure added to the Parsimony programming API that could have multiple back-end implemen-

tations. For other instructions which may truly be unique to a particular ISA, developing a clean

general-purpose exposure for them up through the programming model would be an interesting

area of future work.

Parsimony’s SPMD programming model differs from other contemporary parallel language

approaches in several important ways. The C++ standard uses std::execution::unseq to

describe loops in which different instances are not related by the “sequenced before” relationship

that otherwise orders operations within the same thread. Unfortunately, concurrent accesses by

multiple unsequenced evaluations to the same address are considered racy and hence have un-

defined behavior. Similarly std::execution::par allows spawning of threads to execute

instances, but describes instances as indeterminately-sequenced, implying that there is no concur-

rency between iterations assigned to the same thread, which prevents important horizontal oper-

ations with high-performance ISA support from being used. This could be resolved by introduc-

ing a std::execution::spmd execution policy relying on Parsimony SPMD semantics, as

well as by introducing horizontal operations and other relevant SPMD APIs. Likewise, OpenMP

#pragma omp simd and OpenACC pragmas generally maintain serial semantics and hence

also do not permit horizontal operations. These languages could similarly introduce keywords or

annotations for interpreting loops as to be executed using Parsimony SPMD semantics, but these

would likely no longer use #pragma notation, as pragmas are generally meant to be safe to ignore.

48

2.1.9 Related Work

Compiler auto-vectorization has a long history [39], [59]–[62]; loop vectorization and superword-

level parallelism (SLP) vectorization are well researched classical compiler optimizations that are

enabled in many compilers today. Traditional loop vectorization has seen numerous advances

such as outer-loop vectorization [43] and vectorization, for interleaved [41] and misaligned [63]

data access patterns. SLP vectorization [44], [45], [64] has been developed as an alternative more

flexible approach to loop vectorization. In contrast to these, Parsimony does not need to extract

SIMD/vector parallelism from source code for vectorization thanks to its explicitly parallel SPMD

semantics.

SPMD programming models with data parallel languages such as ispc [10] and ones with

C++ SIMD extensions such as Sierra [65] have well-defined SPMD semantics but are more re-

strictive than Parsimony’s proposed semantics. Prior work has also studied the use of GPU-focused

SPMD programming models to target CPU SIMD units [66], [67]. Compiler passes such as the

Whole Function Vectorizer (WFV) [37] support vectorization of arbitrary functions using SPMD-

like semantics and Moll and Hack [38] extend this to support arbitrary unstructured control flows.

However, unlike Parsimony, these passes do not provide precisely defined semantics.

2.1.10 Conclusion

In this work we demonstrate that having rigorous SPMD threading, memory, and forward progress

semantics can facilitate the adoption of SPMD into widely-used general-purpose programming

languages and toolchains. Our Parsimony compiler prototype shows that C++ code written us-

ing these principles can match the performance of code written using custom SIMD-targeted lan-

guages and AVX-512 assembly intrinsics. From this we conclude that by leveraging the right set of

SPMD semantics, SPMD programming within mainstream languages is a more effective method

49

of programming a CPU’s SIMD/vector units rather than relying on custom languages or low-level

intrinsic programming.

50

CHAPTER 3

UNLOCKING MEMORY PARALLELISM THROUGH FLEXIBLE MEMORY

REORDERING

3.1 HC: Fine grained Dynamic Blending of Memory Consistency Models1

3.1.1 Introduction

As shared-memory multiprocessors become increasingly more parallel with rapidly growing pro-

cessing core counts, their performance scalability has become increasingly more susceptible to the

speed of data communication through their intricate memory systems. Memory performance is the

limiting factor for the performance of several important applications [12], [14]; 63% of the normal-

ized CPI stack averaged across 15 multithreaded workloads from the PARSEC[69] and NAS[70]

application suites shown in Figure 3.1 corresponds to memory component accesses, i.e., accesses

to L1, L2, and L3 data caches, and dram. Thus, to improve the performance of modern systems,

we need to improve their memory performance.

Shared-memory systems guarantee the correctness of inter-core communication by relying on

memory consistency models (MCMs) that stipulate ordering guarantees for the execution of mem-

ory operations with respect to their program order. The MCMs present in today’s systems range

from relatively strong models such as the popular TSO [15] present in x86-64 systems to relatively

weak models such as the ones present in ARM [71] and IBM Power [16] systems. Strong memory

models present an intuitive programming interface to the user by preserving the program order of

memory accesses. This is done by conservatively serializing the execution of most memory ac-

1This section is based on our (to be submitted) ISCA’24 paper about HC [68].

51

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
or

m
al

iz
ed

 C
PI

Base + Other Memory

Figure 3.1: Normalized CPI stack breakdown of multithreaded applications from PARSEC[69]
and NAS[70] suites. To improve system performance, we need to improve memory performance.

cesses, which can cause significant performance penalties due to restrictions on the reordering of

memory accesses. On the other hand, weak memory models relax most, if not all, memory order-

ing constraints to allow the reordering of memory accesses to hide their long latencies and improve

performance over strong models. However, such weak models require the user or software layer

to insert memory ordering directives, such as memory fences and barriers, to enforce ordering in

hardware whenever necessary to maintain program correctness. Thus, weak models trade off some

of the programmability offered by stronger models in favor of improved performance.

Closing the performance-programmability gap between strong and weak MCMs has been

widely researched [72]–[82]. Previous proposals to blend strong consistency models with weak

consistency models enable reordering of memory accesses while still adhering to the strong model’s

ordering guarantees at the programmer interface. Some prior work employ speculative memory

access reordering [72], [75]–[79], [81], [82]. However, such speculation-based techniques require

extensive bookkeeping and sophisticated recovery mechanisms to handle misspeculations. Other

proposals avoid speculation by employing memory access classification mechanisms that operate

52

at run-time complemented with compiler support [73], or are static compiler-only solutions that

rely on programming language properties [74] to mark accesses to private and shared read-only

memory locations as “reorder-safe”. The key insight with this category of approaches is that they

enforce MCM ordering only when necessary. Private and shared read-only accesses do not need

to be executed in program order to guarantee strong MCM ordering at the programming interface.

Thus, private and shared read-only accesses that are identified by the classification mechanism

as reorder-safe are allowed to be executed out of program order from the processor’s load and

store buffers to achieve high memory-level parallelism without the need for speculative execu-

tion. Although compiler-based classification approaches are lightweight, they rely on static-time

alias analysis to identify reorder-safe memory accesses and are conservative in nature. Approaches

based on guarantees offered by programming languages offer a high coverage of reorder-safe ac-

cesses, but they cannot be applied to existing frameworks written in other languages. Unlike such

proposals, techniques that perform the classification dynamically at runtime work well for code

written in any language.

OS-based dynamic classification techniques that target memory access reordering at the load

and store buffers, such as End-to-End SC [73] incur negligible area and energy overhead by relying

on existing OS structures, such as the translation lookaside buffer (TLB) and the page table (PT),

to mark entire pages as private or shared read-only. Performing the classification at the page

granularity results in a significant amount of missed reordering opportunities due to a high degree

of false sharing within pages. In Figure 3.2, 6 out of 15 applications show more than 40% (up

to 91% in fluidanimate) false sharing when the classification is performed at the page granularity.

This leads to a substantial decrease in the fraction of memory accesses that can be identified as

reorder-safe from 55% to 23% (geomean across all 15 applications) if we perform the classification

at the granularity of pages rather than cache lines. In addition to suffering from false sharing, prior

53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
em

or
y

Ac
ce

ss
es

(N

or
m

al
iz

ed
 to

 T
ot

al
 M

em
or

y
Ac

ce
ss

es
)

 Private Page Accesses Shared Read-Only Page Accesses Private Cache Line Accesses Shared Read-Only Cache Line Accesses

<40% False Sharing >40% False Sharing

Figure 3.2: Classification of Memory Accesses as Private or Shared Read-Only. Access classifi-
cation at the cache line granularity identifies double the number of reorder-safe accesses as page
granularity classification.

OS-based mechanisms that target memory access reordering perform a non-temporal classification;

i.e., once a memory location moves from being private to a shared state upon the first access

by a second thread, it remains in this shared state for the remainder of the application’s time,

preventing any further reordering. Allowing re-classification of memory locations may increase

the opportunities to reorder accesses to temporarily private locations.

This paper introduces Hybrid Consistency (HC), a lightweight hardware extension that enables

flexible memory access reordering while still allowing users to rely on strong ordering guarantees

to reason about their programs. Due to its prevalence in modern Intel and AMD multiprocessors,

we pick TSO as the strong consistency model whose ordering guarantees that we relax with HC.

Nevertheless, our HC design could also be applied to relax ordering in multiprocessors that imple-

ment sequential consistency [83]. In contrast to prior OS-based dynamic classification techniques

such as End-to-End SC’s dynamic variant (SC-dynamic), HC’s access classification is performed

54

at a finer granularity whilst keeping the complexity of hardware changes minimal. Our key in-

sights towards increasing coverage of reorder-safe accesses over prior work whilst maintaining

a low-complexity implementation include the observation that we can capture most of the bene-

fits of performing the classification at the granularity of cache lines instead of pages by grouping

cache lines together into memory regions and tracking only a limited number of memory region

owner threads per page. Additionally, HC performs eager re-classifications of memory regions to

increase memory reordering for multithreaded applications with fork-join models and migratory

data. Apart from extending the private TLBs with HC state bits per memory region, we propose to

logically split the monolithic load and store buffers into weak-ordering and strong-ordering buffers

by using a single reorder-safe bit per load and store buffer entry. Thus, accesses that go to log-

ically weak-ordered buffers are allowed to be executed out-of-order, whereas accesses that go to

the logically strong-ordered buffer maintain TSO ordering with respect to other accesses in the

logically strong-ordered buffer. Experimental results show that HC outperforms the current state-

of-the-art for memory access reordering with OS-based dynamic classification, End-to-End SC by

a geomean 24% (up to 114%) across a set of 15 multithreaded PARSEC and NAS applications,

with minimal increase in area and energy overheads. This is because HC can recognize 73% of

all memory accesses as reorder-safe, while End-to-End SC only recognizes 39% of the same as

reorder-safe.

In summary, the contributions of this work are as follows:

• We observe that practically all performance benefits of memory accesses reordering that can

be achieved by performing dynamic classification at the granularity of cache lines over pages

can be observed with a lightweight design that does not need to track memory at the cache

line granularity.

• We show that performing a temporality-aware memory access classification by allowing

55

eager re-classifications can improve performance by up to 55% over non-temporal access

classification designs.

• Armed with the above, we present HC, a hardware design that allows flexible memory access

reordering at a finer granularity than previous approaches with a minimal increase in area and

energy overheads. HC maintains the TSO ordering guarantees at the programmer interface

while allowing safe reordering of 73% of all memory accesses.

• We evaluated HC on 15 multithreaded workloads to show that it improves system perfor-

mance by 24% (up to 114%) over the current state-of-the-art design for memory access

reordering with dynamic access classification.

3.1.2 Background

3.1.2 Dynamic memory reordering with End-to-End SC

A previous approach to dynamic memory reordering at the load and store buffers, End-to-End

SC [73], performs a page granularity dynamic memory access classification with minimal area

and energy overheads by relying on existing OS structures. End-to-End SC classifies entire pages

as untouched, private read-only, private read-write, shared read-only, or shared read-write. Upon

the first access to a page by any thread, the page transitions from the untouched state to one of

the two private states with the accessor thread assigned as the owner of that page. Upon any

subsequent access to that page by any thread that is not the owner, the page transitions to one of

the shared states. This transition involves a OS TLB shootdown request to invalidate the TLB entry

corresponding to the PTE present in the processing core to which the owner thread is mapped to.

All memory accesses to pages in any of the private states or the shared read-only state are allowed

to execute out-of-order from the load and store buffers, while the rest are not. As illustrated

56

in Figure 3.2, classification at the granularity of pages leads to a considerable number of mis-

classifications of accesses as unsafe to reorder. Furthermore, End-to-End SC does not reclassify a

page as private once the page transitions to a shared state, thus missing out on further opportunities

to reorder accesses.

End-to-End SC’s low-complexity hardware design requires only two extra bits per TLB Entry

and Page Table Entry; one write bit and one shared/private bit; to monitor the classification state.

It also needs an additional field in the PTE to keep track of the ID of the owner thread. Addition-

ally, End-to-End SC implements two separate store buffers; one for safe out-of-order stores and

one for unsafe in-order stores. While End-to-End SC also performs a static compile-time analy-

sis to complement its dynamic scheme, the additional performance improvement from adding its

compile-time classification is only 0.5% over its dynamic scheme.

Our design is inspired by End-to-End SC’s utilization of existing OS structures to perform

a dynamic classification. While End-to-End SC is proposed as a design for ensuring Sequential

Consistency, we consider a hardware TSO implementation that employs the OS/hardware-based

dynamic scheme of End-to-End SC (SC-dynamic) as the current state-of-the-art TSO implementa-

tion. We compare the performance of our HC design with this TSO implementation.

3.1.2 Low Latency TLB Shootdowns

Virtual to physical address translation is performance critical for multiprocessors because it is

performed on every memory access. Therefore, the processing cores in modern multiprocessors

employ multiple private TLB structures, such as the L1 data TLB (DTLB), the L1 instruction TLB

(ITLB), and a unified L2 TLB (STLB) to cache Page Table Entries (PTEs). These private TLBs of

each core must be kept coherent with the Operating System’s Page Table (PT) to uphold a unified

view of virtual memory across all cores in the system. To update an entry in these private TLBs,

57

modern systems call upon the OS to invalidate the existing TLB entry to be able to replace it with

the updated one from the page table. This process, called a TLB shootdown [84], involves Inter-

Processor Interrupts (IPI) originating from the initiator core performing any modifications to the

page table. The OS IPI handler of the core making the PTE modification (i.e., the initiator core)

sends an IPI to the TLBs of all cores that might cache a copy of this PTE (i.e., the victim cores).

Naive TLB shootdowns are generally expensive with an overhead of about 6600 cycles [85] due to

the context switch and execution latencies for invoking and executing the OS handler respectively,

and the IPI latencies. Additionally, the OS conservatively estimates the set of victim cores to send

TLB invalidation requests to, resulting in false positives in the set of victim cores and unnecessarily

interrupted cores.

Mechanisms such as DiDi [85] have been proposed to reduce the latency of TLB shootdowns.

DiDi employs a shared, inclusive second-level TLB structure with an associated directory and

a per core Pending TLB Invalidation (PTLBI) buffer to eliminate the need for costly IPIs, thus

reducing the performance impact of TLB shootdowns by an order of magnitude. DiDi’s 4096 entry

shared, inclusive TLB structure avoids false positives in the set of victim cores that receive TLB

invalidation requests. Moreover, DiDi enables invalidation of TLB entries on victim cores without

interrupting their instruction stream by using per-core PTLBI buffers to inject memory barriers into

the Load/Store Queue (LSQ) of the victim cores. DiDi’s PTLBI invalidates the stale TLB entry at

each victim core upon completion of the inserted memory barrier and sends an acknowledgment

back to its centralized directory. Thus, by avoiding costly context switch overheads, DiDi is able

to complete TLB invalidations on victim cores in a few hundred cycles, which is up to ten times

faster than traditional TLB shootdowns.

In this work, we employ DiDi to update the classification state of HC memory regions in TLB

entries with TLBUpdate messages during the HC state transitions described in Section 3.1.4.3.

58

We include the area and energy overheads of DiDi’s hardware structures in our discussion of HC’s

overheads in Section 3.1.6.

3.1.3 HC Design Exploration

As shown in Figure 3.2, the memory access classification performed at the cache line granularity

can identify more than twice as many reorder-safe accesses than when performed at the page

granularity. This corresponds to an increase in opportunities to reorder memory accesses, which in

turn leads to an improvement in system performance, as we demonstrate in Section 3.1.6. However,

the TLB area overhead to naively keep track of the classification state for every cache line would

be 64 times greater than doing so at page granularity, because there are 64 64B cache lines in a

4KB page. For simplicity, we assume that the number of OS threads does not exceed the number of

processing cores. Thus, we would need log(n) bits to naively keep track of the owner thread ID for

each private cache line within the TLB entry. For a 16-core multiprocessor with 4-bit thread ID,

this adds up to 256 additional bits to keep track of the owner thread IDs. If we need 2 additional bits

to monitor the classification state for each cache line in each TLB entry, we would require a total

of 128 additional bits per TLB entry. This amounts to an additional 384 bits per TLB entry for the

naive design, which would increase the TLB entry’s size to over four times that of a typical TLB

entry accounting for both data and tag information. Thus, the naive design is clearly impractical to

implement in real processors.

We explore the design space to create a design that enables the performance benefits of classi-

fying memory accesses at the granularity of cache lines instead of pages, while still being practical

to implement. We first perform a sweep of the classification granularity, going from the size of

cache lines (64B) to the size of pages (4KB), to find the largest memory region size that achieves

most of the performance benefits of a cache-line classification. To conduct this granularity sweep,

59

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

4096B_NC 2048B_NC 1024B_NC 512B_NC 256B_NC 128B_NC 64B_NC

Figure 3.3: Performance impact of memory access classification granularity. Classifying at 256B
granularity yields the same performance as classifying at cache line granularity.

we fabricate an oracle classification design that transmits the classification of a memory access,

i.e., whether the access is reorder-safe or reorder-unsafe, to the load and store buffers without any

costs involved to perform the actual classification. The load and store buffers allow reorder-safe

memory accesses to perform out of order, while reorder-unsafe accesses maintain TSO ordering

with respect to other reorder-unsafe accesses. Figure 3.3 illustrates the performance of this no-

cost (NC) design, with the access classification performed at a progressively finer granularity of

memory regions, ranging from page size (4096B NC) to cache line size (64B NC), normalized

to 4096B NC. We observe from Figure 3.3 that classifying at 256B granularity (256B NC) yields

the same 13% geomean performance improvement over page granularity as classification at cache

line granularity (64B NC). The only application for which 64B NC does noticeably better than

256B NC is fluidanimate, yet 256B NC still manages to achieve 85% of the performance improve-

ments of 64B NC over classifying at page granularity. If each TLB entry requires 2 additional

bits to monitor of classification state in a page-level scheme, a design that performs a 256B level

classification would require only 32 additional bits per TLB entry, as opposed to a cache line-level

scheme, which would require 128 additional bits per TLB entry. Thus, we choose 256B as the

optimal classification granularity for HC as it provides the same performance as the cache-line

60

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
or

m
al

iz
ed

 P
riv

at
e

M
em

or
y

Ac
ce

ss
es

Track 1 thread per page Track 2 threads per page Track 3 threads per page Track 4 or more threads per page

Figure 3.4: Breakdown of accesses to private HC regions by number of unique threads to keep
track of per page. Keeping track of two unique threads per page is sufficient to capture all private
accesses.

granularity design, whilst needing four times fewer bits per TLB entry to monitor region classifi-

cation states.

Next, we consider the area overhead at the Page Table level. For every one of the 16 (for 4KB

sized pages) 256B-sized memory regions within a PTE, which we will call as HC regions or simply

as regions henceforth, we would need two bits to monitor the classification state. Additionally, we

would need to keep track of the owner thread ID for each private HC region. Thus, for n processor

cores, we need a total of log(n) + 2 bits for every HC region within a PTE. This amounts to 32

bits + 16*log(n) additional bits per PTE which adds up to 96 additional bits per PTE for a 16-

core multiprocessor, which is not quite scalable with increasing multiprocessor core counts. We

postulate that the owners of private HC regions across a page are going to be the same or almost

the same. Thus, we look at coalescing HC region owners to be able to keep track of fewer unique

threads per page. Figure 3.4 shows the fraction of memory accesses that go to private HC regions

(private memory accesses) broken down by the number of unique threads to keep track of per

page. It is evident from Figure 3.4 that keeping track of two unique threads per PTE is sufficient

61

to identify 99% of private memory accesses. swaptions is the only application for which tracking

more than 2 threads per PTE is necessary to capture noticeably more private memory accesses,

but keeping track of only two threads already captures 88% of them. Thus, we choose to allocate

space to keep track of two unique threads per PTE and make each private HC region within the

PTE point to one of these two owner threads. If a PTE has more than two unique owners for private

HC regions within it, we treat all private HC regions that are intended to be owned by the third or

more owner threads as shared HC regions instead of private.

The design we have envisioned so far only allows for a single transition of a HC region from

an unclassified state to be private to an owner thread upon the first access to it. Now, upon the first

subsequent write access to the same region by another thread, the HC region will transition to a

shared read-write state. All accesses to this HC region henceforth until the end of the application’s

runtime will be classified as reorder-unsafe and thus respect TSO ordering. However, allowing

the re-classification of this HC region to be private to a new owner thread may increase reordering

opportunities. Consider an example where a master thread initializes a set of HC regions. These

HC regions will now be classified as private to the master thread. Next, the master thread directs

each worker thread to access and modify a unique portion of the set of initialized HC regions.

All initialized HC regions in the current design would be transitioned to shared read-write and

all subsequent accesses by worker threads to these HC regions will be reorder-unsafe. Ideally,

these HC regions should be re-classified to be private to their respective worker thread to allow for

subsequent accesses to be classified as reorder-safe which allows them to execute out-of-order and

improve system performance. Similarly, re-classifications are important when applications have

migratory data behavior, i.e., when a single thread accesses and modifies a HC region for a long

window of execution time before passing the ownership on to another thread and so on. Hence,

to increase our coverage of private memory accesses, we consider adding re-classifications to HC.

62

Our HC design along with state transitions to allow for re-classifications is described in detail in

Section 3.1.4. Once a HC region is classified as private to an owner thread, we perform eager

re-classifications of the HC region to be private to a different thread upon any subsequent access

by the other thread. We set a limit, PTCthr, on the number of private transitions, known as Private

Transition Count (PTC), that can take place for a HC region before it permanently transitions to a

shared state. In our initial design without any re-classifications, PTCthr is one because this allows

the first transition of a HC region from unclassified state to be private to the first accessor thread.

Subsequent accesses by other threads will cause the HC region to be permanently transitioned

to a shared state. Quite clearly, increasing PTCthr will either be beneficial in applications with

behaviors similar to the examples above, or will not do much to improve performance if the HC

region is just passed around by all threads. The more reuse a thread sees on a HC region, the

more it benefits from relaxing ordering through re-classification of the region to be private to it.

However, this comes with a cost, as there is an overhead associated with these re-classifications

(private to private transitions). This cost includes invoking the OS handler, sending a TLBUpdate

message to the processing core that maps to the owner thread, and waiting for an acknowledgment

signal back from the core. We detail the cost of re-classifications and other HC state transitions

in Section 3.1.4.3. Including all these transition costs in our HC design, Figure 3.5 shows the

performance impact of increasing PTCthr from 1 (HC1) to 32 (HC32) over that of a design with no

re-classifications (HC1). We observe from Figure 3.5 that most of the performance benefit comes

from allowing one re-classification, i.e., PTCthr set to 2 (HC2). The re-classification costs involved

when increasing PTCthr beyond two balances out, or in some cases such as mg outweighs, the

benefits obtained from allowing more re-classifications. Overall, (HC2) obtains a geomean 7% and

a maximum of 55% (in ep) performance improvement over the design with no re-classifications,

HC1. Hence, we choose a scheme that allows for one eager re-classification of HC regions as our

63

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

HC1 HC2 HC3 HC4 HC8 HC16 HC32

Figure 3.5: Performance impact of increasing HC private transition count(PTC) threshold. The
maximum performance benefit of eager re-classifications comes from allowing just one re-
classification (HC2).

final HC design. Note that we apply the same private transition threshold, PTCthr, of 2 to all HC

regions across all applications. However, each HC region in each application might benefit from

having an independent PTCthr. We leave the extension of our re-classification scheme to enable

adaptive PTCthr per HC region as an interesting future work direction. PTCthr could possibly be

adjusted dynamically for each HC region based on some application runtime metric.

3.1.4 OS/Hardware co-design for HC

3.1.4 Extending the Page Table and TLB

We capitalize on the observations made in the previous section to come up with a HC design that

is practical to implement while enabling all of the performance benefits of a cache line granularity

classification scheme. Figure 3.6 shows the extensions we make to the Page Table and the TLB.

We extend each PTE with additional fields (highlighted in blue in Figure 3.6) to allow the

OS to keep track of each HC region’s classification state (at the OS level) and PTC to enable re-

classifications. As discussed in the previous section, we keep track of two unique owner thread

IDs per page and have a 1-bit index, Owner idx, for each private HC region to index to either one

of these owner threads. We can get away with using only a 1-bit PTC field in the PTE even though

64

Extended Page
Table Entry

Physical Page Number Other Information

State

idx0: thread ID

2 bits
2 * logN bits for N <= 32 cores

PTC Owner idx

1 bit 1 bit

Extended TLB Entry

Physical Page Number Other InformationTag HC R0 State HC R1 State

2 bits

32 bits

HC Region 0 (R0)

State PTC Owner idx

HC Region 1 (R1)

State PTC Owner idx

HC Region 15 (R15)
. . .

64 bits

HC R15 State

idx0: thread ID

64 bits

. . .

64 bits53 bits

Figure 3.6: Extensions to the OS Page Table Entry and the TLB entry to support HC. Changes are
highlighted in blue.

we allow two private transitions by only setting this PTC field for additional private transitions. In

other words, an initial transition of a HC region from the unclassified state to be private to the first

accessor thread will not set this PTC field whereas a subsequent private transition will set it. Thus,

we infer that the logical PTC count is 1 for this HC region after the initial transition to private even

with the PTC bit still unset. We detail the state transitions of HC regions in Section 3.1.4.3. In

total, each HC region requires 4 bits to account for the classification state, PTC, and Owner idx.

This amounts to 64 additional bits per PTE as there are 16 256B-sized HC regions each within

each 4KB page. We require 2*log(N) bits per PTE to keep track of the two owner thread IDs

where N is the number of processing cores. There are 10 available (AVL) bits in a typical 64-bit

PTE [86]. We propose to use these AVL bits to store the two owner thread IDs inside the PTE.

Overall, for multiprocessors with up to 32 physical cores, each PTE will require 64 additional bits,

i.e. an additional cache line, to monitor HC region state information. For simplicity, we assume

that the number of threads in the application does not exceed the number of physical cores. In the

65

case that the number of threads for an application exceeds the number of cores, we hypothesize a

design that tracks the processing core IDs instead of thread IDs by obtaining the mapping between

the two from the Thread-Control-Block (TCB) that is maintained by the OS for each application

thread.

A typical TLB entry in a 64 entry 4-way DTLB for a x86-64 processor that support Intel 5

level paging [87] and 57-bit virtual addresses uses 41 bits of the VPN and a 12-bit address-spaced

identifier (ASID) as the TLB tag. The 64-bit PTE is stored in the corresponding data field of the

TLB entry. Thus, a typical TLB entry can be considered to be 117 bits wide accounting for both

tag and data fields. We extend each TLB entry with an additional 32-bit field that keeps track of

the HC Region classification state at the TLB level. Each of the 16 HC regions within a TLB entry

uses 2 bits to monitor its classification state. By monitoring the HC classification state at the TLB

level, we can determine whether memory accesses that hit in the TLB are reorder-safe or reorder-

unsafe without having to invoke the OS handler for each access to check the corresponding PTE.

Note that we do not need to keep track of owner thread IDs and PTC at the TLB level because our

state transitions described in Section 3.1.4.3 will invoke the OS handler upon TLB accesses when

necessary to look at the corresponding PTEs.

For a 16-core multiprocessor with 4-bit thread indices, the naive cache line granularity classifi-

cation design discussed at the start of Section 3.1.3 would keep track of the 2-bit HC classification

state, the 1-bit PTC, and the 4-bit owner thread index for each cache line at the TLB level, which

amounts to an additional 448 bits per TLB entry. In comparison to that, our design choices so far

manage to reduce the area requirements per TLB entry by a factor of 14X to 32 bits. Similarly, at

the Page Table level, the naive design would require an additional 448 bits per PTE. Our design

choices manage to reduce this area cost by a factor of 7X to 64 additional bits per PTE. It is im-

portant to note that these reductions in TLB and Page Table area requirements are attained without

66

losing any performance benefits over the naive cache line granularity design.

3.1.4 Memory Pipeline Design

We logically split the monolithic load and store buffers into weak-ordered and strong-ordered

buffers by extending their entries with a single reorder-safe bit. Entries in the load or store buffers

with this reorder-safe bit set can execute out-of-order, while those without the bit set must respect

TSO ordering with each other. We propose a memory pipeline design that initiates the address

translation request to the TLB upon the issue of the memory access from the Reorder buffer (ROB).

Typical DTLBs have a single cycle access time. Upon DTLB hits, if the access is to a private or

shared read-only HC region, we insert the access into the logically weak-ordered buffer. Upon

DTLB misses, we conservatively assume the access to be reorder-unsafe and insert it into logically

strong-ordered buffer. This is done to avoid stalling the memory pipeline waiting for a DTLB miss

to be served. An alternative memory pipeline design can possibly start the TLB access in parallel

with inserting the access out of the ROB into the logically strong-ordered buffer. Once the TLB

access gets served, it can set the reorder-safe bit if the access is to a private or shared read-only HC

region to move the access to the logically weak-ordered buffer. The results in Figure 3.8 show that,

for our evaluation suite of applications, there is no performance penalty for choosing the former

design discussed above; i.e., the design that waits one cycle for the DTLB access to complete

before inserting the load or store into its respective buffer.

3.1.4 HC State Transitions

Figure 3.7 shows the state transitions of HC regions at both the Page Table level and the TLB

level. The initial state of all HC regions of a page at the PT level upon page allocation by the

OS page fault handler is set to Unclassified with PTC set to 0 and no owner thread assigned to

67

Unclassified

Shared
Read-Write

(SRW)

Private
(PRV)

Shared
Read-Only

(SRO)

addPrivate(Ci): Set Ci as region owner, insert Ci into pageOwners set
isOneOfPageOwners(Ci): Return true if Ci belongs to pageOwners or if pageOwners set is not full
isRegionOwner(Ci): Return true if Ci is the region owner
sendTLBUpd(Cowner , S): Send TLBUpdate to Cowner with request to transition to state S, wait for ACK
sendTLBUpd(Csharers): Send TLBUpdate to all sharers of page, wait for ACK

Read/Write && ! isRegionOwner(Ci)
&& isOneOfPageOwners(Ci) && PTC < PTCthr

addPrivate(Ci), PTC++, sendTLBUpd(Cowner , Unclassified)
Read/Write &&
isRegionOwner(Ci)

Read

Read/Write

Read && ! isRegionOwner(Ci)
&& (! isOneOfPageOwners(Ci) || PTC ≥ PTCthr)
sendTLBUpd(Cowner , SRO)

sendTLBUpd(Csharers)

Write && ! isRegionOwner(Ci) &&
(! isOneOfPageOwners(Ci) || PTC ≥ PTCthr)

sendTLBUpd(Cowner , SRW)

Unclassified

Shared
Read-Write

(SRW)

Private
(PRV)

Shared
Read-Only

(SRO)

Page Table
FSM

Access PT: Invoke OS handler for PT lookup, lock page, update TLB, update PT, release page
Membar + ACK: Insert memory barrier, wait for outstanding memory operations to complete, send ACK
ACK: Send ACK
Reorder-safe: SET reorder-safe bit in load/store buffer to allow out of order execution of this memory access

PT state = SRW

RecvTLBUpd : Unclassified

Membar + ACK

RecvTLBUpd : SRW

Membar + ACK

Read/Write

Reorder-safe

Read

Reorder-safe

Read/Write

HC Region State Transitions at PT HC Region State Transitions at TLB

Figure 3.7: State transitions of a HC region at the OS Page Table level and at the TLB level.

the region. The first read or write to a HC region in the application will trigger a TLB miss.

The OS TLB miss handler serving this miss will check the corresponding PTE and find that the

region is in the Unclassified state. The OS handler checks if this first read or write to a HC region

is done by a thread that is already part of the pageOwners set (two unique owner threads per

PTE) of the corresponding PTE or if the pageOwners set of the PTE is not full yet; i.e., the OS

performs the isOneOfPageOwners check described in Figure 3.7 for the accessor thread. If this

isOneOfPageOwners check returns true, the HC region at the PT level will transition to the Private

(PRV) state with the accessor thread marked as the RegionOwner of this region. The logical PTC

for this HC region is also incremented by 1 due to this initial transition to PRV state. If the

isOneOfPageOwners check returns false, the region will transition to the Shared Read-Only (SRO)

state or the Shared Read-Write (SRO) based on whether the access is a read or a write respectively.

HC region in the PRV state will remain in this state as long as all subsequent accesses to this

region are made by the RegionOwner. Upon a first subsequent access to this HC region by a

thread that is not the RegionOwner but for one that the isOneOfPageOwners check returns true, we

68

allow re-classifications of this region to be PRV with the new thread marked as the RegionOwner.

This PRV to PRV transition, i.e., the re-classification of the region, only takes place if the PTC

of the HC region is less than PTCthr. The PTCthr for HC design is two, thus allowing one PRV to

PRV transition after the initial transition to PRV from Unclassified. There is a cost involved with

performing this PRV to PRV transition. The OS handler sends a TLBUpdate message to the initial

RegionOwner. This action is marked in red in Figure 3.7 as sendTLBUpd. We leverage DiDi [85]

to send TLBUpdate messages as explained in Section 3.1.2.2. This TLBUpdate message requests

the processing core that is mapped to the initial RegionOwner thread to update the HC region state

in it’s corresponding TLB entry to Unclassified. The HC region state transitions at the TLB level

are shown on the right in Figure 3.7. Upon receiving the acknowledgment signal, ACK from the

initial RegionOwner, the OS handler assigns the new thread as the RegionOwner and the region’s

PTC is incremented by 1. When a thread that is not the RegionOwner issues a subsequent access to

this region, and the isOneOfPageOwners check returns false or if the region’s PTC is already equal

to PTC-thr, the HC region will transition to either SRO or SRW based on the type of access. This

transition incurs the same cost as performing a PRV to PRV transition by sending a TLBUpdate

message to update the TLB entry at the initial RegionOwner. HC regions in SRO transition to SRW

upon any write access to the region. This SRO to SRW transition involves sending a TLBUpdate

message to all sharers of the page directing them to update HC region state in their respective TLB

entries to SRW. The accurate list of sharers of each page is maintained by DiDi [85], as discussed

in Section 3.1.2.2. A HC region in the SRO state will remain in this state as long as all subsequent

accesses to this region are reads. All HC regions in the SRW state will remain in this state until the

end of application runtime. Thus SRW is our terminal state.

At the TLB level, any access that hits in the TLB and goes to a HC region in the Unclassified

state will incur a Page Table lookup by invoking the OS handler to check the corresponding PTE.

69

This may incur transitions at the PTE following the PT level state transitions described above. The

HC region state determined at the PTE will then be installed by the OS handler at the corresponding

TLB entry. For TLB misses, the OS TLB miss handler will follow the same process as above by

checking the PTE to determine the HC region state to be installed at the TLB entry. A HC region

in the PRV or SRW state at the TLB will remain in the same state upon any reads or writes to it.

Similarly, a HC region in the SRO state will remain in the same state upon any reads to it. However,

any write to a region in the SRO state will trigger a PT lookup to inform the OS PT about a write to

a region in SRO. Following the PTE state transition for any write to a region in SRO, the region will

transition to SRW at both the PT and TLB levels. A HC region present in a TLB entry in any of the

four states may receive a TLBUpdate message from a OS handler thread executing on a different

core. This action is marked in red in Figure 3.7 as recvTLBUpd and the TLBUpdate message

includes a target state to transition the HC region to. We handle these HC region state updates

without interrupting the instruction stream by leveraging DiDi’s TLB shootdown mechanism to

insert a memory barrier and update the TLB entry upon completion of the barrier. Moreoever, we

only insert memory barriers upon receipt of a TLBUpdate message to transition a region that is

in PRV state to any other state. We need to insert a memory barrier in this case to preserve TSO

guarantees as we might have out-of-order writes to this HC region that are already in-flight from

the store buffer. These out-of-order writes need to be completed before transitioning the state of

this HC region. Reorder-safe accesses are not allowed to be reordered across a memory barrier at

the load and store buffers. Upon completion of this memory barrier, DiDi’s PTLBI control unit will

update the TLB entry with the correct HC region state and send an acknowledgment back through

DiDi’s structures to the OS handler thread that sent the TLBUpdate message. We do not need to

insert a barrier for TLBUpdate message that transitions a HC region from Unclassified or SRO

to the terminal state SRW because writes to a region in the Unclassified state already follow TSO

70

Table 3.1: Modeled System Characteristics

Parameter Value
Number of Cores 28 (14 per socket)
Processor Frequency 3.3 GHz
Reorder Buffer Size 192 Entries
Load Buffer Size 72 Entries
Store Buffer Size 42 Entries
L1 ITLB Config Private, 128 Entries, 4-way, 1cycle
L1 DTLB Config Private, 64 Entries, 4-way, 1 cycle
L2 STLB Config Shared, 4096 Entries, 2-way, 30 cycle
Page Size 4KB
Cache Block Size 64B
L1I and L1D Cache Config Private, 32KB, 8-way, 6 cycles
L2 Cache Config Private, 256KB, 8-way, 12 cycles
L3 Cache Config Shared, 2.5MB, 20-way, 71 cycles
DRAM Latency 100 cycles

ordering, and there would only have been reads to a region in SRO state. All reads and writes to HC

regions in the PRV state and all reads to HC regions in the SRO state at the TLB level are marked

as reorder-safe in the load and store buffers, thus allowing them to be executed out-of-order.

3.1.5 Evaluation Methodology

To evaluate the impact of our design choices for HC and to compare the performance of our final

HC design with the current state-of-the-art TSO implementation, we implement both HC and End-

to-End SC within a modified version of the Sniper multicore simulator [88], [89]. The baseline

system that we model in Sniper resembles a two-socket machine with Intel Xeon CPU E5-2695

v3 (Haswell) processors. Each socket has 14 processing cores with a bidirectional ring intercon-

nect. We replace the baseline 4-way 512 entry private STLB with DiDi’s 2-way 4096 entry shared

second-level TLB to facilitate low-latency TLB updates to HC regions. This modification has a

71

negligible effect on system performance because the applications on which we evaluate HC have

a geomean DTLB hit rate of 99.1%. We validate the memory access latencies of the modeled sys-

tem against real hardware by microbenchmarking. The baseline TSO implementation we model

in sniper is the dynamic scheme of End-to-End SC (SC-dynamic). We disable Simultaneous Mul-

tithreading (SMT) and thread migration in Sniper so that each application thread is assigned to a

unique processing core and remains there until the end of its execution period. Table 3.1 lists the

relevant characteristics of our modeled system. We measure the area and energy overheads of our

TLB extensions using CACTI [90].

Our evaluation suite consists of 15 multithreaded applications from PARSEC [69] and NAS [70]

benchmark suites. We use the “simlarge” input set for PARSEC applications and the “A” work-

load size for NAS applications. We use OpenMP or pthreads versions of these applications and

run 16-thread configurations of these multithreaded applications for all our experiments, except

for the scalability study shown in Figure 3.10. We simulate the execution from start to completion

for all but four (streamcluster, lu, sp, ua) applications in our modified version of Sniper with each

application’s Region of Interest (ROI) simulated in detailed mode. We only simulated the first 10

billion instructions in the ROI of the four applications (streamcluster, lu, sp, ua) in order to keep

simulation times practical (under 3 days per application run).

3.1.6 Experimental Results

Figure 3.8 shows the performance impact of our design choices normalized to the performance

of our no-cost oracle classification design that operates at the page granularity (4096B NC) but

follows the state transitions described in Section 3.1.4.3. 256B NC uses a 256B granularity classi-

fication instead of a page granularity classification while still maintaining a no-cost oracle design.

By performing the classification at a finer granularity, 256B NC yields a geomean performance

72

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

4096B_NC 256B_NC HC2_NC HC2_NCTLB HC2

Figure 3.8: Performance impact of HC design choices. HC2 outperforms a no-cost oracle page-
based classification design, 4096B NC by a geomean 13% across our applications.

improvement of 11% over 4096B NC. 256B NC achieves a maximum 92% performance improve-

ment over 4096B NC in fluidanimate. This is because fluidanimate has the highest degree of

false sharing of cache lines (91%) when the classification is performed at the page granularity,

as shown in Figure 3.2. Thus, by moving to 256B granularity, 256B NC reduces the number of

mis-classifications of accesses as reorder-unsafe to improve reordering opportunities, which in turn

improves system performance by up to 92%.

Beyond performing the classification at the 256B granularity, HC2 NC includes our design

choice of keeping track of only two region owners per PTE and allowing one re-classification of

a HC region, i.e., one PRV to PRV transition after the initial Unclassified to PRV transition. Note

that HC2 NC is still a no-cost oracle implementation. HC2 NC attains a geomean performance

improvement of 20% over 4096B NC. We see a maximum performance improvement of 55% in

ep and lu for HC2 NC over 256B NC, which corresponds to 55% and 64% improvement over

4096B NC for ep and lu respectively. swaptions is the only application for which HC2 NC expe-

riences a 15% drop in performance when compared to 4096B NC. This performance decrease is

due to our choice of keeping track of only two region owners per PTE. We need to keep track of 3

region owners per PTE to capture 100% of private accesses in swaptions as shown in Figure 3.4.

All design iterations in Figure 3.8 discussed so far do not model any costs of an actual imple-

73

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

endToendSC HC2

Figure 3.9: Performance of HC2 normalized to the performance of endToendSC. HC2 outperforms
endToendSC by a geomean 24% across our applications.

mentation. The next design point, HC2 NCTLB, models the transition costs described in Sec-

tion 3.1.4.3 but assumes that there is no cost to access the DTLB before inserting loads and

stores into their respective buffers. Thus, HC2 NCTLB is still an oracle classification design.

HC2 NCTLB attains a geomean performance improvement of 15% over 4096B NC even with ac-

counting for the costs to perform HC state transitions.

Finally, our HC design that models all transition costs as well as the DTLB access latency be-

fore inserting loads and stores into their respective buffers, HC2, achieves a geomean performance

improvement of 13% over 4096B NC. HC2 observes a maximum 68% performance improvement

over 4096B NC in fluidanimate. This primarily comes from classification at a finer granularity as

discussed above. Additionally, HC2 observes a performance improvement of 53% and 45% in ep

and lu over 4096B NC respectively. Unlike in fluidanimate, these performance improvements in

ep and lu do not come from classification at a finer granularity. Rather, they primarily come from

enabling eager re-classifications as discussed above. We consider HC2 as our final HC design that

models all our design choices and their associated costs.

Figure 3.9 shows the performance of the current state-of-the-art TSO implementation, end-

ToendSC, and HC2, normalized to the performance of endToendSC. Overall, HC2 acheives a ge-

74

1.00

2.54

4.43

6.90

1.09

3.14

5.29

8.54

0

1

2

3

4

5

6

7

8

9

10

1 Thread 4 Threads 8 Threads 16 Threads

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

endToendSC HC2

Figure 3.10: Performance scalability of endToendSC and HC2. HC2 maintains a consistent 20-
24% performance lead over endToendSC while increasing application thread counts.

omean 24% performance speedup over endToendSC. Unlike endToendSC, which does not transi-

tion a page present in its private read-write state to its shared read-only state, HC2 allows a region

to transition from PRV to SRO even when there have been private writes to this region. This opti-

mization allows HC2 to attain a performance speedup of 113% over endToendSC for streamcluster.

Moreover, by performing the access classification at a finer granularity than pages and by allow-

ing eager re-classifications, HC2 identifies a geomean 73% of all memory accesses as reorder-safe

while endToendSC is only able to identify 39% of the same as reorder-safe. Due to this, HC2

outperforms endToendSC by over 10% in more than half of our evaluation suite (8 out of 15 appli-

cations). Furthermore, HC2 achieves more than 40% performance speedup over endToendSC for

streamcluster, freqmine, ep, lu, ua, and fluidanimate.

Figure 3.10 shows the geomean performance of endToendSC and HC2 across our applica-

tion suite with increasing application thread counts normalized to the geomean performance of

single-threaded endToendSC. HC2 with 16 threads shows a speedup of 8.54X over single-threaded

75

endToendSC, while endToendSC with 16 threads only achieves a 6.90X speedup over the same.

HC2 outperforms endToendSC and maintains its 20% to 24% performance lead over endToendSC

while increasing thread counts to 4, 8, and 16. Thus, HC2’s maintains a consistent performance

improvement over endToendSC while scaling application thread counts.

Based on our CACTI [90] model, the HC TLB extensions require an additional 32 bits per

TLB entry, increasing the die area of a typical 4-way 64 entry DTLB by 32%, from 0.015 mm2 to

0.019 mm2. Additionally, the energy per DTLB access increases negligibly by 2%. As discussed

in Section 3.1.3, a naive HC design that performs the classification at the cache line granularity

would achieve the same performance as HC2 but would require an additional 448 bits per DTLB

entry. This would increase the DTLB die area by 196% to 0.044 mm2. The energy per DTLB

access would also increase by 50%. This is clearly impractical to implement. It is important

to note that page granularity classification schemes such as endToendSC require only 2 bits per

TLB entry and incur negligible area and energy overheads. In comparison to endToendSC, HC

trades off a 32% increase in DTLB area and a negligible increase in energy in favor of improving

performance by up to 113%. HC relies on DiDi for its TLBUpdate messages during its state

transitions that are described in Section 3.1.4.3. DiDi’s shared second-level TLB structure [85] has

a total size of around 4KB and would require a die area of 0.145 mm2. Additionally, this structure

has a power consumption of 13.5mW. Overall, HC’s area overhead including DTLB extensions

and DiDi’s structures is around 0.677 mm2 for the system we model in Sniper. This amounts to

less than a 0.001% increase in die area for a two-socket system with Intel Xeon CPU E5-2695 v3

(Haswell) processors.

76

3.1.7 Related Work

There is a substantial amount of prior work on efficient hardware designs with speculation support

to provide strong MCM gurantees [72], [75]–[79], [81], [82]. In-window speculation [72] allows

loads to speculatively execute out-of-order with a moderately complex design that keeps track of

the speculative state only within the ROB window. More sophisticated out-of-window speculation

approaches [75], [77]–[79], [81], [82] achieve higher performance than in-window speculation

by keeping track of more speculative state information and employing complex misspeculation

detection and recovery mechanisms. However, these approaches are too complex to be realized in

today’s processors, unlike HC.

There is recent interest in non-speculative memory access reordering at the load and store

buffers [91], [92]. Ros and Kaxiras [91] propose to non-speculatively coalesce stores in the store

buffer by performing them in atomic groups by forcing a new lexicographical order for them.

While the stores in atomic groups follow a global order, HC’s reorder-safe stores can perform in

any order with respect to any other reorder-safe or reorder-unsafe store. Ros and Kaxiras [92]

also recently proposed a non-speculative load reordering mechanism that leverages the coherence

protocol and intentionally delays conflicting stores in the store buffer to hide any load reordering

done by another core from being observed by the core issuing the conflicting store. This allows

them to do out-of-order commits for reordered loads without needing to wait for the reordered loads

to become non-speculative. However, unlike HC, their approach modifies the coherence protocol,

which increases implementation complexity. Ros and Kaxiras [93] later show that non-speculative

load reordering can also be accomplished without having a load queue entirely. However, unlike

HC, this approach also makes important changes in the coherence protocol.

Some non-speculative approaches that provide strong MCM gurantees [73], [74] maintain low

complexity by employing hardware-software co-designs that conservatively reorder memory ac-

77

cesses by performing a data-based classification [73] or by leveraging programming model guar-

antees. [74].

End-to-End SC [73], as discussed in Section 3.1.2, employs both a dynamic OS-based classifi-

cation and a static compile-time classification that complements its dynamic scheme. Our work is

inspired by End-to-End SC’s OS-based dynamic classification scheme. In Section 3.1.6, we show

that by classifying at a finer granularity and by allowing eager re-classifications, HC outperforms

End-to-End SC’s dynamic classification scheme for a TSO implementation by a geomean 24%.

End-to-End SC’s compile-time scheme only adds a 0.5% performance improvement on top of it’s

dynamic scheme. Moreover, End-to-End SC’s design incorporates two store buffers, one for out-

of-order stores, and one for in-order stores. Implementing two store buffers adds complexity and

could lead to under-utilization and stalls in one of the two buffers.

ROOW [74] exploits the Data-Race-Free (DRF) semantics of the code with a compiler imple-

mentation that performs region-based classification by delineating DRF code regions from syn-

chronization regions (sync regions). Their compiler sets a 1-bit DRF flag using a dedicated in-

struction to mark the start of DRF regions. Stores that are inserted into the store buffer while

this DRF flag is set are allowed to execute out-of-order while stores in the sync regions execute

in-order. ROOW also performs compile-time alias analysis to conservatively prevent reordering

across DRF and sync regions when there could be accesses that go the same memory location in

both regions. HC’s load and store buffer design is inspired by ROOW’s monolithic buffer that

switches between out-of-order and in-order execution for its DRF and sync regions respectively.

Thus ROOW marks entire regions as safe or unsafe to reorder with a single bit in the monolithic

store buffer. In contrast to ROOW, HC delineates 256B memory regions dynamically to allow

a finer grain mixing of reorder-safe and reorder-unsafe memory accesses. We believe a design

that employs both ROOW and HC working together can further improve system performance by

78

allowing ROOW’s region-based classification to complement HC’s dynamic classification.

Classification of memory accesses or memory regions has been widely researched for opti-

mizing the cache coherence protocol [94]–[104]. Compile-time approaches [97], [101] are con-

servative in nature due to their reliance on static-time alias analyisis to classify memory accesses.

Approaches based on programming language properties [96], [103] are very accurate but cannot

be applied generically to all existing codes. Unlike HC, Coherence-directory based classification

mechanisms [98], [100] are not applicable to reorder accesses at the load and store buffer level

because their classification is performed later in the memory pipeline, usually at the Last Level

Cache (LLC). Similar to HC, TLB-based classification mechanisms [95], [102], [104] account for

temporarily-private memory regions. However, unlike HC, they still perform their classification

at the page granularity which incurs a high degree of false sharing while identifying reorder-safe

memory access as shown in Figure 3.2 which affects system performance as shown in Figure 3.8.

3.1.8 Conclusions

Closing the performance gap between strong and weak memory consistency models is important

to improve the performance of modern multiprocessors. We can close this gap by enforcing strong

MCM ordering only when necessary; by allowing memory accesses to execute out-of-order from

the processor’s load and store buffers when their reordering does not affect observable program be-

havior. In this work, we present Hybrid Consistency (HC), an efficient hardware design that blends

strong and weak MCMs by enabling a fine grained mixing of reorder-safe and reorder-unsafe ac-

cesses at the load and store buffers. HC relies on existing OS structures for a low-complexity

design with minimal area overhead and negligible energy overhead. We show that HC’s dynamic

temporality-aware classification technique attains all the performance benefits of memory reorder-

ing with a cache line granularity classification without having to monitor the classification state

79

for individual cache lines at the TLB and Page Table level. Our design choices enable HC to

detect 73% of all memory accesses as reorder-safe, which is significantly higher than the 39%

identified by the previous OS-based dynamic classification approach for memory reordering. Fi-

nally, we show that HC outperforms the prior approach by a geomean 24% across a suite of 15

multithreaded applications.

80

CHAPTER 4

ENABLING IN-COMPUTE PARALLELISM FOR GPU ENERGY EFFICIENCY

In chapters 2 and 3, I targeted improving system performance. Besides performance, chip de-

signers also need to make energy-efficient chips in order to meet the ever-growing performance

targets while staying within a reasonable power budget. In this chapter I target directly improving

energy-efficiency with ST2 GPU in Section 4.1. To evaluate ST2 GPU and other such hardware

advancements, architects need robust tools that allows them to quickly and accurately model both

the power consumption and performance of modern systems. As such, in Section 4.2, I present

AccelWattch, a cycle-accurate power model for modern GPUs. I use AccelWattch to evaluate ST2

GPU in Section 4.1.6.

4.1 ST2 GPU: An Energy-Efficient GPU Design with Spatio-Temporal Shared-Thread Spec-

ulative Adders1

4.1.1 Introduction

Graphics Processing Units (GPUs) are becoming increasingly popular for accelerating both general-

purpose and high-performance computing applications. Currently, there are 152 GPU-accelerated

systems in the TOP500 HPC list [19] and 70% of the top-50 HPC applications are GPU-accelerated [20].

As the appeal of GPUs grows, so does the demand for higher performance. To meet the ever-

increasing performance targets, designers cram increasingly more cores per GPU chip, leading

to a commensurate rise in power consumption. However, the power budget of modern GPUs is

1This section is based on our DAC’21 paper about ST2 GPU [105].

81

0%

20%

40%

60%

80%

100%
bi
no

m
ia
l

km
ea
ns
_K

1
sg
em

m
w
al
sh
_K
1

m
ri-
q_
K1

bp
ro
p_

K2
sr
ad
v1
_K

1
dc
t8
x8
_K
1

dw
t2
d_
K1

so
rt
N
et
s_
K1

qr
ng
_K
2

bp
ro
p_

K1
b+

tr
ee
_K

1
hi
st
o_

K1
b+

tr
ee
_K

2
m
so
rt
_K

1
w
al
sh
_K
2

pa
th
fin

de
r

so
rt
N
et
s_
K2

sa
d_

K1
so
bo

lQ
rn
g

m
so
rt
_K

2
qr
ng
_K
1

Av
er
ag
e

Dy
na

m
ic

 In
st

ru
ct

io
ns Other

FPU Other

FPU Add

ALU Other

ALU Add

Figure 4.1: ALU and FPU operations are prevalent in GPU kernels.

already reaching the limits of practical cooling technology. For example, both NVIDIA’s Volta

GV100 architecture [22] and the previous-generation Pascal GP100 are limited by the same 250 W

thermal design power, even though GV100 contains 43% more CUDA cores. In order to continue

increasing the core count at a constant power budget, the cores must become more energy efficient.

Owing to their sheer number on a chip, add/subtract execution units such as integer arithmetic and

logic units (ALUs) and floating-point units (FPUs) are collectively among the most power-hungry

hardware components. Often, ALUs and FPUs are exercised intensely by workloads: 21 out of

23 kernels from Rodinia [106], NVIDIA CUDA Samples [107], and Parboil [108] running on an

NVIDIA TITAN V Volta exhibit high arithmetic intensity, i.e., more than 20% of the executed

dynamic instructions are ALU and FPU instructions (Figure 4.1). In this work, we directly target a

reduction in ALU and FPU power consumption by introducing a new power-efficient adder design,

and an associated GPU architecture.

Our work is inspired by the observation that real-world GPU applications exhibit an important

but overlooked behavior: the computed values of consecutive operations from the same line of

82

code are often highly correlated. (i.e., the values computed by the same instruction as it repeatedly

executes, tend to be of similar magnitude). We capitalize on this observation and propose Spatio-

Temporal Shared-Thread (ST2) adders, a power-efficient speculative adder design that utilizes the

spatio-temporal history of arithmetic operations in a GPU kernel to perform additions. While the

adder executes speculatively, mispredictions are immediately detected upon the nominal end of the

adder’s execution and corrected in subsequent cycles. Thus, ST2 adders guarantee correctness. At

the same time, they save 70% of the adder power and achieve 27% higher prediction accuracy over

the current state-of-the-art VaLHALLA [109] design.

We incorporate ST2 adders into a new GPU architecture, ST2 GPU. ST2 GPU modifies the

pipeline of an NVIDIA Volta GV100 to accommodate the variable-delay adders, and facilitates

access to history tables by piggy-backing on the GPU’s operand collector. The ST2 GPU design

achieves a 21% chip energy reduction across 23 kernels from Rodinia [106], NVIDIA CUDA

Samples [107], and Parboil [108], with practically no performance and area overheads.

This work makes the following contributions:

• We observe, explain and quantify spatio-temporal value correlation on real-world GPU ap-

plications.

• We propose ST2 adders, a speculative adder design that exploits spatio-temporal value cor-

relation to perform carry speculation and reduce power consumption. ST2 adders guarantee

correctness and outperform state-of-the-art designs.

• We perform a design-space exploration of carry speculation units on GPUs along the spatial

axis (PC correlation), temporal axis (history depth), and history sharing among threads, and

arrive at a practical, high-performance carry speculation unit for GPUs.

• We propose ST2 GPU, an architecture that integrates ST2 adders and carry speculation units

83

into the warp pipeline, and show it achieves significant power savings with negligible over-

heads.

4.1.2 Background

4.1.2 Volta Architecture and Execution Model

Our GPU architecture model is inspired by the NVIDIA Volta GV100 GPU architecture [22], and

particularly the TITAN V Volta. The TITAN V Volta has 80 Streaming Multiprocessors (SMs)

each with 64 32-bit integer units (ALUs), 64 32-bit floating-point units (FPUs), 32 64-bit double-

precision units (DPUs), 4 special function units (SFUs) for complex operations (e.g., log, square

root), and 8 tensor cores for matrix arithmetic. Our design targets the adders within the ALUs,

FPUs and DPUs.

GPUs execute programs known as “kernels”, which typically comprise thousands of threads.

Upon launching a kernel, each thread gets its own GPU-wide unique global thread ID. Threads

do not execute instructions independently; rather, sets of 32 threads (warps) execute the same

instruction on different data. Each thread in a warp is identified by its local thread ID, i.e., a

number between 0–31. In the rest of the section, we refer to these global and local thread IDs.

GPU kernels are offloaded to the the GPU device through the use of CUDA, a parallel com-

puting platform and application programming interface model. The CUDA programming environ-

ment provides a parallel thread execution (PTX) [110] instruction set architecture (ISA), which is

an intermediate ISA that exposes the GPU as a data-parallel computing device. PTX programs are

translated at install time to the target hardware ISA that executes natively on the GPU.

84

4.1.2 Speculative Adders

To reduce power consumption, speculative adders divide a regular adder’s full bit range into smaller

bit ranges (“slices”) and run them in parallel. As slices are smaller, they can execute at a fraction of

the nominal clock period. Speculative adders exploit the unused clock period to scale down each

slice’s supply voltage to the lowest setting that allows the slice to still fit within the same cycle

time [111], gaining quadratic power savings. However, running the slices in parallel breaks the

carry-propagation chain. Speculative adders overcome this obstacle by speculating on the carry-in

of each slice.

Approximate speculative adders [112]–[115] do not possess error correction mechanisms and

wrong results are supplied whenever a carry-in is mispredicted. In contrast, variable latency spec-

ulative adders [109], [116] detect mispredictions at the end of the nominal execution and occupy

additional execution cycles to recompute with the corrected carry-in if an error occurred. Thus,

they always provide the correct result, but incur an overhead whenever a misprediction occurs.

Our design is inspired by VaLHALLA [109], a recently-proposed variable-latency adder that is

shown to outperform prior speculative adder designs. VaLHALLA provides a static prediction for

all slices’ carry-ins based on the correlation between the length of the carry propagation chain and

the input operands.

4.1.3 Spatio-Temporal Value Correlation in GPUs

A characteristic of applications is that code execution repeats, both within threads of computation

(e.g., in loops) and across threads (e.g., the same kernel running on separate threads). Thus, the

same instructions, at the same PC, repeat, one iteration after another and one kernel thread after

another. As these “hot” instructions operate in succession they transform data. While the data

values produced by different instructions often bear limited correlation with each other, instructions

85

0
100000
200000
300000
400000

PC1 PC2 PC3 PC4 PC5 PC6 PC7

-100
0

100
200
300

0 5 10 15 20 25 30
Logical Time

iteration 1
iteration 2

iteration 3
iteration 4

Re
su

lt
of

 A
dd

iti
on

for (int i=0; i < iteration ; i++) {
...
if ((tx>=(i+1) && (tx<=(BLOCK_SIZE-2-i))) && isValid) {

...
int shortest = MIN(left, up);
shortest = MIN(shortest, right);
int index = cols*(startStep+i)+xidx;
result[tx] = shortest + gpuWall[index];

} ... }

PC1 PC2PC3

PC4

PC5

PC6
PC7

“Hot” loop in Pathfinder:

Figure 4.2: Value evolution of addition results from the Pathfinder kernel.

at the same PC often operate on arguments of similar magnitude and produce values similar to the

ones the same instruction produced in the previous invocation. For example, the same instruction

that increments the iterator of a loop will keep executing, repeatedly producing a sequence of

nearby values (e.g., 1, 2, 3). Another instruction in the body of the loop may operate on other

data and produce new values. As that instruction repeats, it produces values that tend to be within

similar magnitudes across a short window of time, gradually evolving rather than wildly fluctuating

across the integer or floating-point range. In short, code repetition gives rise to value correlation.

Figure 4.2 shows a real-world example of value correlation. The code snippet on Figure 4.2

86

is the hot loop of the kernel in pathfinder from the Rodinia benchmark suite (Section 4.1.5.1).

We highlight the loop’s addition operations and mark them with their logical PC, ranging from

PC1 to PC7. As these additions execute and operate on the application’s data, they produce new

values. Figure 4.2 (bottom) shows the evolution of these values in logical time (i.e., in the order

of instruction execution). Control and data dependencies force the instructions at PC1, PC2, PC3,

PC4, PC5 and PC7 to execute in this exact order, while PC6 is ordered between PC3 and PC7.

As Figure 4.2 shows, when observed as a whole the values generated by these additions as

they execute in order vary greatly. The exist values in the 100s (PC1, PC2), around 0 (PC4, PC5,

PC7), and even tens of thousands (PC6) or negative (PC3). While there is some correlation in

the magnitude of the results from different instructions that execute consecutively (e.g., both PC4

and PC5 produce values close to zero), this correlation is weak and is often broken by instructions

producing wildly different results. However, the values produced by the same instruction (i.e., at

the same PC) across iterations are of similar magnitude and strongly correlated.

This value correlation translates to correlation in the carry chains. Operations on small positive

numbers yield short carry chains, (e.g., PC1, PC2, and PC7 which produce carry chains that do not

propagate beyond the first 8 bits), while instructions producing larger values produce longer carry

chains (e.g., PC6’s results may produce a carry that propagates through the first 16 bits). Additions

producing negative results (e.g., PC3) may produce carry chains that propagate all the way to bit

63. We observe that while the carry chain length is weakly correlated across different instructions,

it is strongly correlated across subsequent executions (temporal correlation) of the same instruction

(spatial correlation).

We quantify this spatio-temporal value correlation in our workload suite in Figure 4.3. We

envision additions performed not in a monolithic 64-bit adder, but rather by stringing together

8-bit adder slices, each fed with the carry out of the previous 8-bit slice. We compare the carry-

87

0%
20%
40%
60%
80%

100%
bi
no

m
ia
l

km
ea
ns
_K

1
sg
em

m
w
al
sh
_K

1
m
ri-
q_

K1
bp

ro
p_

K2
sr
ad
v1
_K

1
dc
t8
x8
_K
1

dw
t2
d_

K1
so
rt
N
et
s_
K1

qr
ng
_K

2
bp

ro
p_

K1
b+

tr
ee
_K

1
hi
st
o_

K1
b+

tr
ee
_K

2
m
so
rt
_K

1
w
al
sh
_K

2
pa
th
fin

de
r

so
rt
N
et
s_
K2

sa
d_

K1
so
bo

lQ
rn
g

m
so
rt
_K

2
qr
ng
_K

1
Av

er
ag
eCa

rr
y-

in
 M

at
ch

es

Prev + Gtid Prev + FullPC + Gtid Prev + FullPC + Ltid

Figure 4.3: 8-bit slice carry-in correlation across the temporal & spatial axes.

outs/carry-ins between adder slices as instructions execute. When we compare the carry-ins be-

tween consecutive additions executed within each thread (same global threadID), regardless of the

PC, only 50% match on average (Prev+Gtid). Thus, there is practically no correlation along the

temporal axis alone. However, when we compare separately the slice carry-ins from consecutive

executions of the same PC within each thread, we find matches in 83% of the cases on average

(Prev+FullPC+Gtid). Thus, while temporal correlation alone is limited, the spatio-temporal corre-

lation is strong. In addition, as all threads in a GPU kernel’s block execute the same program, they

can learn from each other. When we compare not against the previous execution of an instruction

at the same PC by the same thread (same global threadID), but across all threads in the same warp

lane (between 0 and 31), then matches are found in 89% of the cases (Prev+FullPC+Ltid), showing

that sharing history among threads can enhance the speed of finding correlations. In the following

section we capitalize on these observations to design the ST2 adders.

88

Stall

Fetch

Decode

Instruction
Buffer

Scoreboard

Carry
Register

File - Write

Functional Units

SFUs, MULs, DIVs

LD/ST Units

FPUs

ALUs

Fetch Decode Issue Register
Read

Execute Write-Back

Release

Ready

Carry Register [15]

Carry Register [14]

Carry Register [0]

224 Bits

PC[3:0]

Cp
re

d[
22

3:
0]

Slice 0Slice 1Slice 2Slice 3Slice 4Slice 5Slice 6Slice 7

Slice 0Slice 1Slice 2Slice 3Slice 4Slice 5Slice 6Slice 7

Thread 31

Thread 30

Thread 0

Cpred[223:217]

Cpred[216:210]

Cpred[6:0]

ALUs

FPUs (FP32, FP64)

LD/ST Units

SFUs, MULs, DIVs

Slice 0Slice 1Slice 2Slice 3Slice 4Slice 5Slice 6Slice 7

Slice 7
Bits

[63:56]

Slice 6
Bits

[55:48]

Slice 5
Bits

[47:40]

Slice 4
Bits

[39:32]

Slice 3
Bits

[31:24]

Slice 2
Bits

[23:16]

Slice 1
Bits

[15:8]

Slice 0
Bits [7:0] Cin

Cout

Input Register

Output Register

8-bit
ADD/SUB

Cin

SUB
Cout[0]

Op2[7:0] Op1[7:0]

Out[7:0]

Input Register

Output Register

8-bit
ADD/SUB Cin

SUB

Cout[5]

Op2[47:40] Op1[47:40]

Out[47:40]

1

0

1
0

Op2[39] Op1[39] 1
0

Cpred[4]

Cin[5]

E[1]E[2]E[3]E[4]E[5]E[6]E[7]

E[5]

Clk

S[1]S[2]S[3]S[4]S[5]S[6]S[7]

S[5]

Cpred[0]Cpred[1]Cpred[2]Cpred[3]Cpred[4]Cpred[5]Cpred[6]

Reset

Cpred[6:0]

Warp
Scheduler

Instruction
Cache

Register
File - Write

Cout
DFF

state
DFF

Register
File - Read

Carry
Register

File - Read

M
ux

Previous Carry
History Table

Slice 5

Slice 0

ST2 Adder, Thread 0

Cout

SUB

Stall

Level-Up Voltage ShiftersLevel-Down Voltage Shifters

Figure 4.4: Adder slice design. Slices 1-7 are similar. Changes over VaLHALLA are highlighted
in red.

4.1.4 ST2 Design and Space Exploration

4.1.4 ST2 Adder Slice Design

The ST2 adder is inspired by VaLHALLA [109] and significantly improves upon it. Figure 4.4

depicts the design of the ST2 adder, with slices 0 and 5 shown in detail. While The NVIDIA

TITAN V Volt GPU has only 32-bit adders, here we show the design of ST2 for the general case

of a 64-bit adder. For simplicity of explanation, let’s assume that the nominal latency of an ADD

operation is 1 cycle.

At the beginning of an ADD operation, ST2 makes a prediction of the carry-in for each slice

and performs the ADD computation. The prediction is communicated to the adder through signals

Cpred[0]−Cpred[6] from the Carry Register File to each adder slice in Figure 4.4 (Section 4.1.4.2

explains how ST2 makes these predictions). At the end of the nominal execution cycle, each slice

compares the prediction it received (Cpred[4] for slice 5) with the carry-out generated by the

previous slice (Cin[5] for slice 5). If they do not match then a misprediction has occurred. In

that case the slice consumes an additional cycle to re-compute the ADD operation with the inverse

carry-in of the previous cycle (¬Cpred[4] for slice 5). Thus, the execution of an ADD may take

one or two cycles, depending on whether there was a misprediction.

89

If slice i mispredicts, then all carry-outs generated by slices i + 1, ..., 7 are suspect of being

incorrect. Thus, upon a misprediction, an error signal is generated (E[5] for slice 5) that propagates

to all higher-order slices (signals S[i]) and informs them that they may have received an erroneous

carry from their previous slices. Each of the affected slices will then proceed with a second cycle of

computation, using the inverse carry than the one assumed in the previous cycle. A 1-bit State DFF

register keeps track of whether the slice is performing the first or the second cycle of computation.

At the beginning of an ADD operation, all State DFFs are reset to 0. At the end of the first cycle,

each slice’s State DFF is updated by OR-ing the error signals of the current and all previous slices,

and then stays at that value until a new operation is assigned to the adder. Thus, the State DFF

remembers whether the predicted carry is to be trusted or not. At the end of this second cycle

all correct carry-ins are known, and each ST2 slice decides to either keep the results already in

its output register (i.e., the first cycle’s computation was the correct one) or overwrite them with

the result of the second cycle. This operation is similar to a Carry Select Adder (CSLA) [117].

Unlike CSLA, though, which always performs computations with both carry-ins for all slices, ST2

performs additional slice computations only when a misprediction occurs, and only on the subset

of slices that cannot trust their prediction. Thus, ST2 avoids unnecessary computations and exhibits

significant power savings over CSLA.

4.1.4 ST2 Carry Speculation Mechanism and Comparison to VaLHALLA

ST2 improves upon VaLHALLA by offering improved carry speculation. Specifically, it employs

speculation only when necessary, provides per-thread history-based predictions, promotes thread-

history sharing, and is adapted to GPU pipelines. We arrive at the ST2 architecture by performing

a design space exploration, shown in Figure 4.5. As the figure shows, static carry prediction (e.g.,

always predict 0—staticZero) suffers from high error rates (staticOne is even worse). VaLHALLA

90

reduces the misprediction rate through dynamic speculation. However, dynamic speculation is not

always necessary. If the most significant bits (MSbs) of the two input operands of the previous

slice (Op1[39] and Op2[39] for slice 5) are both zeros, then the carry-in will surely be zero; if

they are both ones, then the carry-in will surely be one. Such static predictions are guaranteed

to be correct. ST2 capitalizes on this observation by having each slice peek at the MSbs of the

previous slice to make a static prediction, and relies on dynamic speculation (and risks errors) only

when static predictions are not possible. VaLHALLA always performs dynamic speculation even

in these cases. Retrofitting VaLHALLA with Peek further reduces its misprediction rate by 18%.

The second limitation of VaLHALLA is that it predicts a single 1-bit carry for the entire

adder, which is broadcasted to all slices. Providing the same prediction to all slices increases

the misprediction rate and causes additional execution cycles. Instead, ST2 makes separate carry-

in predictions for each slice by observing that consecutive arithmetic operations are correlated

(Section 4.1.3). Correlation increases the likelihood that carry chains have similar lengths among

operations executed close in time. Thus, ST2 remembers, in a previous carry history table, the

carry-outs produced by each slice for an ADD at time i, and uses them as per-slice predictions

for the carry-ins at time i + 1. The corresponding Prev+Peek design puts everything together and

achieves a 26% reduction in miss rate over VaLHALLA.

The achieved 20% misprediction rate may still be relatively high, though, as each mispredic-

tion means the ALU will consume additional cycles, raising the probability of structural hazards.

Prev+Peek fails to achieve very low misprediction rates because it allows all instructions to alias

with each other. While consecutive executions of the same instruction may be highly correlated and

produce similar output values (Section 4.1.3), executions of different instructions are less likely to

correlate. To disambiguate predictions, ST2 employs a number of PC bits as part of the index into

the previous carry history table by using the lowest k bits of the PC as index to the previous carry

91

0%
10%
20%
30%
40%

sta
tic

Zero

VaLH
ALLA

VALH
ALLA

 + Peek

Prev +
 Peek

Prev +
 M

odPC1 + Peek

Prev +
 M

odPC2 + Peek

Prev +
 M

odPC3 + Peek

Prev +
 M

odPC4 + Peek

Gtid
 + Prev +

 M
odPC4 + Peek

Lti
d + Prev +

 M
odPC4 + Peek

Lti
d + Prev +

 Hash
PC4 + Peek

Av
g.

 T
hr

ea
d

M
is

pr
ed

ic
tio

n
Ra

te

65% reduction
ST2

Figure 4.5: Design space exploration for ST2 carry speculation mechanism.

history table (ModPCk). Figure 4.5 shows that as k increases, the misprediction rate falls. At 4

PC bits the misprediction rate is just 12%, a full 57% lower than VaLHALLA. Increasing k further

provides diminishing returns.

We speculate that the main limitation of the latest design we arrived at is thread aliasing. While

the history from different instructions is disambiguated, all threads in Prev+ModPC4+Peek share

the same history, which may cause undesirable destructive interference. Moreover, there may be

significant thread contention, as all threads that execute the same (or aliasing) instructions may

simultaneously attempt to update the same entry in the carry history table. To address these prob-

lems, we add to Prev+ModPC4+Peek the ability to disambiguate threads by adding the global

thread ID as part of the carry history table index. The resulting Gtid+Prev+ModPC4+Peek design

completely disambiguates threads. As we see in Figure 4.5, however, this design fares significantly

worse than most other designs. Thus, sharing history among threads may be beneficial, indicating

that interference may be constructive as well. By having threads operate on similar data, they can

act as “prefetchers” of the correct carry-ins into the history table. Our data indirectly support the

92

hypothesis that constructive interference among threads may be more prevalent.

Armed with this new intuition, we modify the design to incorporate the local thread ID in-

stead of the global ID in the carry speculation table index, thereby allowing threads to share pre-

dictions across warps. The resulting design, Ltid+Prev+ModPC4+Peek, achieves a small 9%

misprediction error (Figure 4.5), which is 65% lower than VaLHALLA’s. Volta GV100 supports

up to 2048 threads/SM [22], thus Gtid+Prev+ModPC4+Peek may require a 15-bit history table

index (11 global thread ID bits + 4 PC bits) and a commensurately large history table. In con-

trast, Ltid+Prev+ModPC4+Peek exhibits minimal contention that can be practically addressed

with random arbitration, as only the few warps executing the register write-back pipeline stage at

the exact same cycle in the same SM’s computational cluster may conflict with each other, and

only when threads within these warps mispredict. The speculative adder design we pick for ST2

is Ltid+Prev+ModPC4+Peek. More complex PC-based indexing (e.g., XOR-hash of 4-bit PC

chunks) provide no additional benefits.

The final ST2 design is in stark contrast to VaLHALLA. VaLHALLA predicts the same carry-

in for all slices, while ST2 predicts an independent carry-in per slice based on instruction history

(the Prev mechanism). VaLHALLA performs a prediction on every ADD, while ST2 predicts only

when necessary (the Peek mechanism). VaLHALLA predictions are performed for each adder,

while ST2 allows history sharing across threads. These improvements result in significantly higher

prediction accuracy for ST2 over VaLHALLA.

It is important to note that configurations to the left of Ltid+Prev+ModPC4+Peek in Figure 4.5

would be unimplementable due to numerous hardware threads requiring simultaneous read/write

accesses to the same carry history table entry. This design space exploration shows that our ST2

adder design which uses Ltid+Prev+ModPC4+Peek exhibits lower misprediction rates than even

these optimistic approaches (including VaLHALLA) shown in Figure 4.5 which ignore contention

93

in accesses to the same history table entry by multiple hardware threads in an SM.

4.1.4 ST2 GPU Microarchitecture

Figure 4.4 shows a model of a modern GPU warp pipeline with the proposed modifications to

support ST2. As ST2 operates at lower-than-nominal voltage, level shifters are required when

crossing voltage domains. A Carry Register File (CRF), placed next to the regular register file,

holds the per-slice carry-outs produced by previous add operations in a history table. The CRF is

read along with operands from the register file in the register read pipeline stage. The speculated

carry-ins from CRF are sent to the warp’s Functional Units (FUs)—i.e., adder or FMA units in

ALUs, FPUs or DPUs, depending on the operation—during the execute stage together with the

operands, and are utilized by ST2 adders to perform the computation. The CRF is structured as

a 16 × 224-bit register file. A CRF read uses PC[3:0] as an index to retrieve 224 bits. These

correspond to 7 carry bit predictions (one for each of slice1, ..., slice7) of each of the warp’s 32

threads. Upon completion of the operation, threads with mispredictions update their corresponding

bits in the CRF with the new carry-outs, to be used as predictions in subsequent operations. The

CRF is updated at the write-back pipeline stage along with the register write-back, similarly to a

register file update.

When an FU detects a misprediction, the operation is repeated with the inverse carry-ins to

recover from the error (Section 4.1.4.2). Upon a misprediction, the FU generates a stall signal that

propagates to the scoreboard to prevent the issue of another instruction on the still-occupied func-

tional unit, and stalls the pipeline register to prevent instructions already scheduled from getting to

the execute stage.

ST2 GPU employs ST2 adders not only in integer ALUs, but in FPUs and DPUs as well when

performing mantissa operations. Mantissas are 23 or 52 bits for FP32 and FP64, so these units

94

use 3 or 7 slices, respectively. We refrain from employing speculative adders for exponent opera-

tions (exponents are only 8-11 bits wide and speculation does not provide any benefit) or in other

complex units such as multipliers.

4.1.5 ST2 GPU Evaluation Methodology

We use GPGPU-Sim 3.x [118] in PTX simulation mode, which is calibrated against an NVI-

DIA TITAN V Volta and shown to have high correlation with hardware performance measure-

ments [119]. We use this version as the baseline and modify it to incorporate the ST2 GPU archi-

tecture. Our simulator models ALUs, FPUs and DPUs as seperate components that perform adds,

subtracts, and a host of other simpler operations. Multipliers are modeled as separate units.

4.1.5 Workloads

Our evaluation suite consists of 23 kernels selected from 18 workloads from NVIDIA CUDA Sam-

ples [107] (cudaTensorCoreGemm, BinomialOptions, fastWalshTransform, dct8x8, sortingNet-

works, quasirandomGenerator, histogram, mergesort, and SobolQRNG), Rodinia [106] (kmeans,

backprop, sradv1, dwt2d, b+tree, and pathfinder), and Parboil [108] (sgemm, mri-q, and sad).

All workloads were compiled with NVCC V9.1.85 with support for Volta using the arch=sm 70

compiler option. We excluded workloads that could not compile for GPGPU-Sim (e.g., due to

unimplemented instructions like warp.sync) or were impractical to simulate (> 2 days per run).

Additionally, we excluded a few short-running kernels for which we were unable to collect reliable

hardware power measurements from our power modeling workflow (it probes the hardware at 50–

100 Hz, and as a consequence we could not validate our power model for these workloads against

hardware measurements to ensure its accuracy). We use the largest available input configuration

for all workload runs.

95

4.1.5 Circuit Design

We model all adder designs in Verilog. We synthesize all designs with the same optimization

parameters using Synopsys Design Compiler (H-2013.03-SP5-4) and Synopsys IC Compiler (vI-

2013.12-SP5), using the Synopsys SAED 90 nm library. We simulate the netlists using Synopsys

VCS-MX (I-2014.03-2) in analog mode and Synopsys HSpice (K-2015.06-1) to analyze their en-

ergy and delay characteristics. The reference adder is the default adder synthesized by Synopsys

Design Compiler. It is a state-of-the-art, industrial-strength design directly imported from the Syn-

opsys DesignWare Library [120], and synthesized using the recommended default optimization

settings to obtain an overall balanced design. We determine the minimum execution delay of the

reference adder when nominal voltage is supplied, and use it to define the nominal clock period.

Then, we identify the voltage at which we can scale the slices while still fitting within the nominal

clock period. From this characterization we extract the reference adder and slice power consump-

tion we use in our modeling. While the circuit modeling is performed with a 90 nm cell library,

we estimate that the relative energy differences across adder designs will persist when we scale the

designs to the 12 nm FinFET process that NVIDIA Titan V Volta uses.

We perform a design space exploration to identify the optimal ST2 slice bitwidth. We synthe-

size sub-adders of different bitwidths, feed them with random vectors as inputs, and evaluate their

power consumption on the same random input sequence. We identify 8-bit slices as the best design

option for ST2, as they allow the supply voltage to scale to 60% of the reference voltage, leading

to 75–87% potential energy savings per adder. We model the energy and area footprint of ST2’s

carry speculation unit independently.

96

4.1.5 Power Modeling

To evaluate power consumption, we develop a power model and extensively validate it before

collecting power results for ST2 GPU over the baseline. We use an earlier version of Accel-

Wattch [121] (Section 4.2) that was calibrated using a set of micro-benchmarks and an NVIDIA

TITAN V Volta GPU. We develop a suite of 123 micro-benchmarks that isolate and stress specific

GPU hardware components. We run these kernels on silicon to collect hardware power measure-

ments using the NVIDIA Management Library at 50–100 Hz. We then use a least-square-error

solver to calibrate the AccelWattch power scaling factors per component.

At a high level, the power model used for evaluating ST2 GPU is represented by:

P total = P const + (N idleSM × P idleSM) +
N∑
i=1

(P i × Scalei) (4.1)

The constant power Pconst includes power from components such as GPU board fans, power

regulators, peripheral circuitry, and leakage. PidleSM models static power per idle SM, and is mul-

tiplied by the number of idle SMs, NidleSM. We model the dynamic power of each component i

by multiplying the component’s scaling factor Scalei estimated by the solver, with the component

power we obtain from our AccelWattch simulations, Pi. To estimate the total modeled system

power, we sum the dynamic power of each component with the chip’s constant power and the total

idle SM power. Pconst and PidleSM are also estimated by our solver across all microbenchmarks.

The NVIDIA Volta GV100 does not have divider units. Instead, divisions are performed in

hardware as an algorithm that uses other instructions (e.g., FMAs, shifts, etc). However, the PTX

ISA includes division instructions, which subsequently are modeled by GPGPU-Sim. Thus, we

also separately model the power consumption of division operations; this power does not corre-

spond to a single hardware component, but rather to the collective instructions that execute on

hardware to calculate the result of a division operation.

97

0%
5%

10%
15%
20%
25%

bi
no

m
ia
l

km
ea
ns
_K
1

sg
em

m
w
al
sh
_K
1

m
ri-
q_

K1
bp

ro
p_
K2

sr
ad
v1
_K

1
dc
t8
x8
_K

1
dw

t2
d_
K1

so
rt
N
et
s_
K1

qr
ng
_K
2

bp
ro
p_
K1

b+
tr
ee
_K

1
hi
st
o_

K1
b+

tr
ee
_K

2
m
so
rt
_K
1

w
al
sh
_K
2

pa
th
fin

de
r

so
rt
N
et
s_
K2

sa
d_

K1
so
bo

lQ
rn
g

m
so
rt
_K
2

qr
ng
_K
1

Th
re

ad

M
is

pr
ed

ic
tio

n
Ra

te

Figure 4.6: Thread misprediction rate for ST2 adders.

0.0
0.2
0.4
0.6
0.8
1.0

binomial

kmeans_K1
sgemm

walsh
_K1

mri-q
_K1

bprop_K2

sra
dv1_K1

dct8
x8_K1

dwt2d_K1

sortN
ets_

K1

qrng_K2

bprop_K1

b+tre
e_K1

histo
_K1

b+tre
e_K2

msort_
K1

walsh
_K2

pathfin
der

sortN
ets_

K2
sad_K1

sobolQrng

msort_
K2

qrng_K1

Avg (in
tensiv

e)

Avg (all)

N

fp
Mul/…

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2

Ba
se ST
2No

rm
. S

ys
te

m
 E

ne
rg

y

DRAM
Others
NoC
Caches+MC
RegFile
SFU
fp Mul/Div
int Mul/Div
ALU+FPU

ALU+FPU Intensive: >20% ALU+FPU System Energy

Figure 4.7: Normalized system energy for the baseline and ST2 GPU architectures.

We evaluate the accuracy of our power model by applying it on our benchmark suite of 23

kernels. The model was trained on the microbenchmark stressors only, thus our benchmark suite

constitutes a proper validation set. We find that our power model attains an average absolute

relative error of 10.5% ± 3.8% (95% confidence interval), giving it a strong Pearson r coefficient

of 0.8.

4.1.6 Evaluation

We evaluate our design by running the kernels in our benchmark suite on a simulated ST2 GPU

architecture using our in-house versions of GPGPU-Sim and AccelWattch that incorporate our

adder and warp pipeline designs and the power model. ST2 GPU attains a 9% average thread

misprediction rate across all kernels (Figure 4.6).

98

We calculate that on average across all kernels, a single thread misprediction causes 1.94 slices

to re-compute their results (up to 2.73). Thus, mispredictions do not cause an excessive energy

penalty.

Figure 4.7 shows the energy breakdown in our suite when running on a simulated TITAN V

Volta baseline and on ST2 GPU. On average the baseline spends 27% of the total system energy on

ALUs/FPUs, which corresponds to 30% of the chip energy (excluding DRAM). Kernels such as

qrng K1 spend as much as 57% of the system energy on ALUs/FPUs. We observe that several of

our kernels have high arithmetic intensity, with 14 out of 23 workloads each spending more than

20% of the system energy on ALU/FPU units. These workloads spend on average 31% of the total

system energy on ALUs/FPUs, corresponding to an average of 40% of the total chip energy. Thus,

minimizing the ALU/FPU energy consumption holds significant promise in increasing the energy

efficiency of GPUs.

Figure 4.7 shows that across our kernel suite, ST2 saves on average 19% of the system energy,

which corresponds to 21% average chip energy savings (excluding DRAM). The energy savings

for kernels with high arithmetic intensity are even higher: ST2 GPU saves on average 26% of the

system energy (up to 40% for msort K2), which corresponds to 28% chip energy savings (up to

42%).

These energy savings come with practically no performance overhead. A mispredicted carry-in

for even one adder slice in a single thread in a warp would stall the entire warp until the correct

output is obtained. While the penalty may seem high, the ST2 speculation mechanism exhibits very

low misprediction rates (Section 4.1.4.2), and GPUs are tolerant of such additional latencies. Our

experiments show that ST2 GPU practically provides the same performance as the baseline: the

execution time is within 0.36% of the baseline on average. The worst performance impact among

our 23 kernels is suffered by dwt2d K1, which shows a still small 3.5% slowdown.

99

The voltage level shifters required for ST2 adders to interface the new power domain have negli-

gible area and power overheads. Level shifters in a 45 nm technology can be made at 2.8 µm2 [122].

We estimate that, using level shifters for each adder’s input operands and outputs on the chip,

even without scaling from 45 nm to 12 nm FinFETs, these level shifters in total occupy less than

5.5 mm2, which for a NVIDIA Titan V Volta is 0.68% of the 815 mm2 chip area. [123] shows

that level shifters for 16 nm FinFETs consume 1.38 fJ per transition and 307 nW in static power.

Assuming these level shifters in our design, their total static power consumption for a Titan V

Volta chip without any scaling to 12 nm FinFETs is only 0.6 W. Under the worst case estimation

that every single bit of every instruction that goes through an adder unit flips, thus consuming the

maximum amount of energy in the level shifters, the total dynamic power consumption of the level

shifters, averaged across all kernels in our suite, is a mere 470 µW. This overestimated level shifter

overhead amounts to just a 0.5% penalty in our average system energy savings bringing it down

to 18.5%. Finally, the worst-case delay per falling or rising transition for a 500 mV to 790 mV

crossing is only 20.8 ps; in our analysis we also consider the additional delay imposed by the level

shifters at the inputs and outputs of our ST2 adders.

Finally, the ST2 GPU area overhead is negligible, as we illustrate by considering a hypothetical

NVIDIA TITAN V Volta with ST2 GPU. Every SM has a 448-byte CRF (16 × 224 bits), thus the

entire chip requires just 35 kB of total additional area. Moreover, each slice (except 0) has 2 bits

for the state and Cout DFFs (Figure 4.4). Thus, each ALU adder requires an additional 14 bits, and

FP32 and FP64 adders need 4 and 12 bits, respectively, for the mantissa adders. Overall, the space

requirements for the DFFs amount to an additional 15 kB per chip. This brings the ST2 overhead

to a total of 50 kB per chip, which is a mere 0.09% of the on-chip caches and register files.

100

4.1.7 Related Work

Approximate speculative adders [112]–[115] split execution into multiple slices that run in parallel

with predicted carry-ins. However, they do not employ error correction and supply wrong results

whenever a carry-in is mispredicted. VLSA [116] speculates on carry-ins, but detects mispredic-

tions and occupies additional cycles to recompute with the corrected carry-in if an error occurs.

CASA [115] provides a static prediction for all slices’ carry-ins based on the correlation between

the input operands. VaLHALLA [109] extends CASA to a variable-latency speculative adder that

speculates carry-ins for all operations. In contrast, ST2 employs speculation only when needed, and

introduces novel concepts such as per-thread history-based predictions and thread-history sharing,

and is adapted to GPUs.

4.1.8 Conclusions

Just like most modern chips, GPU scaling is hampered by power limitations. We address this

problem with ST2 GPU, a GPU architecture that employs history-based speculative adders that

produce guaranteed correct results while saving power. We explore the design space of the spec-

ulative mechanisms and arrive at an adder design that shows high accuracy (91% on average) and

high power savings (70% of the nominal adder power). Overall, ST2 GPU reduces the energy

consumed by a GPU chip by 21% (and chip+DRAM by 19%), with minimal area overhead and

practically no performance impact.

101

4.2 AccelWattch: A Power Modeling Framework for Modern GPUs2

4.2.1 Introduction

As the proliferation of GPUs grows to satisfy the demand for higher performance, they are fast

becoming a major consumer of power. Thus, it is not surprising that performance per watt, together

with peak performance, have emerged as indispensable metrics for evaluating the efficiency of

GPU architectures. As such, GPU architects require robust tools that will enable them to quickly

and accurately model both the performance and the power consumption of modern GPUs.

However, while GPU performance modeling has progressed in great strides [24], GPU power

modeling has lagged. GPUWattch [124] has been an indispensable tool for modeling the power

consumption of new innovations in GPU architectures, but it was designed to model (and validated

against) older architectures with fewer energy efficiency optimizations.

Attempting to model recent GPUs such as Pascal [23], Volta [22] and Turing [125] using the

methodology employed by GPUWattch produces significant inaccuracies, both in terms of absolute

numbers and in terms of the relative power consumption of individual hardware components. This

can lead to inadvertently optimizing components that may not be as important for energy efficiency

in real systems as the model may allude. We find that a key source of errors is the lack of a model

for Dynamic Voltage and Frequency Scaling (DVFS). Lacking a DVFS model results in recent

GPUs being reported to have a negative constant power term. Our insight, that power under V-F

scaling is better modeled by a 3rd-degree polynomial missing a quadratic term (Section 4.2.4.2),

allows AccelWattch to accurately estimate constant power.

Another key source of error is the lack of a model for capturing the power-down of hardware

components, and their contribution to static power when powered-up but inactive. In the absence

2This section is based on our MICRO’21 paper about AccelWattch [121].

102

of such a model, static power is lumped into a single constant, an oversimplification for modern

chips with aggressive power gating. We infer, for the first time to our knowledge, how mod-

ern GPUs power-gate chip-wide hardware components (e.g., L2 cache), Streaming Multiprocessor

(SM)-wide components (e.g., L1 caches) and lane-specific components (e.g., FPUs). AccelWattch

accurately models the effect of reactivating power-gated structures. It does so by capitalizing on

our insights (Section 4.2.4.3) that: (1) activating the first SM powers up global chip components

which leak when not switching; (2) activating the first lane of an SM powers up SM-wide compo-

nents, which leak when inactive; and (3) activating subsequent lanes additionally powers up only

those lanes’ execution units. Our insight, that the simultaneous execution of operations within a

warp (now supported by modern GPUs [22]) presents a counter-intuitive sawtooth pattern of power

consumption (Section 4.2.4.4), allows AccelWattch to accurately model thread divergence in the

presence of Instruction-Level Parallelism (ILP) (Section 4.2.4.5).

Some recently-proposed power models [126]–[128] target modern GPUs, but they, as well

as earlier works [129], [130] are provided only as analytic models over average behavior, which

hinders research that requires cycle-level accuracy (e.g., research on DVFS). Moreover, analytic

models are hard to extend to describe novel architectural components; often it is easier to build

a cycle-level model that emulates the component’s behavior and use it for evaluation. To support

cycle-level research, the computer architecture community needs a robust and configurable power

modeling tool, capable of supporting cycle-accurate simulation.

We address the lack of cycle-level power modeling tools for modern GPUs by introducing

AccelWattch, a new GPU power model that is configurable, capable of cycle-level calculations

in emulation and trace-driven environments, and supports DVFS. To the best of our knowledge,

AccelWattch is the only power model capable of modeling both PTX (virtual ISA) and SASS (na-

tive machine ISA) instructions, and the only open-source tool capable of modeling closed-source

103

workloads with hand-tuned SASS instructions—it only needs a binary. In addition, AccelWattch

is the only GPU power model that can be driven by either pure software performance models (e.g.,

Accel-Sim [24]), or hardware performance counters commonly found in modern GPUs (thereby

capturing execution on real silicon), or a combination of the two. These AccelWattch variants al-

low researchers to balance the trade-off between power model accuracy and performance modeling

effort.

We validate AccelWattch against hardware power measurements on an NVIDIA Volta GV100 [22]

GPU running a suite of 26 kernels from NVIDIA CUDA Samples [107], Rodinia 3.1 [106], Par-

boil [108], and CUTLASS 1.3 [131] suites. AccelWattch yields a mean absolute percentage error

(MAPE [132]) between 7.5–9.2 ± 2.1–3.1%, depending on the AccelWattch variant, achieving a

Pearson r coefficient of 0.83–0.91. These errors are a factor of 22–24× lower than GPUWattch’s

when targeting the same architecture. As a case study, we apply AccelWattch on kernels from

DeepBench [133] workloads, and find that it obtains 12.79% MAPE over hardware power mea-

surements despite the significant limitations of existing performance models. We demonstrate the

reliability of AccelWattch for design space exploration by applying our validated AccelWattch

Volta model (i.e., without retraining or needing new hardware measurements) to model the power

of two GPU architectures: a Pascal TITAN X [23], and a Turing RTX 2060S [125]. AccelWattch

accurately predicts the power consumption of these new architectures, achieving 11 ± 3.8% and

13± 4.7% MAPE, respectively.

In summary, we make the following contributions:

• For the first time to our knowledge, we infer and introduce an analytic model that explains

and accurately captures constant, static, and dynamic power consumption in the presence of

DVFS, thread divergence, intra-warp functional unit overlap, variable SM occupancy, and

power gating.

104

• We introduce AccelWattch, a cycle-level constant, static and dynamic power model for the

NVIDIA Volta GPU architecture. AccelWattch resolves long-standing needs for modern

GPU architectures: the lack of a cycle-level power model, and the inability to capture the

constant and static power with existing methodologies. We validate AccelWattch and show

it achieves high correlation to hardware measurements.

• To the best of our knowledge, AccelWattch is the only GPU power model that can be directed

by emulation (PTX) or trace-driven (SASS) software performance models, or by hardware

performance counters, or by a combination of the above. This allows for the study of dis-

crete hardware components without the need to develop performance models of the entire

architecture.

• We demonstrate that AccelWattch can enable reliable design space exploration. Directly

applying the Volta power model on a GPU configuration resembling the Pascal and Turing

architectures results in accurate power models for these architectures without tuning specif-

ically for them.

4.2.2 AccelWattch Modeling Workflow

We follow the process shown in Figure 4.8 to develop a model that accurately estimates: (a) con-

stant power, for example by board fans and peripheral circuitry, in the presence of DVFS 1⃝; (b)

static power in the presence of execution divergence, the simultaneous execution of operations

within the same warp [22], variability in SM occupancy, and the power gating of lanes, SMs, and

global chip hardware components 2⃝– 4⃝; and (c) dynamic power consumption for each individual

hardware component 5⃝– 8⃝. To model dynamic power, we develop a suite of 102 microbench-

marks that isolate and stress the various components of a modern GPU 5⃝. We use them, together

105

Validation

AccelWattch config files

AccelWattch modeling

Performance model runs

Hardware
power

measurements

Technology scaling
from Volta to target architecture

Validation kernels

Validated AccelWattch power model

Dynamic power modeling

Hardware
power

measurements

HW perf. counters + Accel-Sim SASS à Power component map
“FADD” à FPU_add
“IMUL” à ALU_mul

...

AccelWattch power modeling

PTX à Power component map
“add.s32” à FPU_add
“mul.f64” à DPU_mul

...

Yes

No

Need
refinement?μbenchmarks Hardware

profiling

Final μbenchmarks set for dynamic power modeling

μbenchmarks for dynamic power modeling

Static power modeling

Analytic modeling

μbenchmarks for divergence-
aware static power modeling

Divergence-aware static
power model

Analytic modeling

μbenchmarks for idle-SM
static power modeling

Idle SM static power model

Final static power model

Constant power
modeling

Hardware perf. counters

Accel-Sim, SASS

Performance modeling
Select
perf.

model

SIM SASS

HW

HYBRID

Accel-Sim, PTXSIM PTX

1

2

5

6
9

3

4

Activity factors, #SMs, #lanes,
instruction mix, #cycles, Vdd, f

Can we do
better?

Yes

No
7

Quadratic optimization solver

Solver constraints

Quadratic programming

New scaling factors

Initial Scaling Factors
(starting point Si)

AccelWattch
Power Model

8

Activity factors, #SMs, #lanes,
instruction mix, #cycles, Vdd, f

Constant power

Static power

Dynamic power

Figure 4.8: AccelWattch power modeling flowchart.

with hardware power measurements and execution statistics 6⃝, to bound any modeling inaccura-

cies using quadratic programming 7⃝. AccelWattch is driven by a performance model, which pro-

vides AccelWattch with statistics on hardware component activity, active SMs and lanes, voltage-

frequency parameters, and cycle count 6⃝. We integrate AccelWattch with GPGPU-Sim [118] and

Accel-Sim [24] to facilitate its use for both PTX [110] and SASS [134] simulations, producing the

AccelWattch PTX SIM and AccelWattch SASS SIM variants, respectively.

AccelWattch can also be driven by hardware performance counters collected during execu-

tion on real silicon, either entirely (AccelWattch HW) or in combination with software-modelled

ones (AccelWattch HYBRID). This allows for the study of discrete hardware components without

the need to develop accurate software performance models for the entire architecture. Building

comprehensive and accurate performance models for GPUs is a painstaking and time-consuming

process. In the absence of sophisticated software performance models like Accel-Sim [24] for fu-

ture GPUs, one can use hardware performance counters and execution on real silicon to model the

power of a GPU architecture, and replace the hardware performance counters of the component

targeted by the research with counters obtained from a model of only that component.

The AccelWattch framework can be used to estimate the power consumption of a kernel run-

106

ning on a new architecture by first initializing it with the AccelWattch model 8⃝. Then, a perfor-

mance model provides AccelWattch with the kernel’s execution statistics (e.g., through simulation

or hardware counters from execution on real silicon) 9⃝. If needed, the resulting power estimates

are scaled to a new technology node.

A salient feature of AccelWattch is its longevity. As architectures and technology continue to

evolve, power modeling tools must adapt to match their target systems. A key feature of Accel-

Wattch is that it is software-only; it makes use of integrated power monitoring tools in modern

GPUs, and requires no external equipment beyond a GPU card. Our power modeling framework

is equipped with a suite of microbenchmarks, analytical models, an optimization solver, and a

validation methodology that can support future GPUs.

4.2.3 The Architecture of NVIDIA Volta

GPUs execute programs known as ”kernels”, which comprise several threads, often thousands.

Threads do not execute instructions independently; rather, sets of 32 threads (warps) execute the

same instruction on different data by using their thread ID to select the data items to work on.

A Volta GV100 GPU chip consists of 80 Streaming Multiprocessors (SMs). Each SM is parti-

tioned into four processing blocks [22], each with 16 INT32 cores for integer arithmetic, 16 FP32

and 8 FP64 cores for 32- and 64-bit floating-point, two tensor cores for matrix arithmetic, one

special function unit (SFU) for complex operations (e.g., log), one warp scheduler, one dispatch

unit, and a 64KB register file [22]. The INT32, FP32 and FP64 cores have adders, multipliers, and

fused-multiply-add (FMA) units. The warp scheduler and dispatch unit can issue one instruction

per clock to 32 execution lanes. Each of the 4 processing blocks per SM has 8 LD/ST units and a

12KB L0 instruction cache [135]. Each SM features a 128KB L1 data cache/shared memory, 2KB

L1 and 64KB L1.5 constant caches, and a 128KB L1 instruction cache. The GPU has a 6144KB

107

unified L2 cache at the chip level, and a 32GB GPU DRAM off chip [135].

4.2.4 Constant, Static and Idle Power Modeling

4.2.4 Hardware Experimentation Methodology

We use NVIDIA Management Library (NVML) [136] and the higher-level API, NVIDIA System

Management Interface (nvidia-smi) [137] interchangeably for collecting power measurements on

silicon for all of our experiments. If needed, we vary the processor frequency with nvidia-smi

(e.g., for the constant power modeling experiments described in Section 4.2.4.2). When possi-

ble, we lock the processor frequency to the default applications clock frequency while collecting

power measurements for microbenchmark and validation suite kernels. We ensure that the micro-

benchmarks present the desired behavior by profiling them using hardware performance counters

provided by NVIDIA Nsight Compute [138].

To protect our experiments from the impact of temperature variations, we bring the GPU chip

to 65oC before taking power measurements for a target kernel. Temperature variability affects

static power exponentially. Keeping a constant temperature during hardware measurements elimi-

nates this noise. After AccelWattch learns a model assuming constant temperature, one can model

temperature variations by multiplying the modeled static power with an experimentally-derived

temperature-dependent factor.

4.2.4 DVFS-Aware Constant Power Modeling

At a high level, GPU power can be described by Eq. (4.2):

Ptotal = Pproc,dyn + Pmem,dyn

+ Pproc,static + Pmem,static + Pconst (4.2)

108

The terms Pproc,dyn and Pmem,dyn comprise the dynamic power consumption of the GPU chip

and memory, respectively, and depend on the respective component’s frequency, voltage and tech-

nology parameters (e.g., capacitance, gate length). The Pproc,static and Pmem,static terms comprise

the static power consumption of the GPU chip and memory, respectively, and depend on voltage

and technology parameters only. GPUs consume power not only by activating microarchitec-

tural components (e.g., ALUs, caches) or through leakage currents at inactive components (static

power), but also by peripheral components such as GPU board fans and other auxiliary support cir-

cuitry. We capture the power consumption of these components in the constant power term Pconst.

We rewrite Eq. (4.2) to reflect these dependencies and obtain Eq. (4.3), in which C refers to the

gate capacitance, V the supply voltage, and f the clock frequency. The terms a, a′, b, b′,m, and n

are constants that abstract away environmental, technology and design factors (a, b for GPU chip

dynamic and static power; a′, b′ for memory):

Ptotal = aCV 2f + a′CV 2f + bV + b′V + Pconst

= mCV 2f + nV + Pconst (4.3)

The methodology employed by prior cycle-level models like GPUWattch [124] to estimate

constant power is based on Eq. (4.3) and does not work on recent GPUs [126]. This methodology

relies on scaling down the frequency f , which linearly reduces the first term (dynamic power). By

running kernels at varying frequencies and measuring the GPU’s power consumption each time,

one could estimate this linear relationship. Extrapolating this line to f = 0 eliminates the mCV 2f

term and leaves only the nV + Pconst term, providing an estimate of the static and constant power.

Modern GPUs employ DVFS to scale voltage with frequency and this invalidates the under-

lying assumptions of the above methodology. Fitting the experimental results from a GPU em-

ploying DVFS (like Volta) to a linear model (as in GPUWattch) results in a negative constant and

109

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
o

w
e

r
(W

)

Processor Frequency (GHz)

INT_MEM

INT_ADD

FP_ADD

FP_MUL

NANOSLEEP

Modeled

Figure 4.9: Measured and curve-fitted total power with varying processor frequency on GV100.

static power estimate, which is clearly incorrect. Recently-published data for fully-realized pro-

cessors show a near-linear relationship in the frequency-voltage curve [139], [140]. Hence, we can

approximate the voltage scaling as a linear function of frequency, V ≈ kf , and rewrite Eq. (4.3)

as:

Ptotal = βCf 3 + τf + Pconst (4.4)

Thus, total power can be approximated by a cubic polynomial with a missing quadratic term (β,

τ are constants). Armed with Eq. (4.4), we perform hardware power measurements at varying clock

frequencies of kernels running on a Volta GV100 following the methodology at Section 4.2.4.1.

We then curve-fit the experimentally-measured data on curves of the form of Eq. (4.4). Figure 4.9

shows the experimental results, along with the fitted cubic polynomials. We evaluate a mixture of

high-power microbenchmarks (e.g., INT MEM, which executes a mix of integer and memory op-

erations and exceeds 200 W), light workloads (e.g., NANOSLEEP, which executes only nanosleep

instructions), and moderate workloads (e.g., INT ADD, FP ADD, and FP MUL which execute

integer adds, FP adds, and FP muls, respectively).

110

The fitted polynomials of the form of Eq. (4.4) show strong correlation to the hardware power

measurements (0.998 Pearson r coefficient). By extrapolating the fitted curves all the way to the

y-axis intercept point, we can estimate the total power of the GPU when f = 0. That is, the y-

intercept corresponds to Pconst. Following this methodology, we estimate that the constant power

Pconst for a Volta GV100 is 32.5 W.

4.2.4 Power-Gating-Aware Static Power Model

After estimating constant power, i.e., Pconst in Eq. (4.4), we next consider the second term, τf ,

which models static power. First, we turn our attention to modeling static power in the presence

of power gating. We infer how modern GPUs are gating chip-wide, SM-wide and lane-specific

hardware components. We measure the impact on power consumption of re-activating these com-

ponents on real hardware, and introduce an analytic model that explains the power-gating behavior

of GPUs and accurately captures their power consumption in the presence of power gating. To the

best of our knowledge, this is the first time that the power-gating behavior of GPUs is inferred,

measured and modeled analytically.

When lanes or SMs are inactive, modern GPUs gate them to conserve power. There are some

components that all SMs share (e.g., L2 cache). These global chip components are powered up

even when there is only one SM active on the GPU. When they are activated, these components

leak power when they are not switching. Similarly, there are components that all lanes share in an

SM (e.g., L1 caches, shared memory. These SM-wide components are active even when there is

only one thread active in an SM, while the remaining lanes are power gated. These components

also leak power when they are not switching. As additional lanes become active, they power up

their own lane-specific functional units (e.g., INT32 and FP32 cores) which may also leak power

when inactive.

111

0
20
40
60
80

100
120
140
160

Inactive
Chip

1 Lane
× 1 SM

1 Lane
× 80 SMs

8 Lanes
× 80 SMs

16 Lanes
× 80 SMs

24 Lanes
× 80 SMs

32 Lanes
× 80 SMs

M
ea

su
re

d
Po

w
er

 (W
)

Addl. Lanes

SM Activation

Chip Global

Const

+2480
lanes

+1840
lanes+1200

lanes+560 lanesfirst SM lane on chip
(activating first SM)

+79 lanes, 1 per SM
(activating +79 SMs)

Figure 4.10: Inferring the power consumption of activating power-gated chip-wide and SM-wide
components.

Figure 4.10 shows the hardware-measured power of a microbenchmark that issues integer op-

erations to a varying number of SMs and lanes per SM. When no SM is active on the chip, it

consumes only constant power (estimated in Section 4.2.4.2). When the microbenchmark runs on

only one lane on one SM (1 Lane × 1 SM), that first SM activation powers up that SM’s structures,

but also activates global chip structures shared by all SMs. When the microbenchmark utilizes

additional SMs (1 Lane × 80 SMs), it additionally powers up only the SM-wide components of

the additional SMs. As a result, the first activated SM on a GPU consumes 47× more power than

each one of the subsequently-activated SMs. For example, 1 Lane × 80 SMs consumes 70% more

power than 1 Lane × 1 SM, even though it utilizes 79× more SMs.

Similarly, the first lane activation in an SM also activates SM-wide structures that are shared

by all lanes. In contrast, activating additional lanes also powers up only those lanes’ functional

units. As a result, the first activated lane in an SM demands 31× more power than lanes activated

after it. For example, 8 Lanes × 80 SMs consumes 10% more power than 1 Lane × 80 SMs, even

though it utilizes 7× more lanes.

112

The increased power consumption after re-activating a component is both due to higher dy-

namic power as the component is utilized (captured by our dynamic power model), as well as

higher static power. We capture the latter in the analytic model we introduce in the next section, as

the effects of power gating are inherently linked to the effects of execution divergence.

4.2.4 Divergence-Aware Static Power Modeling

When a warp executes in an SM, it may leave some lanes inactive due to execution divergence,

which may be gated to conserve power. The active lanes, however, still leak power as not all of

their components are continuously utilized. We capture this behavior of a warp with y active lanes

in Eq. (4.5).

Pstatic,addLane = (Pstatic,32Lanes − Pstatic,firstLane) / 31

Pstatic,yLanes = Pstatic,firstLane + Pstatic,addLane · (y − 1) (4.5)

The Pstatic,firstLane term captures the static power of the first active lane, to which we attribute

the static power of all the SM-wide components that lanes share. Each additional active lane is

only responsible for its own functional units’ static power, Pstatic,addLane. The Pstatic,32Lanes term

refers to the static power when 32 lanes are active. We refer to Eq. (4.5) as the Linear static power

model, as it distributes equally the static power among all lanes of a warp except the first lane.

However, the linear model of Eq. (4.5) does not always match real-world observations. An

SM in Volta comprises 4 processing blocks [22], each with 16 CUDA cores. A warp executes by

running two 16-thread half-warps, one after the other. If a warp has y ≤ 16 threads active, the

processing block executes the active half-warp but forgoes the execution of the empty one. Thus,

the same fraction of lanes is active on every cycle, and the power consumption rises as y grows. At

y = 16, all 16 cores on all processing blocks are always active, consuming maximum power.

113

If a warp has 16 < y < 32 active threads, then “full half-warps” with 16 active threads (max-

imum power consumption) alternate with “partial half-warps” with the remaining active threads

(lower power consumption). Thus, the power consumption for 16 < y < 32 will be lower than

the power consumption for y = 16 (note that the energy consumption will still be higher). When

y = 32, all processing clusters once again execute “full half-warps” and reach maximum power.

We capture this counter-intuitive behavior in Eq. (4.6), to which we refer as the Half-warp static

power model.

Pstatic,yLanes =

Pstatic,firstLane

+Pstatic,addLane · (y − 1), if y ≤ 16

Pstatic,firstLane

+1
2
Pstatic,addLane · 15

+1
2
Pstatic,addLane · (y − 17), if y > 16

(4.6)

To study this behavior experimentally, we follow the process shown in Figure 4.8- 2⃝ and the

methodology described in Section 4.2.4.1. We develop microbenchmarks that utilize all SMs but

with configurable thread divergence. We run each microbenchmark at varying clock frequencies

and thread divergence, collect hardware power measurements, and curve-fit them to Eq. (4.4) (the

fitted curve has 1% MAPE). From the fitted Eq. (4.4) for each microbenchmark, we estimate its

static power (fitted τf term) when only one lane is active per warp (Pstatic,firstLane), and when 32

lanes are active per warp (Pstatic,32Lanes). Then, we replace Eq. (4.4)’s τf term with the linear and

the half-warp models from Eqs. (4.5) and (4.6) to obtain an analytic model for total power that is

divergent-aware.

114

0
25
50
75

100
125
150
175

0 4 8 12 16 20 24 28 32 36

W
at

ts

#Active Threads per Warp

Measured Linear Model Half-warp Model

(a) INT MUL

0
25
50
75

100
125
150
175

0 4 8 12 16 20 24 28 32 36

W
at

ts

#Active Threads per Warp

Measured Linear Model Half-warp Model

(b) INT FP

0
25
50
75

100
125
150
175

0 4 8 12 16 20 24 28 32 36

W
at

ts

#Active Threads per Warp

Measured Linear Model Half-warp Model

(c) INT FP SFU

Figure 4.11: Hardware measurements and modeled power with varying number of active threads
in each warp.

We validate the half-warp power model in Figure 4.11a, which compares the power estimated

by AccelWattch with hardware power measurements for a microbenchmark that issues INT MUL

instructions. The power for this microbenchmark strongly follows the half-warp model. We em-

phasize that the blue line in Figure 4.11a represents hardware measurements. It is indeed the

case that 16-lane and 32-lane warps consume the maximum power on real hardware, and all other

configurations consume less, giving rise to a sawtooth pattern. However, other cases (e.g., Fig-

ure 4.11c) follow the linear model instead. The reasons behind this behavior are discussed next.

4.2.4 ILP and Execution Divergence

When a kernel uses only one functional unit, power strongly follows the half-warp model (Fig-

ure 4.11a). When exercising two units, (e.g., when the kernel issues both INT32 and FP32

instructions—Figure 4.11b), the half-warp behavior is less pronounced. This happens because

Volta can simultaneously execute operations in the same warp by running multiple functional units

concurrently [22]. A kernel with ILP can exploit this behavior to execute faster. As different op-

erations usually have different latencies, their executions become interleaved in time. Hence, on

every cycle we observe a statistical mix of full and partial half-warps: if we take a snapshot of

the GPU, we will observe processing blocks executing “full half-warps” (Section 4.2.4.4) of one

115

instruction concurrently with “partial half-warps” of the other. This statistical mix smooths out the

sawtooth-like pattern of power consumption. When more units are employed (Figure 4.11c) the

behavior becomes almost purely linear. Thus, static power for active SMs gradually drifts from the

half-warp to the linear model, depending on the instruction mix. To the best of our knowledge, this

is the first time this behavior is inferred and modeled.

Capitalizing on this observation, we assess the typical instruction patterns in GPU kernels and

develop microbenchmarks that selectively stress them. We identified a total of 9 instruction mix

categories, ranging from homogeneous categories with only integer ADD or only integer MUL

instructions, to categories comprising a mix of instructions: int, int/FP, int/FP/DP, int/FP/SFU,

int/FP/TEX, int/FP/tensor, and a category of only light instructions (e.g., nanosleep). We create the

appropriate half-warp or linear models for each instruction mix and integrate them in AccelWattch.

During an AccelWattch run, the performance model (simulator or hardware counters) reports the

lane occupancy and instruction mix to AccelWattch, which then picks the appropriate power model.

4.2.4 Power Modeling for Idle SMs

Following a similar methodology, shown in Figure 4.8- 3⃝, we develop a model that captures the

power consumption of SMs that are idle. We follow the methodology in Section 4.2.4.1 to de-

velop microbenchmarks that vary the number of active SMs but use all 32 lanes of each warp

(so thread divergence does not perturb our results). For simplicity, we assume that all SMs con-

tribute equally to power consumption when they are occupied with the same microbenchmark.

Thus, we estimate the dynamic plus static power per active SM when running microbenchmark

i, Pdyn+static,perActiveSM,i, through Eq. (4.7), where Ptotal,80SMs,i is the hardware power measure-

ment of microbenchmark i with all SMs active (GV100 has 80) and Pconst is the constant power

estimated in Section 4.2.4.2.

116

Pdyn+static,perActiveSM,i = (Ptotal,80SMs,i − Pconst) / 80 (4.7)

When the same microbenchmark i is configured to occupy fewer SMs, NactiveSMs, we still expect

each active SM to expend the power shown by Eq. (4.7). With that in mind, Eq. (4.8) models

the power of all idle SMs (combined), where Ptotal is the hardware power measurement of that

experiment.

PidleSMs,i = Ptotal,i − Pconst − Pdyn+static,perActiveSM,i ·NactiveSMs (4.8)

We model the static power consumption per idle SM for microbenchmark i as a linear model in

which each idle SM contributes equally: PperIdleSM,i = PidleSMs,i/NidleSMs. We repeat this process

for all n microbenchmarks, and use the geomean in Eq. (4.9) as the final estimate of idle SM power.

PperIdleSM = n

√√√√ n∏
i=1

PperIdleSM,i (4.9)

Figure 4.12 shows that AccelWattch exhibits strong correlation with hardware measurements

of the total power when running the INT MUL microbenchmark, validating our model.

4.2.4 Putting It All Together

We combine Eq. (4.5), Eq. (4.6), and Eq. (4.7) and model the static power per active SM with

y active lanes per warp in Eq. (4.10). The term Pstatic,yLanes,80SMs is identical to Pstatic,yLanes in

Eqs. (4.5) and (4.6); we just make it explicit that the term is for 80 SMs.

Pstatic,yLanes,perActiveSM = Pstatic,yLanes,80SMs / 80 (4.10)

117

0
20
40
60
80

100
120
140

0 10 20 30 40 50 60 70 80 90

Po
w

er
 (W

)

#Idle SMs

Measured AccelWattch Modeled

Figure 4.12: Validation of Idle SM static power model.

Taking all of the above into account, AccelWattch’s overall power model is shown in Eq. (4.11).

Ptotal,yLanes,kSMs = Pdyn + Pstatic,yLanes,perActiveSM · k

+ PperIdleSM · (80− k) + Pconst (4.11)

The two middle terms of Eq. (4.11) comprise AccelWattch’s final static power model (Fig-

ure 4.8- 4⃝) for y active lanes and k active SMs. The term Pdyn corresponds to the dynamic power,

and is the subject of the next section.

4.2.5 Dynamic Power Modeling

4.2.5 Dynamic Power Model Formulation

AccelWattch employs an iterative approach to tune its parameters for dynamic power modelling,

similar to GPUWattch, but it uses quadratic programming [141] instead of a least-squares solver.

Given N microarchitectural components, the dynamic power consumed by a kernel can be de-

scribed by Eq. (4.12) as a function of each component’s i energy per access Ei, its activity factor

118

ai (i.e., the number of accesses to it during execution), and the run time TelapsedT ime.

Pdyn =
N∑
i=1

ai · Ei

TelapsedT ime

(4.12)

The initial estimate Êi of component i’s energy consumption per access is likely to be inaccu-

rate. We consider this inaccuracy as an unknown variable xi in equation Ei = Êi · xi and rewrite

Eq. (4.11) for y active lanes and k SMs as:

Pest. =
N∑
i=1

ai · Êi

TelapsedT ime

· xi + Pstatic,yLanes,perActiveSM · k

+ PperIdleSM · (80− k) + Pconst (4.13)

One can view Eq. (4.13) as a dot product between a vector of power coefficients P̂i · xi, ...,

Pstatic,activeSM ·1, PidleSM ·1, Pconst ·1 (which remain constant for a given GPU) and activity factors,

ai, y and k, which vary across kernels. These vectors have N + 3 dimensions. N components of

the vectors relate to estimated dynamic power, where each component contains an unknown factor,

xi. The three remaining components (modeled in Section 4.2.4) relate to constant, static, and idle

SM power (these components effectively have xi = 1). A single kernel will produce a vector

with N + 3 activity factors, which can be used to estimate that workload’s power consumption

on the GPU. A collection of M kernels will provide M × (N + 3) set of equations, shown in

Eq. (4.14). In this equation, the initially-inaccurate power estimates for the power components in

Pest. are corrected by the parameter vector X , to obtain a power for each kernel that approximates

its hardware power measurement, Pmeas..

P
M×(N+3)
est. ×X(N+3)×1 = PM×1

meas. (4.14)

119

Table 4.1: Dynamic power components in AccelWattch.

AccelWattch Dynamic
Power Component

Hardware Unit
on Volta

AccelWattch Dynamic
Power Component

Hardware Unit
on Volta

Instruction Buffer L0 Inst. Cache sqrt

SFU
Instruction Cache L1i log

Constant Cache Constant Cache sin/cos
L1d Cache L1d Cache/

Shared Memory
exp

Shared Memory Tensor Core Tensor Core
Register File Register File Texture Unit Texture Unit

ALU
INT32 core

Scheduler Sched. & Dispatch
int mul/mad SM Pipeline SM Pipeline
FPU

FP32 core
L2 Cache L2 Cache

fp mul/mad NoC NoC
DPU

FP64 core
Dram DRAM

dp mul/mad Memory Controller Memory Controller

Given enough workloads M , we can solve the system of Eq. (4.14) and obtain the best estimates

X∗. We model dynamic power as an equation system with 22 parameters (Table 4.1). We tune these

parameters using 102 microbenchmarks, each stressing specific microarchitectural components

(Table 4.2), producing a 102×22 set of linear equations. Eq. (4.15) formulates the complete power

model as an optimization problem, which AccelWattch solves using quadratic programming [141].

X∗ =argmin
X

(
XT × P T

est. × Pest. ×X − (P T
est. × Pmeas.)

T ×X
)

s.t. ∀i : 0.001 ≤ Xi ≤ 1000 ∧ Xstatic = XidleSM = Xconst = 1

XALU ≤ XFPU ≤ XDPU ∧ XALU ≤ Ximul

Xfpmul ≤ {Ximul, Xdpmul, Xsqrt, Xlog, Xsin, Xexp, Xtensor, Xtex} (4.15)

Table 4.1 lists the dynamic power components (corresponding components of X) modeled

120

Table 4.2: AccelWattch tuning µBenchmarks.

Hardware
Comp. Category

µBench
Count

Hardware
Comp. Category

µBench
Count

Active/Idle SMs 12 Register File 1
INT32 core 9 dCaches + Sh.Mem. + NoC 11
FP32 core 8 DRAM + MC 2
FP64 core 8 Tensor core 6
SFU 9 Mix 29
Texture Unit 7 Other (L0, L1i, Pipeline, Scheduler) 102

by AccelWattch. Each INT32, FP32, and FP64 unit in Volta can perform additions, multiplica-

tions, FMAs, and a few other operations. Each of these operations activates different parts of the

functional unit’s circuitry, which results in a different power consumption per operation. Thus,

AccelWattch tracks these operations separately. Similarly, AccelWattch tracks SFU operations

separately (e.g., log, sqrt). The L2 Cache and NoC components cannot be distinguished from each

other, hence we model them together (similarly for DRAM and Memory Controller).

The AccelWattch HW model collects the information shown in Table 4.1 from hardware coun-

ters, except for the shaded components. There are no hardware counters for L1i and register file

activity, and while DRAM read and write counters exist, there is no DRAM precharge counter.

AccelWattch HYBRID is built similarly, but with the L2 Cache and NoC counters derived from

Accel-Sim simulations.

4.2.5 Performance Modeling Framework

We developed AccelWattch by extensively modifying the dormant McPAT-based [142] GPU-

Wattch [124] power model that comes packaged with the underlying GPGPU-Sim v4.0.1 [118]

integrated in Accel-Sim v1.1.0 [24]. AccelWattch is driven by a performance model, which pro-

121

vides AccelWattch with statistics on hardware component activity, active SMs and lanes, voltage-

frequency parameters, and cycle count (Figure 4.8- 6⃝).

For the performance model of AccelWattch variants driven fully or partially by software simu-

lations (SASS SIM, PTX SIM, HYBRID) we use the latest publicly-available version of Accel-Sim

v1.1.0 [24]. Accel-Sim has been extensively validated against Volta, showing strong performance

correlation with > 0.97 Pearson r coefficient. For SASS simulations we feed Accel-Sim with

SASS traces generated by the NVIDIA Binary Instrumentation Tool (NVBit) [143]. For PTX

simulations, Accel-Sim invokes the underlying GPGPU-Sim.

At each sampling period (500 cycles) Accel-Sim provides execution statistics to AccelWattch,

which uses them to estimate the workload’s power for each sampling period. As the performance

model provides AccelWattch with frequency and voltage settings at each sampling interval, Accel-

Wattch can scale the estimated power for that interval following Eq. (4.3). Thus, if the performance

model is DVFS-capable, AccelWattch will calculate all power transitions.

Similarly, for the AccelWattch variants driven by hardware (HW and HYBRID), AccelWattch

collects hardware activity and execution statistics from kernel runs on real silicon using hardware

counters provided by NVIDIA Nsight Compute [138]. For these models, AccelWattch collects

dynamic instruction information and lane activity from the SASS traces (which are also obtained

from execution on real silicon). For AccelWattch HYBRID, we follow the same methodology

as for AccelWattch HW for all available hardware counters, but we utilize the methodology for

AccelWattch SASS SIM to obtain the activity counters for the L2 Cache and NoC.

4.2.5 Microbenchmarking for Dynamic Power

Following the process shown in Figure 4.8- 5⃝ and the methodology in Section 4.2.4.1, we build

a suite of 102 microbenchmarks that stress target hardware components to estimate their power

122

consumption. We use a mixture of compiler options, inline-assembly (PTX), and pointer-chasing

(for microbenchmarks that stress the memory hierarchy) to work around default compiler opti-

mizations. We place the Region of Interest (ROI) of these kernels inside an unrolled loop, and run

them on silicon with a high loop iteration count.

Table 4.1 lists the 22 microarchitectural components that AccelWattch tracks. Table 4.2 com-

bines them into coarser-grain categories and lists the number or microbenchmarks that target com-

ponents within each category. The mix microbenchmarks target combinations of these categories.

The Other category includes components such as the SM pipeline, scheduler, and L0 and L1i

instruction caches. All microbenchmarks stress this category, so all are included.

Figure 4.13 shows the dynamic power heat-map of microbenchmarks based on the hardware

component categories they target. Each cell’s color encodes the fraction of dynamic power a mi-

crobenchmark spends on the corresponding GPU component, as estimated by AccelWattch SASS

SIM. It is important to note that even if a hardware unit is stressed by continuously issuing instruc-

tions to it, other units may also be accessed with a high frequency (e.g., register file, L1i), and the

power consumed by these other units may be higher than the targeted one’s. In such cases, the

heat-map cell corresponding to the targeted unit may not appear “hot”. For example, this behavior

appears with units that do not consume much power, e.g., the Texture Unit, or with microbench-

marks that stress the INT32 Core with highly-divergent code. Overall, the heat-map demonstrates

that each microbenchmark exercises the corresponding GPU component it targets, and our suite

adequately exercises all components.

To build the power model of an AccelWattch variant (Section 4.2.2), we collect each hardware

component’s activity when running a microbenchmark from the respective performance model,

and generate a set of per-component power estimates. These estimates, together with hardware

measurements of total power consumption, are used in the quadratic programming optimization of

123

Register File

IN
T3

2
 C

o
re

FP
3

2
 +

FP
6

4
 C

o
re

SF
U

Te
n

so
r

C
o

re

Te
xt

u
re

 U
n

it

R
e

gi
st

e
r

Fi
le

d
C

ac
h

e
s

+

Sh
.M

e
m

+N
O

C

D
R

A
M

 +
 M

C

O
th

e
rs

GPU Hardware Components

µ
B

en
ch

m
ar

k
C

at
e

go
ri

es

INT32 Core

FP32/FP64 Core

SFU

Tensor Core

Texture Unit

dCaches+Sh.Mem

DRAM + MC

Mix

0.1639344 0.3278689 0.4918033 0.6557377 0.8196721 0.9836066 1.147541 1.3114754 1.4754098 1.6393443 1.8032787 1.9672131 2.1311475 2.295082 2.4590164 2.6229508 2.7868852 2.9508197 3.1147541 3.2786885 3.442623 3.6065574 3.7704918 3.9344262 4.0983607 4.2622951 4.4262295 4.5901639 4.7540984 4.9180328 5.0819672 5.2459016 5.4098361 5.5737705 5.7377049 5.9016393 6.0655738 6.2295082 6.3934426 6.557377 6.7213115 6.8852459 7.0491803 7.2131148 7.3770492 7.5409836 7.704918 7.8688525 8.0327869 8.1967213 8.3606557 8.5245902 8.6885246 8.852459 9.0163934 9.1803279 9.3442623 9.5081967 9.6721311 9.836065610 10.163934 10.327869 10.491803 10.655738 10.819672 10.983607 11.147541 11.311475 11.47541 11.639344 11.803279 11.967213 12.131148 12.295082 12.459016 12.622951 12.786885 12.95082 13.114754 13.278689 13.442623 13.606557 13.770492 13.934426 14.098361 14.262295 14.42623 14.590164 14.754098 14.918033 15.081967 15.245902 15.409836 15.57377 15.737705 15.901639 16.065574 16.229508 16.393443 16.557377 16.721311 16.885246 17.04918 17.213115 17.377049 17.540984 17.704918 17.868852 18.032787 18.196721 18.360656 18.52459 18.688525 18.852459 19.016393 19.180328 19.344262 19.508197 19.672131 19.83606620 20%

0%

5%

10%

15%

Figure 4.13: Dynamic power heat-map of GPU hardware component categories exercised by mi-
crobenchmarks.

Eq. (4.15).

4.2.5 Quadratic Programming Optimization

We perform quadratic programming optimization to minimize the relative error between the mod-

eled system power and the measured hardware power (Eq. (4.15)). At each step of the regression,

we obtain new per-component scaling factors that we supply to AccelWattch and re-iterate, until

the solver can no longer reduce the relative errors (Figure 4.8- 7⃝). We enforce per-scaling-factor

constraints on the quadratic solver to guard against unrealistic component power estimates. In

124

Table 4.3: Target GPUs for validation and case studies.

GPU
Tech.
Node

Clock Frequency for
HW Power Measurement

Power
Limit

Case
Study?

Quadro GV100 (Volta) 12 nm 1417 MHz 250 W N
TITAN X (Pascal) 16 nm 1470 MHz 250 W Y
RTX 2060S (Turing) 12 nm 1905 MHz 175 W Y

particular, we ensure all scaling factors are positive, and we constrain the energy cost of execution

units to guard against unrealistic estimates (see constraints in Eq. (4.15)).

We use two different starting points for the scaling factors used in the initial iteration of this

process. For one of the starting points, all initial scaling factors are set to one, thus there is no

scaling taking place initially. The other starting point is obtained from the GPUWattch model for

NVIDIA Fermi GTX 480 [144] which has been independently validated [124]. Due to having two

starting points, we end up with two AccelWattch models. The model obtained from the Fermi

starting point achieves higher accuracy (9.2% vs. 14.8% MAPE on the validation set for SASS

SIM). Thus, for each AccelWattch variant, we adopt the model obtained from the Fermi starting

point as the final AccelWattch model (Figure 4.8- 8⃝).

4.2.6 Validation

4.2.6 Target Architecture and Workloads

We validate AccelWattch against a Volta GV100 GPU (Table 4.3) by applying the AccelWattch

power models on a suite of validation kernels that are not part of the training set.

Our validation suite consists of a wide range of kernels selected from NVIDIA CUDA Samples

(SDK) [107], Rodinia 3.1 [106], Parboil [108], and CUTLASS 1.3 [131]. Including NVIDIA SDK

is important for the unbiased evaluation of AccelWattch. It does not skew results to AccelWattch’s

125

favor: AccelWattch SASS SIM achieves 9.91% MAPE for NVIDIA SDK, compared to 4.9%

(Parboil), 9.55% (Rodinia), and 9.98% (CUTLASS). On the contrary, AccelWattch experiences

its largest error in one of the SDK workloads (dct k2). All workloads are compiled with NVCC

V11.0.167 [145] with compute-capability support for Volta (code=sm 70).

To collect hardware power measurements, we launch the target validation kernel to the default

CUDA stream repeatedly in a loop so that it runs sufficiently long for accurate hardware measure-

ments using NVML. We ensure that the kernel runs for NVML’s entire sampling period through

nvidia-smi. We wait until the chip reaches 65oC, then collect several power measurements. We let

the chip cool down back to its idle-state temperature, repeat at least 5 times, and report the aver-

age across all measurements. We observe that measurements at the NVML resolution frequency

are stable throughout kernel execution (0.0018–1.9% variance across all measurements and repeti-

tions). If a target kernel cannot reach 65oC, we use a power-hungry kernel first to heat up the chip

to much higher than 65oC, and then switch to the target kernel and collect power measurements at

65oC as the chip cools down.

NVML has a low sampling frequency of 50-100 Hz. Thus, we are unable to collect accurate

hardware power measurements of short-running kernels (< 2µs run time) because their measure-

ments are perturbed by other events (e.g., invocation/setup overheads to prepare the next kernel

iteration, host synchronization, PCI transfers). We exclude such kernels from our suite. We also

exclude kernels that are impractical to simulate (> 2 days per run) due to exceedingly-long simula-

tion times and multi-TB instruction trace storage requirements. All kernels are run to completion.

Table 4.4 lists our full evaluation suite of 26 kernels from 18 workloads along with their run-

time coverage of the respective workloads they are from. We use the largest available input config-

uration for all workloads except CUTLASS, for which, we use three different input matrix sizes.

We exclude CUTLASS, hotspot, and pathfinder from the PTX SIM validation suite because they

126

Table 4.4: List of kernels in validation suite.

Kernel
Run-time
Coverage Benchmark Kernel

Run-time
Coverage Benchmark

CUDA Samples 11.0
tensor K1 100% cudaTensorCoreGemm dct K1 19.6% dct8x8
binOpt K1 100% BinomialOptions dct K2 72.3% dct8x8
walsh K1 47.8% fastWalshTransform histo K1 52.9% histogram
walsh K2 49.4% fastWalshTransform msort K1 71.8% mergesort
qrng K1 66.4% quasirandomGenerator msort K2 26.3% mergesort
qrng K2 33.6% quasirandomGenerator sobol K1 100% SobolQRNG

Rodinia 3.1
kmeans K1 91.6% kmeans sradv1 K1 53.9% sradv1
bprop K1 75.7% backprop hspot K1 100% hotspot
bprop K2 24.3% backprop b+tree K1 48.5% b+tree
pfind K1 100% pathfinder b+tree K2 51.5% b+tree

CUTLASS 1.3 (cutlass-wmma) Parboil
cutlass K1 100% input: 2560x16x2560 sgemm K1 100% sgemm
cutlass K2 100% input: 4096x128x4096 mri-q K1 100% mri-q
cutlass K3 100% input: 2560x512x2560 sad K1 95.9% sad

do not compile for Accel-Sim’s PTX mode We exclude pathfinder from the HW and HYBRID val-

idation suites because NVIDIA Nsight Compute fails to provide hardware performance counters

for this workload.

To validate AccelWattch, we follow the flow in Figure 4.8- 9⃝ and discussed in Section 4.2.2,

with a NVIDIA Volta GV100 GPU as the target architecture. We compare AccelWattch’s power es-

timates with hardware measurements obtained for the validation suite kernels running on a GV100

GPU.

127

(a) Volta SASS SIM, MAPE: 9.2%

(c) Volta HW, MAPE: 7.5%

(b) Volta PTX SIM, MAPE: 13.7%

(d) Volta HYBRID, MAPE: 8.2%

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

Figure 4.14: Correlation plots for AccelWattch validation.

4.2.6 Validation Results

Figure 4.14 shows the correlation plots of the estimated vs. measured power consumption and the

corresponding MAPE for AccelWatch SASS SIM and PTX SIM for Volta. Overall, AccelWattch

exhibits stronger correlation for SASS than PTX. We attribute this to the fact that PTX instructions

do not map 1:1 to SASS instructions; prior work [146] demonstrates that simulating a virtual

ISA (PTX) introduces inaccuracies compared to simulating the native ISA (SASS), which directly

corresponds to execution on hardware units.

128

AccelWattch SASS SIM modeling a Volta GV100 compared to hardware measurements attains

a MAPE of 9.2%± 3.12% (95% confidence interval) with a maximum relative error of 30%. Two

thirds of our validation suite kernels (17 out of 26) have < 10% absolute relative error, while

only 4 kernels have an absolute relative error of > 20%. In comparison, when modeling a Volta

architecture, GPUWattch reaches a MAPE of 219% with maximum error 447% (Section 4.2.7.3).

For the two GPUs it is trained for (GTX 480 and Quadro FX5600), GPUWattch achieves average

error of 9.9% and 13.4%, respectively, but with a maximum relative error of 57.8%. Overall,

AccelWattch successfully tracks the high variability in measured power across our validation suite

(from 90 W up to 230 W).

Among all variants, AccelWattch HW achieves the lowest MAPE (7.5%). This is expected, as

it is driven by performance counters collected from execution on real silicon, and does not suffer

from the inevitable inaccuracies of software performance models (e.g., Accel-Sim). However,

AccelWattch HW is the most restrictive model, as it does not lend the same modeling flexibility as

software simulators.

AccelWattch HYBRID is introduced as a way to alleviate this problem. The HYBRID variant

utilizes hardware performance counters for all components except the ones that the user decides

to replace with their own models. Thus, users may partially avoid the inordinate effort required

to build, tune and validate highly sophisticated software models of entire GPU architectures, and

instead focus their attention on only the few components that are relevant to their research target.

As an example of a HYBRID model in this work, we target the L2 and NoC hardware components

and replace their statistics with ones obtained from Accel-Sim. AccelWattch HYBRID achieves a

MAPE of 8.2%, showing that it can successfully trade-off accuracy for modeling flexibility.

Figure 4.15 (left) shows the normalized power breakdown estimated by AccelWattch for Volta

averaged across all kernels in the validation set. The register file, static power, and constant power

129

AccelWattch Case Studies

20.3% 20.1% 20.7% 27.3%
38.0%

17.1% 17.9% 18.4%

27.2%
21.6%

3.2%

2.1% 2.2%

2.3%
0.7%17.6%

13.1% 11.1%8.0%

3.2% 4.9%

8.0% 5.1%

2.9%

2.3%
2.5%

2.5% 2.0%
6.7%

14.2% 14.3%

2.8% 4.6%

8.4%

8.9% 6.9%

6.9% 6.9%
15.9%

31.4% 30.2%

9.9% 9.9%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Volta
SASS SIM

Volta
HW

Volta
HYBRID

Pascal
SASS SIM

Turing
SASS SIM

PO
W

ER
 (N

O
RM

A
LI

ZE
D

)

Others

DRAM + MC

Caches + NOC

FPU+ DPU

ALU

RegFile

Idle_SM

Static

Const

Figure 4.15: Normalized per-component power breakdown.

are the most significant power contributors, together consuming 55% of the total system power on

average. Volta also has a measurable Idle SM power component, owing to having a high number of

SMs which our validation suite kernels do not always fully utilize. The Others category comprises

of the instruction buffer, scheduler, SM pipeline, texture units, and tensor cores (exercised by only

4 out of 26 kernels). As Volta does not have hardware performance counters for register file and

L1i, the AccelWattch HW solver minimizes error by lumping their power to other commonly-

accessed ones: instruction buffer, scheduler, and SM pipeline. Hence, the Others category grows

proportionally to accommodate this reassignment. AccelWattch HYBRID shows a similar trend.

Figure 4.15 also shows that replacing the hardware counters for L2 and NoC hardly changes the

power breakdown compared to HW, suggesting that HYBRID is likely to work well when the

software model of the targeted component closely approximates its behavior on real silicon.

Figure 4.16 shows the power breakdown for each kernel. Tensor cores consume a significant

portion of total system power (geomean 28.7%) for the kernels that use them. Note that tensor cores

are not part of the Others category in Figure 4.16. Also, several kernels (backprop k1, hotspot k1,

130

sgemm k1) consume over 90% of the peak power. We postulate this happens because these kernels

keep resources busier than the rest due to high thread IPCs (5690, 7157, and 4668, respectively)

and have a nearly even split of ALU and FPU (DPU) instructions, which can execute concurrently

on Volta.

4.2.7 Case Studies

4.2.7 Modeling Pascal and Turing Architectures

An important goal of an architecture power model is to enable accurate design space exploration.

For the use-case scenarios, we envision an architect who starts with the Volta architecture and uses

AccelWattch to estimate the power consumption for a new architecture with different parameters.

While GPUWattch is configurable, its accuracy when varying parameters has been identified as a

weakness [147] (see also Section 4.2.7.3). Thus, as our first case study, we apply AccelWattch

to estimate the power consumption of two new architectures for which it has not been tuned.

We emphasize that if we directly tuned models for these GPUs they would likely result in more

accurate models.

Ideally, we would validate AccelWattch predictions for these new architectures against Volta

chips that employ these different configurations. However, such chips do not exist. As a proxy,

we select configuration parameters similar to the NVIDIA Pascal and Turing architectures, and

0
25
50
75

100
125
150
175
200
225
250

b+
tr

ee
_K

1

b+
tr

ee
_K

2

bp
ro

p_
K1

bp
ro

p_
K2

bi
nO

pt
_K

1

dc
t_

K1

dc
t_

K2

w
al

sh
_K

1

w
al

sh
_K

2

hi
st

o_
K1

hs
po

t_
K1

km
ns

_K
1

m
So

rt
_K

1

m
So

rt
_K

2

m
riq

_K
1

sa
d_

K1

sg
em

m
_K

1

pf
in

d_
K1

qr
ng

_K
1

qr
ng

_K
2

so
bo

l_
K1

sr
ad

_K
1

cT
en

so
r_

K1

cu
tla

ss
_K

1

cu
tla

ss
_K

2

cu
tla

ss
_K

3

PO
W

ER
 (W

)

Measured
Others
DRAM + MC
L2 + NOC
icache + Ccache
L1D+SHRD
TENSOR
SFU
FPU+ DPU
ALU
RegFile
Idle SM
Static
Const

Figure 4.16: AccelWattch validation: AccelWattch SASS SIM modeling a Volta GV100.

131

compare against real Pascal and Turing chips. The Pascal and Turing architectures are the nearest

to Volta. Hence, they are the most likely to have similar hardware implementations. Differences

in the implementation of hardware units and the ISA between Volta and these architectures will

manifest as modeling error. Table 4.3 lists the parameters of the target GPUs.

The evaluation closely follows the validation flow shown in Figure 4.8- 9⃝, with small modifi-

cations. First, the workloads are compiled with compute-capability support for Pascal and Turing

(code=sm 61 and code=sm 75 compiler options, respectively). Second, Volta, Pascal and Tur-

ing implement different ISAs. Thus, comparing hardware runs on Pascal (or Turing) with Volta-

derived traces in Accel-Sim would introduce spurious inaccuracies; we only attempt to model

different architectural parameters with AccelWattch in these use cases after all, not different ISAs.

To avoid such spurious inaccuracies, we re-extract traces for Pascal and Turing GPUs to use in the

validation of the corresponding use cases. AccelWattch is still using the Volta-trained model—

the traces are used only for validation purposes. Differences in hardware implementations still

manifest as errors, as we do not attempt to model different functional unit implementations. We

exclude all workloads that use tensor cores (CUTLASS and cudaTensorCoreGemm) from our val-

idation suite for Pascal, since Pascal does not have tensor cores.

AccelWattch is based on the Volta architecture which is implemented at 12 nm, while Pascal

is at 16 nm. Thus, following the flow in Figure 4.8- 9⃝, after we collect power estimates for Pas-

cal from AccelWattch, we apply technology scaling based on published IRDS [148] parameters.

Technology scaling reduces MAPE by 1.22% for PTX and 1.85% for SASS compared to the non-

scaled models. Turing is also at 12 nm so it does not need technology scaling. We also set the

constant power for Turing at 1.7× higher than Volta’s to approximate the new board’s fans and pe-

ripheral circuitry. We only make this change so we can compare against a real-world chip without

perturbations from unrelated components; architecture research does not typically modify fans and

132

(c) Turing SASS SIM, MAPE: 13%

(a) Pascal SASS SIM, MAPE: 11% (b) Pascal PTX SIM, MAPE: 10.8%

(d) Turing PTX SIM, MAPE: 14%

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

Figure 4.17: Correlation plots for case studies.

peripherals.

Figure 4.17 shows the correlation plots of the estimated vs. measured power consumption

for the two case studies, and Figure 4.18 shows the per-component breakdowns for all kernels.

Overall, AccelWattch shows strong correlation to hardware power measurements for both Pascal

and Turing. Figure 4.15 (right) shows the normalized average power breakdown. Similarly to

Volta, the register file, static power and constant power are the three most significant components,

together consuming 67.7% and 70.7% of the average total system power on Pascal and Turing,

respectively.

133

Computer architects typically evaluate their designs by comparing a figure of merit (e.g.,

power) relative to a baseline design across workloads. As all simulators occasionally exhibit high

errors, architects typically also consider averages across many workloads, rather than only a few

worst-case applications. Following this common pattern, Figure 4.19a shows the estimated power

of Pascal relative to the estimated power of Volta across workloads, and on average (red bar). The

figure also shows the hardware-measured power of Pascal relative to Volta chips running the same

workloads for comparison, along with an average of the relative hardware measurements. Simi-

larly, Figures 4.19b and 4.19c show the estimated and hardware-measured power of Turing relative

to Volta and Turing relative to Pascal. While AccelWattch’s error varies by workload, the aggregate

estimate closely tracks real hardware measurements for all architectures. Across all workloads (26

for Turing, 22 for Pascal), the average relative power as estimated by AccelWattch differs from the

average relative power measured in hardware by 1% for Pascal vs. Volta, 3% for Turing vs. Volta,

and 1% for Turing vs. Pascal. High errors are rare in AccelWattch: only 9 out of 26 workloads

exhibit error over 10%.

0
25
50
75
100
125
150
175
200

PO
W

ER
 (W

)

(a) Case study: Pascal TITAN X

No tensor cores in Pascal

0
25
50
75
100
125
150
175
200

b+
tr
ee
_K

1

b+
tr
ee
_K

2

bp
ro
p_

K1

bp
ro
p_

K2

bi
nO

pt
_K

1

dc
t_
K1

dc
t_
K2

w
al
sh
_K

1

w
al
sh
_K

2

hi
st
o_

K1

hs
po

t_
K1

km
ns
_K

1

m
So
rt
_K

1

m
So
rt
_K

2

m
riq

_K
1

sa
d_

K1

sg
em

m
_K

1

pf
in
d_

K1

qr
ng
_K
1

qr
ng
_K
2

so
bo

l_
K1

sr
ad
_K

1

cT
en

so
r_
K1

cu
tla

ss
_K

1

cu
tla

ss
_K

2

cu
tla

ss
_K

3

PO
W

ER
 (W

)

Measured
Others
DRAM + MC
L2 + NOC
icache + Ccache
L1D+SHRD
TENSOR
SFU
FPU+ DPU
ALU
RegFile
Idle SM
Static
Const

(b) Case study: Turing RTX 2060S

Figure 4.18: Case studies: AccelWattch SASS SIM (tuned for Volta), applied to model Pascal and
Turing architectures.

134

-60%
-50%
-40%
-30%
-20%
-10%

0%

Re
la

tiv
e

Po
w

er

Modeled

Measured

No tensor cores in Pascal

(a) Pascal TITAN X relative to Volta GV100. Error of estimated average relative power: 1%.

-60%
-40%
-20%
0%

20%
40%
60%

Re
la

tiv
e

Po
w

er

Modeled

Measured

(b) Turing RTX 2060S relative to Volta GV100. Error of estimated average relative power: 3%.

-20%
0%

20%
40%
60%
80%

b+
tr

ee
_K

1

b+
tr

ee
_K

2

bp
ro

p_
K1

bp
ro

p_
K2

bi
nO

pt
_K

1

dc
t_

K1

dc
t_

K2

w
al

sh
_K

1

w
al

sh
_K

2

hi
st

o_
K1

hs
po

t_
K1

km
ns

_K
1

m
So

rt
_K

1

m
So

rt
_K

2

m
riq

_K
1

sa
d_

K1

sg
em

m
_K

1

pf
in

d_
K1

qr
ng

_K
1

qr
ng

_K
2

so
bo

l_
K1

sr
ad

_K
1

cT
en

so
r_

K1

cu
tla

ss
_K

1

cu
tla

ss
_K

2

cu
tla

ss
_K

3

Av
g.

Re
la

tiv
e

Po
w

er

Modeled

Measured
No tensor cores in Pascal

(c) Turing RTX 2060S relative to Pascal TITAN X. Error of estimated average relative power: 1%.

Figure 4.19: Relative Modeled and Measured Power across three architectures for AccelWattch
SASS SIM.

The error is higher for Turing over Volta (Figure 4.19b) largely due to inaccuracies in Accel-

Sim (Accel-Sim is not part of this work). For example, the L1d miss rate for kmeans K1 on a

Turing RTX 2060S is 10× higher than the one estimated by Accel-Sim, leading to a 1.7× error in

the run time estimate. As AccelWattch depends on the run time estimate to convert energy to power

(Eq. (4.13)), inaccuracies in the performance model can adversely affect the power estimates. In

addition, some errors are artifacts of ISA and hardware changes, which we did not intend to capture

in these use cases, and are therefore spurious (Section 4.2.7.1). The Turing power relative to

Volta is also concentrated in relatively small changes around zero (Figure 4.19b), which makes it

easy even for small inaccuracies to result in estimates pointing in the opposite direction (kmns k1,

sad k1, pfind k1). Even with the adverse impact of performance model inaccuracies and treading

135

around zero, only in 4 out of 26 workloads (i.e., 15% of the time) AccelWattch’s prediction points

in the opposite direction than the hardware measurement; in 85% of the time the predictions are

tracking the measurements on real silicon. This fraction grows for Turing relative to Pascal to 91%,

and becomes 100% for Pascal relative to Volta.

4.2.7 AccelWattch for Deep Learning Workloads

GPUs are one of the dominant forces in Machine Learning (ML) acceleration [149]. To assess

AccelWattch’s accuracy in the ML space, our validation suite already includes workloads from

CUTLASS, which primarily consists of general matrix multiply (GEMM) operations. Many op-

erations in modern deep neural networks are either defined as GEMMs or can be cast as such,

thus CUTLASS is representative of many ML workloads. In this section we delve deeper into the

ML space and evaluate the accuracy of AccelWattch not only in GEMMs, but also in benchmarks

implementing Convolutional (CNN) and Recurrent Long-Short Term Memory Neural Networks

(RNN-LSTM). For this purpose we use DeepBench [133], a widely-used deep learning bench-

mark suite.

DeepBench utilizes closed-source, hand-tuned SASS kernels from the cuBLAS [150] and

cuDNN [151] libraries, for which there are no PTX representations. While AccelWattch can ex-

ecute closed-source kernels and estimate their power consumption, validating AccelWattch pre-

dictions on DeepBench is challenging and error-prone. Each DeepBench workload issues 10–130

kernels (geomean 33), and each kernel only uses about 12 SMs. The GPU hardware executes sev-

eral kernels concurrently. However, Accel-Sim executes kernels only sequentially, leaving most of

the simulated GPU idle and misleading AccelWattch to report significantly lower power. This is

a limitation of Accel-Sim and not of AccelWattch. To mitigate this problem, we hand-construct

a possible concurrent kernel execution schedule for each DeepBench benchmark, and then use

136

conv-train

conv-inference
gemm-train

gemm-inference

rnn-lstm-train
rnn-lstm-inference

0
30
60
90

120
150
180
210
240

0 30 60 90 120 150 180 210 240

M
od

el
ed

 P
ow

er
 (W

)

Measured Power (W)

Figure 4.20: Correlation plot for DeepBench benchmarks.

AccelWattch to estimate its power consumption.

Even then, there is no guarantee the schedule is viable or that it matches the hardware-executed

schedule. Kernel dependencies are unknown (cuDNN and cuBLAS are closed-source) and are

thus not considered in the schedule. Also, cuDNN probes the hardware to decide which propaga-

tion algorithm to use, and may pick different algorithms for Accel-Sim and hardware execution,

leading to hard-to-compare divergent behaviors. Similarly, AccelWattch HW reads hardware coun-

ters from Nsight, which is also constrained to serial kernel execution. Since we cannot design a

validation process as precise as for the other benchmark suites, we exclude DeepBench from the

validation suite and only present it as a case study.

We emphasize that these are not constraints imposed by AccelWattch, but by the existing per-

formance simulators and profiling tools, and only apply to validating AccelWattch’s estimates.

AccelWattch can predict the power of individual cuDNN and cuBLAS kernels just fine. With

these restrictions in mind, we perform a best-effort experiment in which we evaluate the applica-

tion of AccelWattch on 6 DeepBench benchmarks: train and inference for CONV, RNN-LSTM,

and GEMM. Figure 4.20 presents the results. Overall, AccelWattch SASS SIM obtains 12.79%

137

MAPE over Quadro GV100 hardware measurements for the DeepBench benchmarks.

4.2.7 Comparison to GPUWattch

To compare AccelWattch with GPUWattch, we apply GPUWattch’s Fermi (NVIDIA GTX480)

configuration to model Volta. As GPUWattch does not model tensor cores, we enhance it with

AccelWattch’s estimates for them. In fact, this is our Fermi starting point described in Sec-

tion 4.2.5.4, with updates for the components that GPUWattch does not model (i.e., tensor cores).

Running SASS and PTX simulations with this configuration for Volta architectures results in a

MAPE of 219% and 225%, respectively, on the same validation suite of kernels. GPUWattch cal-

culates unrealistically high power consumption for all kernels. The average power consumption

it estimates is 530 W, with all but three of the kernels scoring above 300 W and a maximum of

926 W.

Moreover, in some cases GPUWattch reports unrealistic power consumption for particular

components. For example, GPUWattch reports that constant and static power together account

for 10.45 W on all validation kernels, which corresponds to 2.4% of the total system power on

average. This contradicts our hardware power measurements on Volta, where even the lightest

workload possible at the lowest frequency setting consumes >30 W. In addition, GPUWattch es-

timates that an average 14% of the total system power (including DRAM) is spent on INT MUL

units, compared to 1.4–1.8% in all AccelWattch variants. We believe the high power consumption

that GPUWattch attributes to multipliers is unrealistic, as they would consume more power than

GPUWattch’s estimate for the register file (9.1%), pointing to a GPUWattch inaccuracy. Another

notable difference includes GPUWattch’s estimate of 27% of the system power spent on DRAM,

compared to 8.4–9% in AccelWattch.

138

4.2.8 Related Work

GPU architecture research has been largely enabled by event-driven cycle-accurate simulators such

as GPGPU-Sim [118], Multi2Sim [152], and MGPUSim [153]. The lack of a fast, SASS-capable

simulator was only recently resolved by Accel-Sim [24], into which AccelWattch integrates. Vali-

dating such tools against real hardware has always been a crucial component of performance mod-

eling research. Similar to our work, prior studies [154]–[159] present validation methodologies

integrated into contemporary CPU simulators.

Wattch [160], McPAT [142], and SimplePower [161] are robust cycle-accurate CPU power

modeling frameworks that have enabled a wide range of architecture-level research. Xi et al. [162]

provided insightful guidelines for creating accurate power models with McPAT, including the use

of analytical modeling for power gating and targeted microbenchmarking, which are followed by

AccelWattch.

Cycle-accurate GPU power models based on McPAT (Lim et al. [163], GPUWattch [124],

GPUSimPow [164]) model a decade-old Fermi architecture [144] at the PTX ISA level only. GPU-

Wattch and GPUSimPow estimate constant power based on Eq. (4.3), a methodology no longer

applicable to modern GPUs. AccelWattch rectifies this problem and is substantially more accurate

than GPUWattch for modern architectures.

The IPP [129] analytic power model achieves high accuracy, but requires source-level PTX

analysis that is infeasible for large or closed-source workloads, and PTX may not accurately cor-

respond to real hardware activity [146]. Guerreiro et al. [126] present an analytical model that

accurately predicts the power consumption of a GPU given a voltage-frequency setting. However,

it provides a fixed power component encompassing static, constant and idle SM power, does not

account for component power gating, and can only model architectures with a silicon implemen-

tation. AccelWattch is not similarly constrained, and also models 25 microarchitectural power

139

components compared to 8 in Guerreiro et al.

In general, analytical models (GPUJoule [127], IPP [129], Guerreiro et al. [126]) can only

capture program-level average power consumption, which hinders research that requires cycle-

accurate simulation. Meanwhile, AccelWattch can provide a power trace at cycle-level granularity.

AccelWattch is the first GPU power model, to the best of our knowledge, to have power compo-

nents mapped to the SASS machine ISA instructions. Owing to this salient feature, AccelWattch

can estimate the power consumption of closed-source GPU workloads that contain hand-tuned

assembly.

4.2.9 Conclusions

There is a need for robust tools that will enable GPU architects to quickly model both the per-

formance and the power consumption of modern GPUs. In this work, we introduce AccelWattch,

a configurable cycle-level power model for modern GPUs that can be directed by emulation and

trace-driven simulation environments, hardware performance counters, or a combination of the

two, striking a balance between model accuracy and performance modeling effort. AccelWattch

is the only open-source tool capable of modeling closed-source workloads with hand-tuned SASS

instructions.

We infer, for the first time to our knowledge, how modern GPUs power-gate chip-wide, SM-

wide and lane-specific hardware components, and introduce an analytic power model that accu-

rately captures the combined effects of power gating, thread divergence, intra-warp functional unit

overlap, and variable SM occupancy. We also introduce a DVFS-aware methodology for model-

ing constant power. We integrate AccelWattch with Accel-Sim and GPGPU-Sim to facilitate its

widespread use and release it in the public domain, along with its microbenchmarks and support

infrastructure, as an open-source research tool for the computer architecture community. We ex-

140

tensively validate AccelWattch and find that it is within 7.5–9.2 ± 2.1–3.1% of hardware power

measurements on a NVIDIA Volta Quandro GV100 GPU. Finally, we demonstrate that Accel-

Wattch can enable reliable design space exploration.

141

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter concludes my dissertation by summarizing my contributions and discusses directions

for future work.

5.1 Conclusions

Modern systems have become increasingly more parallel since the breakdown of Dennard Scaling.

However, today’s hardware and software do not fully take advantage of these parallel capabilities,

resulting in a lot of untapped system performance and energy efficiency. My dissertation focuses

on improving the performance and energy efficiency of modern systems by leveraging information

across system abstraction layers to extract latent parallelism in hardware and software.

One avenue of parallelism in modern systems is at the SIMD level. Maximizing the utilization

of these SIMD units is necessary to maximize total system throughput in modern CPUs. To make

today’s software explicitly target these SIMD units and improve SIMD utilization, I propose Parsi-

mony [25]. Parsimony is a well-specified programming model and compiler framework designed

to remain fully compatible with standard language semantics and compiler flows. We demonstrate

a prototype implementation of Parsimony in LLVM, with performance results showing that our

SPMD variant performs as well as state-of-the-art SPMD frameworks (i.e., ispc) and custom

AVX-512 code, without requiring the use of a specialized programming language or compiler.

Improving SIMD utilization alone is not enough to maximize system throughput. Unfortu-

nately, we are still bottlenecked by the performance of the memory subsystem for several important

applications. To improve memory performance, I turn towards increasing memory level parallelism

142

without increasing programmer burden by closing the performance gap between strong and weak

memory consistency models. I propose Hybrid Consistency (HC) [68] based on the observation

that we can allow memory operations to be executed out-of-order when their reordering does not

affect observable program behavior. HC is an efficient hardware design that blends strong and

weak MCMs by enabling a fine grained non-speculative reordering of memory operations at the

load and store buffers. We demonstrate that HC’s dynamic temporality-aware classification can

achieve the performance benefits of memory reordering with a cache line granularity classification

scheme without needing to keep track of state information at the cache line level. HC outper-

forms the current state-of-the-art dynamic memory reordering scheme by 24% whilst maintaining

a complexity-effective design with minimal area overhead and negligible energy overhead.

The techniques I have discussed so far aim to improve system performance. However, im-

proving performance alone is not enough; we also need to improve system energy efficiency to

be able to meet today’s performance demands while staying within a practical power budget. It

is not surprising that performance per watt has become a fundamental metric for evaluating the

efficiency of modern systems, especially highly parallel accelerators such as GPUs. I propose to

improve GPU energy efficiency by leveraging the parallelism within GPU computation structures

such as arithmetic units and introduce ST2 adders. ST2 is a speculative adder design that exploits

spatio-temporal value correlation to perform carry speculation and reduce power consumption.

ST2 adders guarantee correctness and outperform state-of-the-art designs. Furthermore, we pro-

pose ST2 GPU [105], an architecture that integrates ST2 adders and carry speculation units into the

warp pipeline, and show that it achieves significant energy savings with negligible overheads.

To evaluate the performance and energy efficiency of hardware advancements such as ST2

GPU, architects need robust tools that will allow them to quickly model both the performance and

the power consumption of their designs. However, while GPU performance modeling has advanced

143

in great strides, the community lacks an accurate power model for modern GPUs. I address this

issue by introducing AccelWattch [121]. AccelWattch is a cycle-level power model for modern

GPU architectures. We validate AccelWattch and show that it achieves a high correlation with

hardware measurements. Additionally, we demonstrate that AccelWattch enables reliable design

space exploration.

5.2 Other Contributions from Collaborative Work

To further improve memory performance by leveraging parallelism in memory, in collaboration

with other researchers, I propose WARDen [96]. WARDen is a cache coherence protocol that

leverages properties of High-Level Parallel Languages (HLPs) to selectively deactivate cache co-

herence when not required. We demonstrate that WARDen improves the performance of HLPL

benchmarks by 46% and reduces energy by 23% due to the elimination of unnecessary data move-

ment and coherence messages.

5.3 Future Directions

Hybrid Consistency (HC) [68] is an efficient hardware design that blends strong and weak MCMs

to extract memory level parallelism. As discussed in Section 3.1.3, HC allows eager re-classifications

to enable further memory reordering. As discussed in Section 3.1.3, we apply the same limit for the

number of eager re-classifications (PRV to PRV transitions) to all HC regions. However, each HC

region might benefit from a different re-classification threshold. A direction to extend HC would

be to design an adaptive re-classification scheme that uses a cost model to dynamically adjusts the

re-classification threshold for each HC region. The adaptive re-classification scheme could rely

on past state transition behavior of HC regions to predict their future behavior. For instance, the

scheme could decide to stop further re-classifications of a HC region if its prior re-classification

144

costs already outweigh the performance benefit of allowing the previous re-classifications; i.e., the

HC region did not see enough reuse by a single thread to justify further re-classifications.

HC is a dynamic OS/hardware-only approach to enable memory reordering. The compiler, or

programming language, or even the user could provide HC with a fixed decision point to statically

classify accesses as reorder-safe or reorder-unsafe. This could allow us to save the limited hard-

ware resources for only accesses that we cannot classify statically. We could leverage programming

model properties or have user annotations to mark entire code regions as reorder-safe; i.e., all ac-

cesses to reorder-safe regions can execute out-of-order. An interesting future direction would be

to leverage Parsimony’s [25] SPMD programming model guarantees to get a fixed decision point

for access classification. Parsimony does not provide any ordering guarantees among its gangs.

Thus, Parsimony gangs could be running on entirely different OS threads on different processing

cores with no gurantees provided to the programmer about ordering among these gangs. Thus, all

memory accesses within Parsimony’s SPMD regions could be considered as reorder-safe by HC

and be allowed to execute out of order. Care must be taken to ensure sequential semantics by not

reordering a memory accesses within a Parsimony SPMD region with another access to the same

memory location outside the SPMD region (scalar code). One possible HC design that leverages

Parsimony’s programming model guarantees could be a Parsimony compiler extension that informs

the hardware about the start and end of each SPMD region with a dedicated instruction. All mem-

ory operations issued out of the processor’s ROB while within a SPMD region can be inserted into

HC’s logically weak-ordered load or store buffer. Memory barriers can be inserted at the bound-

aries of SPMD regions to preserve sequential semantics. Thus, a hardware/software co-design that

allows for Parsimony and HC to work in cohesion can leverage SIMD-level parallelism within

Parsimony gangs, and OS thread-level and memory-level parallelism across Parsimony gangs that

execute on different processing cores.

145

5.4 Acknowledgements of Funding Sources

I thank the National Science Foundation (NSF), Northwestern University, NVIDIA, Intel, and Syn-

opsys for supporting my thesis work. ST2 GPU [105] was partially funded by NSF awards CCF-

1453853, CNS-1763743. AccelWattch [121] was partially funded by NSF awards CCF-1453853,

CNS- 1763743, CCF-1910924, and by a Discovery Grant from the Natural Sciences and Engi-

neering Research Council of Canada. Parsimony [25] was partially funded by NSF awards CCF-

2119069, CCF-2028851, and CNS-1763743. HC [68] was partially funded by NSF award CCF-

2119069, and by the Computer Science Department at Northwestern University. WARDen [96]

was partially supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort

of the U.S. Department of Energy Office of Science and the National Nuclear Security Administra-

tion, by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357,

and by NSF awards CNS-1763743, CCF-2028851, CCF-2119069, CCF- 2115104, CCF-2119352,

CCF-1901381, CCF-2107241, CCF- 2107042, CCF-1908488, and CCF-2118708.

146

REFERENCES

[1] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc, “Design of
ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal of Solid-State
Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[2] S. Borkar and A. A. Chien, “The future of microprocessors,” Commun. ACM, vol. 54, no. 5,
pp. 67–77, May 2011.

[3] Intel, Intel® 64 and ia-32 architectures software developer’s manual - Volume 1-4, https:
//cdrdv2.intel.com/v1/dl/getContent/671200, Accessed: 2022-11-9,
2022.

[4] Ribbens, Cal, High Performance Computing, https://people.cs.vt.edu/
˜ribbens/papers/vtreview.html, Accessed: 2022-11-9, 2022.

[5] OpenMP Architecture Review Board, OpenMP Application Program Interface Version 4.0,
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf,
Accessed: 2022-1-9, May 2013.

[6] Rupp, Karl, 42 Years of Microprocessor Trend Data, https://www.karlrupp.
net/2018/02/42-years-of-microprocessor-trend-data/, Accessed:
2022-11-9, 2022.

[7] WikiChip, Cascade Lake - Microarchitectures - Intel, https://en.wikichip.org/
wiki/intel/microarchitectures/cascade_lake, Accessed: 2022-11-9,
2019.

[8] N. Stephens, S. Biles, M. Boettcher, et al., “The arm scalable vector extension,” IEEE
micro, vol. 37, no. 2, pp. 26–39, 2017.

[9] RISC, RISC-V ”V” Vector Extension, https://github.com/riscv/riscv-v-
spec/releases/tag/v1.0, Accessed: 2022-1-9, 2021.

[10] M. Pharr and W. R. Mark, “Ispc: A spmd compiler for high-performance cpu program-
ming,” in 2012 Innovative Parallel Computing (InPar), 2012, pp. 1–13.

https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://people.cs.vt.edu/~ribbens/papers/vtreview.html
https://people.cs.vt.edu/~ribbens/papers/vtreview.html
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0

147

[11] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,” M.S. thesis, Com-
puter Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec. 2002.

[12] S. Salehian and Y. Yan, “Evaluation of knight landing high bandwidth memory for hpc
workloads,” in Proceedings of the Seventh Workshop on Irregular Applications: Architec-
tures and Algorithms, ser. IA3’17, Denver, CO, USA, 2017.

[13] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the 1st Conference on
Computing Frontiers, ser. CF ’04, Ischia, Italy, 2004, p. 162.

[14] A. Rodrigues, M. Gokhale, and G. Voskuilen, “Towards a scatter-gather architecture: Hard-
ware and software issues,” in Proceedings of the International Symposium on Memory
Systems, ser. MEMSYS ’19, Washington, District of Columbia, USA, 2019, pp. 261–271.

[15] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: X86-tso,” in Theorem
Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, Eds.,
2009, pp. 391–407.

[16] IBM, Power ISA™Version 3.0 B. Technical Report. https://ibm.ent.box.com/
s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv, Accessed: 2022-1-9, 2017.

[17] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Understanding power
multiprocessors,” ser. PLDI ’11, San Jose, California, USA, 2011, pp. 175–186.

[18] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling, simulation, testing,
and data mining for weak memory,” ACM Trans. Program. Lang. Syst., vol. 36, no. 2, Jul.
2014.

[19] TOP500.org, TOP500 List, https://www.top500.org/lists/top500/2022/
11/, Accessed: 2022-11-9, Nov. 2022.

[20] A. Snell and L. Segervall, HPC application support for GPU computing, https://www.
nvidia.com/content/intersect-360-HPC-application-support.
pdf, Accessed: 2022-11-9, Nov. 2017.

[21] Forbes, NVIDIA Dominates The Market For Cloud AI Accelerators More Than You Think,
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-
dominates-the-market-for-cloud-ai-accelerators-more-than-
you-think/#676dea375edb, Accessed: 2022-11-9, Jun. 2019.

https://ibm.ent.box.com/s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv
https://ibm.ent.box.com/s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://www.nvidia.com/content/intersect-360-HPC-application-support.pdf
https://www.nvidia.com/content/intersect-360-HPC-application-support.pdf
https://www.nvidia.com/content/intersect-360-HPC-application-support.pdf
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb

148

[22] NVIDIA, Whitepaper: NVIDIA Telsa V100 GPU Architecture, http : / / images .
nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf, Accessed: 2022-11-9, Aug. 2017.

[23] NVIDIA, Whitepaper: NVIDIA Tesla P100, https : / / images . nvidia . com /
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.
pdf, Accessed: 2022-11-9, 2016.

[24] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim: An extensible simulation
framework for validated gpu modeling,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), 2020, pp. 473–486.

[25] V. Kandiah, D. Lustig, O. Villa, D. Nellans, and N. Hardavellas, “Parsimony: Enabling
SIMD/Vector Programming in Standard Compiler Flows,” in IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2023, To Appear.

[26] P. Papaphilippou, P. H. Kelly, and W. Luk, “Extending the risc-v isa for exploring advanced
reconfigurable simd instructions,” arXiv preprint arXiv:2106.07456, 2021.

[27] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “Design and evaluation of
smallfloat simd extensions to the risc-v isa,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2019, pp. 654–657.

[28] K. Patsidis, C. Nicopoulos, G. C. Sirakoulis, and G. Dimitrakopoulos, “Risc-v2: A scalable
risc-v vector processor,” in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), 2020, pp. 1–5.

[29] Intel, Intel® 64 and ia-32 architectures software developer’s manual - Volume 1-4, https:
//cdrdv2.intel.com/v1/dl/getContent/671200, Accessed: 2022-1-9,
2022.

[30] N. Stephens, S. Biles, M. Boettcher, et al., “The arm scalable vector extension,” IEEE
micro, vol. 37, no. 2, pp. 26–39, 2017.

[31] RISC, RISC-V ”V” Vector Extension, https://github.com/riscv/riscv-v-
spec/releases/tag/v1.0, Accessed: 2022-1-9, 2021.

[32] O. Reiche, C. Kobylko, F. Hannig, and J. Teich, “Auto-vectorization for image process-
ing dsls,” in Proceedings of the 18th ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, 2017, pp. 21–30.

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0

149

[33] A. Pohl, B. Cosenza, M. A. Mesa, C. C. Chi, and B. Juurlink, “An evaluation of current
simd programming models for c++,” in Proceedings of the 3rd Workshop on Programming
Models for SIMD/Vector Processing, 2016, pp. 1–8.

[34] Wenzel Jakob, Enoki: structured vectorization and differentiation on modern processor
architectures, https://github.com/mitsuba-renderer/enoki, Accessed:
2022-1-9, 2019.

[35] N. Shibata and F. Petrogalli, “Sleef: A portable vectorized library of c standard mathe-
matical functions,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 6,
pp. 1316–1327, 2020.

[36] NVIDIA, CUDA C programming guide, v10.2, https://docs.nvidia.com/pdf/
CUDA_C_Programming_Guide.pdf, Accessed: 2020-4-21, May 2019.

[37] R. Karrenberg, “Whole-function vectorization,” in Automatic SIMD vectorization of SSA-
based control flow graphs, 2015, pp. 85–125.

[38] S. Moll and S. Hack, “Partial control-flow linearization,” ACM SIGPLAN Notices, vol. 53,
no. 4, pp. 543–556, 2018.

[39] R. Allen and K. Kennedy, “Automatic translation of fortran programs to vector form,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 9, no. 4, pp. 491–
542, 1987.

[40] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen, “Polyhedral-model guided
loop-nest auto-vectorization,” in 2009 18th International Conference on Parallel Architec-
tures and Compilation Techniques, 2009, pp. 327–337.

[41] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved data for simd,” ACM
SIGPLAN Notices, vol. 41, no. 6, pp. 132–143, 2006.

[42] Standard C++ Foundation, ISO International Standard ISO/IEC 14882:2020(E) – Pro-
gramming Language C++, https://isocpp.org/std/the-standard, Ac-
cessed: 2022-1-9, 2020.

[43] D. Nuzman and A. Zaks, “Outer-loop vectorization: Revisited for short simd architec-
tures,” in Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, 2008, pp. 2–11.

https://github.com/mitsuba-renderer/enoki
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://isocpp.org/std/the-standard

150

[44] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism with multimedia
instruction sets,” ACM SIGPLAN Notices, vol. 35, no. 5, pp. 145–156, 2000.

[45] V. Porpodas, A. Magni, and T. M. Jones, “Pslp: Padded slp automatic vectorization,” in
2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
2015, pp. 190–201.

[46] J. Ren, S. Rajbhandari, R. Y. Aminabadi, et al., “ZeRO-Offload: Democratizing Billion-
Scale model training,” in 2021 USENIX Annual Technical Conference (USENIX ATC 21),
2021, pp. 551–564.

[47] Y. Chen, C. Mendis, M. Carbin, and S. Amarasinghe, “Vegen: A vectorizer generator for
simd and beyond,” in Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2021, pp. 902–914.

[48] W. W. Fung and T. M. Aamodt, “Thread block compaction for efficient simt control flow,”
in 2011 IEEE 17th International Symposium on High Performance Computer Architecture,
2011, pp. 25–36.

[49] Y. Lee, V. Grover, R. Krashinsky, M. Stephenson, S. W. Keckler, and K. Asanović, “Explor-
ing the Design Space of SPMD Divergence Management on Data-Parallel Architectures,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2014, pp. 101–113.

[50] Intel, ispc: Intel SPMD Program Compiler, https://github.com/ispc/ispc/
blob/v1.18.0/src/opt.cpp#L466, Accessed: 2022-1-9, 2022.

[51] LLVM Community, LLVM 15.0.1, https://github.com/llvm/llvm-project/
releases/tag/llvmorg-15.0.1, Accessed: 2022-1-10, 2022.

[52] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr, “Divergence analysis and op-
timizations,” in 2011 International Conference on Parallel Architectures and Compilation
Techniques, 2011, pp. 320–329.

[53] D. Sampaio, R. Martins, S. Collange, and F. M. Q. Pereira, “Divergence analysis with
affine constraints,” in 2012 IEEE 24th International Symposium on Computer Architecture
and High Performance Computing, 2012, pp. 67–74.

https://github.com/ispc/ispc/blob/v1.18.0/src/opt.cpp#L466
https://github.com/ispc/ispc/blob/v1.18.0/src/opt.cpp#L466
https://github.com/llvm/llvm-project/releases/tag/llvmorg-15.0.1
https://github.com/llvm/llvm-project/releases/tag/llvmorg-15.0.1

151

[54] D. Sampaio, R. M. d. Souza, C. Collange, and F. M. Q. Pereira, “Divergence analysis,”
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 35, no. 4,
pp. 1–36, 2014.

[55] Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanović, “Convergence and
Scalarization for Data-Parallel Architectures,” in Proceedings of the 2013 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO), 2013, pp. 1–11.

[56] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference on
Tools and Algorithms for the Construction and Analysis of Systems, 2008, pp. 337–340.

[57] Ihar Yermalayeu et al., The Simd Library, https://github.com/ermig1979/
Simd, Accessed: 2022-1-9, 2019.

[58] Intel, ispc: Intel SPMD Program Compiler, https://github.com/ispc/ispc/
releases/tag/v1.18.0, Accessed: 2022-1-9, 2022.

[59] P. B. Schneck, “Automatic recognition of vector and parallel operations in a higher level
language,” ACM SIGPLAN Notices, vol. 7, no. 11, pp. 45–52, 1972.

[60] D. Wedel, “Fortran for the texas instruments asc system,” ACM SIGPLAN Notices, vol. 10,
no. 3, pp. 119–132, 1975.

[61] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The Structure of an Advanced Vec-
torizer for Pipelined Processors,” in Proceedings of the 4th International Conference on
Computer Software and Applications (COMPSAC), 1980, pp. 709–715.

[62] R. G. Scarborough and H. G. Kolsky, “A vectorizing fortran compiler,” IBM Journal of
Research and Development, vol. 30, no. 2, pp. 163–171, 1986.

[63] A. E. Eichenberger, P. Wu, and K. O’brien, “Vectorization for simd architectures with
alignment constraints,” ACM SIGPLAN Notices, vol. 39, no. 6, pp. 82–93, 2004.

[64] Y. Chen, C. Mendis, and S. Amarasinghe, “All you need is superword-level parallelism:
Systematic control-flow vectorization with slp,” in Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, 2022,
pp. 301–315.

[65] R. Leißa, I. Haffner, and S. Hack, “Sierra: A simd extension for c++,” in Proceedings of the
2014 Workshop on Programming models for SIMD/Vector processing, 2014, pp. 17–24.

https://github.com/ermig1979/Simd
https://github.com/ermig1979/Simd
https://github.com/ispc/ispc/releases/tag/v1.18.0
https://github.com/ispc/ispc/releases/tag/v1.18.0

152

[66] M. Haidl, S. Moll, L. Klein, H. Sun, S. Hack, and S. Gorlatch, “Pacxxv2+ rv: An llvm-
based portable high-performance programming model,” in Proceedings of the Fourth Work-
shop on the LLVM Compiler Infrastructure in HPC, 2017, pp. 1–12.

[67] J. A. Stratton, V. Grover, J. Marathe, et al., “Efficient Compilation of Fine-Grained SPMD-
Threaded Programs for Multicore CPUs,” in Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2010, pp. 111–
119.

[68] V. Kandiah, A. Patel, T. Dempski, and N. Hardavellas, “Hybrid Consistency: Fine grained
Dynamic Blending of Memory Consistency Models,” in To Be Submitted IEEE/ACM In-
ternational Symposium on Computer Architecture (ISCA), 2024, To Be Submitted.

[69] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: Characteriza-
tion and architectural implications,” in Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’08, Toronto, Ontario,
Canada: Association for Computing Machinery, 2008, pp. 72–81, ISBN: 9781605582825.

[70] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and M. Yarrow, “The nas
parallel benchmarks 2.0,” Technical Report NAS-95-020, NASA Ames Research Center,
Tech. Rep., 1995.

[71] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell, “Simplifying arm con-
currency: Multicopy-atomic axiomatic and operational models for armv8,” Proceedings of
the ACM on Programming Languages, vol. 2, no. POPL, pp. 1–29, 2017.

[72] K. Gharachorloo, A. Gupta, and J. L. Hennessy, “Two techniques to enhance the perfor-
mance of memory consistency models,” in International Conference on Parallel Process-
ing, 1991.

[73] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi, “End-to-end se-
quential consistency,” in 2012 39th Annual International Symposium on Computer Archi-
tecture (ISCA), 2012, pp. 524–535.

[74] S. Singh, A. Jimborean, and A. Ros, “Regional out-of-order writes in total store order,”
in Proceedings of the ACM International Conference on Parallel Architectures and Com-
pilation Techniques, ser. PACT ’20, Virtual Event, GA, USA: Association for Computing
Machinery, 2020, pp. 205–216, ISBN: 9781450380751.

153

[75] P. Ranganathan, V. S. Pai, and S. V. Adve, “Using speculative retirement and larger in-
struction windows to narrow the performance gap between memory consistency models,”
in Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architec-
tures, ser. SPAA ’97, Newport, Rhode Island, USA: Association for Computing Machinery,
1997, pp. 199–210, ISBN: 0897918908.

[76] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is sc + ilp = rc?” SIGARCH Comput. Archit.
News, vol. 27, no. 2, pp. 162–171, May 1999.

[77] C. Gniady and B. Falsafi, “Speculative sequential consistency with little custom storage,”
in Proceedings.International Conference on Parallel Architectures and Compilation Tech-
niques, 2002, pp. 179–188.

[78] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms for store-wait-free
multiprocessors,” in Proceedings of the 34th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’07, San Diego, California, USA: Association for Computing
Machinery, 2007, pp. 266–277, ISBN: 9781595937063.

[79] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “Bulksc: Bulk enforcement of sequential
consistency,” in Proceedings of the 34th Annual International Symposium on Computer
Architecture, ser. ISCA ’07, San Diego, California, USA: Association for Computing Ma-
chinery, 2007, pp. 278–289, ISBN: 9781595937063.

[80] W. Ahn, S. Qi, M. Nicolaides, et al., “Bulkcompiler: High-performance sequential consis-
tency through cooperative compiler and hardware support,” in 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2009, pp. 133–144.

[81] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence: Performance-transparent mem-
ory ordering in conventional multiprocessors,” in Proceedings of the 36th Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA ’09, Austin, TX, USA: Association
for Computing Machinery, 2009, pp. 233–244, ISBN: 9781605585260.

[82] Y. Duan, A. Muzahid, and J. Torrellas, “Weefence: Toward making fences free in tso,”
in Proceedings of the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13, Tel-Aviv, Israel: Association for Computing Machinery, 2013, pp. 213–
224, ISBN: 9781450320795.

[83] Lamport, “How to make a multiprocessor computer that correctly executes multiprocess
programs,” IEEE Transactions on Computers, vol. C-28, no. 9, pp. 690–691, 1979.

154

[84] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill, “Translation lookaside buffer con-
sistency: A software approach,” SIGARCH Comput. Archit. News, vol. 17, no. 2, pp. 113–
122, Apr. 1989.

[85] C. Villavieja, V. Karakostas, L. Vilanova, et al., “Didi: Mitigating the performance im-
pact of tlb shootdowns using a shared tlb directory,” in 2011 International Conference on
Parallel Architectures and Compilation Techniques, 2011, pp. 340–349.

[86] OSDev, Paging, https://wiki.osdev.org/Paging, Accessed: 2023-11-01.

[87] Intel, Whitepaper: 5-level paging and 5-level ept, https://cdrdv2.intel.com/
v1 / dl / getContent / 671442 ? fileName = 5 - level - paging - white -
paper.pdf, Accessed: 2023-11-01, 2017.

[88] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of abstraction for
scalable and accurate parallel multi-core simulation,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC
’11, Seattle, Washington, 2011, ISBN: 9781450307710.

[89] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An evaluation of high-
level mechanistic core models,” ACM Transactions on Architecture and Code Optimiza-
tion, vol. 11, no. 3, Aug. 2014.

[90] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Architecting efficient intercon-
nects for large caches with cacti 6.0,” IEEE Micro, vol. 28, no. 1, pp. 69–79, 2008.

[91] A. Ros and S. Kaxiras, “Non-speculative store coalescing in total store order,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 2018,
pp. 221–234.

[92] A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-speculative load-load reordering
in tso,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architec-
ture (ISCA), 2017, pp. 187–200.

[93] A. Ros and S. Kaxiras, “The superfluous load queue,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018, pp. 95–107.

[94] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive nuca: Near-optimal
block placement and replication in distributed caches,” in Proceedings of the 36th Annual

https://wiki.osdev.org/Paging
https://cdrdv2.intel.com/v1/dl/getContent/671442?fileName=5-level-paging-white-paper.pdf
https://cdrdv2.intel.com/v1/dl/getContent/671442?fileName=5-level-paging-white-paper.pdf
https://cdrdv2.intel.com/v1/dl/getContent/671442?fileName=5-level-paging-white-paper.pdf

155

International Symposium on Computer Architecture, ser. ISCA ’09, Austin, TX, USA: As-
sociation for Computing Machinery, 2009, pp. 184–195, ISBN: 9781605585260.

[95] A. Esteve, A. Ros, A. Robles, and M. E. Gómez, “Tokentlb+cup: A token-based page
classification with cooperative usage prediction,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 29, no. 5, pp. 1188–1201, 2018.

[96] M. Wilkins, S. Westrick, V. Kandiah, et al., “Warden: Specializing cache coherence for
high-level parallel languages,” in Proceedings of the 21st ACM/IEEE International Sym-
posium on Code Generation and Optimization, ser. CGO 2023, Montréal, QC, Canada:
Association for Computing Machinery, 2023, pp. 122–135, ISBN: 9798400701016.

[97] J. Meng and K. Skadron, “Avoiding cache thrashing due to private data placement in last-
level cache for manycore scaling,” in 2009 IEEE International Conference on Computer
Design, 2009, pp. 282–288.

[98] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian, “Swel: Hardware cache
coherence protocols to map shared data onto shared caches,” in 2010 19th International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2010, pp. 465–
475.

[99] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing the effectiveness
of directory caches by deactivating coherence for private memory blocks,” in 2011 38th
Annual International Symposium on Computer Architecture (ISCA), 2011, pp. 93–103.

[100] H. Hossain, S. Dwarkadas, and M. C. Huang, “Pops: Coherence protocol optimization for
both private and shared data,” in 2011 International Conference on Parallel Architectures
and Compilation Techniques, 2011, pp. 45–55.

[101] Y. Li, R. Melhem, and A. K. Jones, “Practically private: Enabling high performance cmps
through compiler-assisted data classification,” in 2012 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2012, pp. 231–240.

[102] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato, “Temporal-aware mechanism
to detect private data in chip multiprocessors,” in 2013 42nd International Conference on
Parallel Processing, 2013, pp. 562–571.

[103] A. Ros and A. Jimborean, “A hybrid static-dynamic classification for dual-consistency
cache coherence,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 11,
pp. 3101–3115, 2016.

156

[104] A. Esteve, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Tlb-based temporality-aware
classification in cmps with multilevel tlbs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 8, pp. 2401–2413, 2017.

[105] V. Kandiah, A. M. Gök, G. Tziantzioulis, and N. Hardavellas, “ST2 GPU: An Energy-
Efficient GPU Design with Spatio-Temporal Shared-Thread Speculative Adders,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), 2021, pp. 271–276.

[106] S. Che, M. Boyer, J. Meng, et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in IISWC, 2009.

[107] NVIDIA, CUDA-9.1 Samples.

[108] J. A. Stratton, C. Rodrigues, I.-J. Sung, et al., “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” in IMPACT Technical Report, IMPACT-
12-01, UIUC, 2012.

[109] A. M. Gok and N. Hardavellas, “VaLHALLA: Variable latency history aware local-carry
lazy adder,” in GLSVLSI, Banff, Alberta, Canada, 2017, ISBN: 978-1-4503-4972-7.

[110] NVIDIA, Parallel thread execution ISA version 7.0, 2020.

[111] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Prentice-Hall, 1996, ISBN:
0-13-178609-1.

[112] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic de-
signs,” in DAC, 2012.

[113] J. Hu and W. Qian, “A new approximate adder with low relative error and correct sign
calculation,” in DATE, 2015.

[114] X. Chen, A. M. Eltawil, and F. J. Kurdahi, “Low latency approximate adder for highly
correlated input streams,” in ICCD, 2017.

[115] G. Liu, Y. Tao, M. Tan, and Z. Zhang, “CASA: Correlation-aware speculative adders,” in
ISLPED, 2014.

[116] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new paradigm
for arithmetic circuit design,” in DATE, 2008.

157

[117] O. J. Bedrij, “Carry-select adder,” IRE Trans. Electr. Computers, 1962.

[118] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. M. Aamodt, “Analyzing CUDA work-
loads using a detailed GPU simulator,” in ISPASS, 2009.

[119] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers, “A detailed model for contemporary
GPU memory systems,” in ISPASS, 2019.

[120] Synopsys, Synopsys DesignWare library.

[121] V. Kandiah, S. Peverelle, M. Khairy, et al., “AccelWattch: A Power Modeling Framework
for Modern GPUs,” in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21, Virtual Event, Greece, 2021, pp. 738–753.

[122] W. Liu, E. Salman, C. Sitik, and B. Taskin, “Enhanced level shifter for multi-voltage oper-
ation,” in ISCAS, 2015.

[123] A. Shapiro and E. G. Friedman, “Power efficient level shifter for 16 nm FinFET near
threshold circuits,” IEEE Trans. VLSI Systems, 2016.

[124] J. Leng, T. Hetherington, A. ElTantawy, et al., “GPUWattch: Enabling energy optimiza-
tions in GPGPUs,” in ISCA, Tel-Aviv, Israel, 2013, ISBN: 978-1-4503-2079-5.

[125] NVIDIA, Whitepaper: Nvidia turing gpu architecture, https://www.nvidia.com/
content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.
pdf, Accessed: 2020-11-21, 2018.

[126] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Gpgpu power modeling for multi-domain
voltage-frequency scaling,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2018, pp. 789–800.

[127] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding the future of en-
ergy efficiency in multi-module gpus,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019, pp. 519–532.

[128] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou, “Gpgpu performance
and power estimation using machine learning,” in 2015 IEEE 21st International Sympo-
sium on High Performance Computer Architecture (HPCA), 2015, pp. 564–576.

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

158

[129] S. Hong and H. Kim, “An integrated gpu power and performance model,” in Proceedings
of the 37th Annual International Symposium on Computer Architecture, ser. ISCA ’10,
Saint-Malo, France, 2010, pp. 280–289, ISBN: 9781450300537.

[130] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis of ati gpu: A statis-
tical approach,” in 2011 IEEE Sixth International Conference on Networking, Architecture,
and Storage, 2011, pp. 149–158.

[131] NVIDIA, CUTLASS: CUDA template library for dense linear algebra at all levels and
scales, https://github.com/NVIDIA/cutlass, Accessed: 2020-11-24, 2019.

[132] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean absolute percentage error
for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016.

[133] S. Narang, Deepbench, https://svail.github.io/DeepBench/, Accessed:
2021-09-08, 2016.

[134] NVIDIA, Instruction Set Reference, https://docs.nvidia.com/cuda/cuda-
binary-utilities/index.html#instruction-set-ref, Accessed: 2020-
6-5, Jun. 2020.

[135] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the NVIDIA volta
GPU architecture via microbenchmarking,” CoRR, vol. abs/1804.06826, Apr. 2018. arXiv:
1804.06826.

[136] NVIDIA, NVML API Reference, https://docs.nvidia.com/deploy/nvml-
api/nvml-api-reference.html, Accessed: 2020-11-24, May 2019.

[137] NVIDIA, nvidia-smi - NVIDIA System Management Interface, http://developer.
download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf,
Accessed: 2020-11-24, Jul. 2016.

[138] NVIDIA, Nsight Compute, https://docs.nvidia.com/nsight-compute/
NsightCompute/index.html, Accessed: 2021-9-5, Jul. 2021.

[139] S. Jain, S. Khare, S. Yada, et al., “A 280mv-to-1.2v wide-operating-range ia-32 processor
in 32nm cmos,” in 2012 IEEE International Solid-State Circuits Conference, 2012, pp. 66–
68.

https://github.com/NVIDIA/cutlass
https://svail.github.io/DeepBench/
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://arxiv.org/abs/1804.06826
https://docs.nvidia.com/deploy/nvml-api/nvml-api-reference.html
https://docs.nvidia.com/deploy/nvml-api/nvml-api-reference.html
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

159

[140] B. Zimmer, Y. Lee, A. Puggelli, et al., “A risc-v vector processor with tightly-integrated
switched-capacitor dc-dc converters in 28nm fdsoi,” in 2015 Symposium on VLSI Circuits
(VLSI Circuits), 2015, pp. C316–C317.

[141] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge Univer-
sity Press, 2004.

[142] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat: An
integrated power, area, and timing modeling framework for multicore and manycore archi-
tectures,” in 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2009, pp. 469–480.

[143] O. Villa, M. Stephenson, D. W. Nellans, and S. W. Keckler, “Nvbit: A dynamic binary in-
strumentation framework for NVIDIA gpus,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019, pp. 372–383.

[144] NVIDIA, Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
https : / / www . nvidia . com / content / PDF / fermi _ white _ papers /
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, Accessed: 2020-
6-5, 2009.

[145] NVIDIA, CUDA Compiler Driver NVCC, v9.1, https://docs.nvidia.com/
cuda/archive/9.1/cuda-compiler-driver-nvcc/index.html, Ac-
cessed: 2020-4-21, May 2019.

[146] A. Gutierrez, B. M. Beckmann, A. Dutu, et al., “Lost in abstraction: Pitfalls of analyzing
gpus at the intermediate language level,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018, pp. 608–619.

[147] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural simulators con-
sidered harmful,” IEEE Micro, vol. 35, no. 6, pp. 4–12, 2015.

[148] IEEE, International Roadmap for Devices and Systems, https://irds.ieee.org/
editions/2016/, Accessed: 2020-11-24, 2016.

[149] Forbes, NVIDIA Dominates The Market For Cloud AI Accelerators More Than You Think,
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-
dominates-the-market-for-cloud-ai-accelerators-more-than-
you-think/#676dea375edb, Accessed: 2020-4-21, Jun. 2019.

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://docs.nvidia.com/cuda/archive/9.1/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/archive/9.1/cuda-compiler-driver-nvcc/index.html
https://irds.ieee.org/editions/2016/
https://irds.ieee.org/editions/2016/
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb

160

[150] NVIDIA, cuBLAS, https://developer.nvidia.com/cublas/, Accessed:
2021-09-08, 2021.

[151] S. Chetlur, C. Woolley, P. Vandermersch, et al., “cuDNN: Efficient primitives for deep
learning,” CoRR, vol. abs/1410.0759, 2014. arXiv: 1410.0759.

[152] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A simulation framework
for cpu-gpu computing,” in 2012 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2012, pp. 335–344.

[153] Y. Sun, T. Baruah, S. A. Mojumder, et al., “Mgpusim: Enabling multi-gpu performance
modeling and optimization,” in 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA), 2019, pp. 197–209.

[154] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich, “Flash vs. (sim-
ulated) flash: Closing the simulation loop,” in Proceedings of the 9th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS IX, Cambridge, Massachusetts, USA, 2000, pp. 49–58, ISBN: 1581133170.

[155] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental error in microproces-
sor simulation,” in Proceedings of the 28th Annual International Symposium on Computer
Architecture, ser. ISCA ’01, Göteborg, Sweden, 2001, pp. 266–277, ISBN: 0769511627.

[156] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, et al., “Sources of error in full-system simu-
lation,” in 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2014, pp. 13–22.

[157] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi, “Hardware-validated
cpu performance and energy modelling,” in 2018 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), 2018, pp. 44–53.

[158] A. Adileh, C. González-Álvarez, J. Miguel De Haro Ruiz, and L. Eeckhout, “Racing to
hardware-validated simulation,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019, pp. 58–67.

[159] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An evaluation of high-
level mechanistic core models,” ACM Transactions on Architecture and Code Optimiza-
tion, vol. 11, no. 3, Aug. 2014.

https://developer.nvidia.com/cublas/
https://arxiv.org/abs/1410.0759

161

[160] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level
power analysis and optimizations,” in Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, ser. ISCA ’00, Vancouver, British Columbia, Canada,
2000, pp. 83–94, ISBN: 1581132328.

[161] W. Ye, N. Vijaykrishnan, M. T. Kandemir, and M. J. Irwin, “The design and use of simple-
power: A cycle-accurate energy estimation tool,” in Proceedings 37th Design Automation
Conference, 2000, pp. 340–345.

[162] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying sources of error
in mcpat and potential impacts on architectural studies,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015, pp. 577–589.

[163] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and W. Sung, “Power
modeling for gpu architectures using mcpat,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 19, no. 3, Jun. 2014.

[164] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a single chip
causes massive power bills gpusimpow: A gpgpu power simulator,” in 2013 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS), 2013,
pp. 97–106.

