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Abstract

On MAP Inference of Ferromagnetic Potts Models and

Nonsymmetric Determinantal Point Processes

Aravind Reddy Talla

In the Maximum-a-Posteriori (MAP) Inference problem, for any given probability

distribution, the goal is to find the point in the support of that distribution with the highest

probability. Potts models and Determinantal Point Processes (DPPs) are probabilistic

models that were introduced in the context of statistical physics several decades ago. They

have been extensively used in several computer science applications like computer vision,

recommender systems, and document summarization. Exact MAP Inference in these

models correspond to NP-hard combinatorial optimization problems and so approximate

inference algorithms have been extensively studied. For MAP Inference in Ferromagnetic

Potts models, we provide a strong justification for the excellent performance of a linear

programming relaxation approach by going beyond worst-case analysis. For MAP Inference

in Nonsymmetric Determinantal Point Processes, we provide the first one-pass streaming

and online algorithms.
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CHAPTER 1

Introduction

“All models are wrong, but some are useful”

- George Box

In this chapter, we will introduce the MAP Inference problem, Ferromagnetic Potts models,

and Nonsymmetric Determinantal Point Processes, and provide a brief overview of the

results which will be discussed more extensively in the rest of the thesis. Since this is a

thesis submitted in the Computer Science theory group at Northwestern, we will go over

the specific applications later but first discuss why these topics are theoretically fascinating

to study.

The first major part of this thesis studies Ferromagnetic Potts models, which are a class

of Probabilistic Graphical Models (Wainwright & Jordan, 2008; Koller & Friedman, 2009),

which are often referred to as PGMs. Unstructured probability distributions over n binary

variables need 2n− 1 parameters to describe, which is prohibitive except in the case of very

small models. One common way to impose structure on the probability distribution is by

using graphs to model dependencies between variables. In this section, we will not discuss

in detail the relationship between the graphs used and the corresponding distributions

but will give a simple example first: If a weighted graph is used to represent a probability

distribution, we can think of the weights between edges as corresponding to the correlation

between the two corresponding variables in the distribution. PGMs are very interesting to
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study because they combine two extremely interesting mathematical areas, i.e., probability

theory and graph theory, in very fascinating and exciting ways. Often, the complexity

of different tasks we care about related to the distribution, like learning and inference,

are intricately related to the properties of the corresponding graph, like connectivity and

tree-width.

The second major part of this thesis studies Determinantal Point Processes (Kulesza &

Taskar, 2012), often referred to as DPPs. Unlike PGMs, where a graph is used to represent

the probability distribution, DPPs use a matrix. Properties of the distribution correspond

to properties of the matrix and so DPPs offer an exciting way to study probability theory

and linear algebra together.

Overall, the algorithmic problems we study correspond to exciting discrete optimiza-

tion problems which involve solutions using various algorithmic techniques like linear

programming, greedy, local search, and other combinatorial algorithms.

1.1. MAP Inference

In this thesis, we are concerned with the Maximum a Posteriori (MAP) Inference

problem for two classes of probabilistic models: Ferromagnetic Potts models and Non-

symmetric Determinantal Point Processes. For a given probabilistic model, the MAP

Inference problem corresponds to computing the mode of the distribution corresponding

to that model. In other words, it corresponds to finding the most likely assignment to

the variables under the probabilistic model. This problem is referred to as Maximum

a Posteriori Inference because the distribution we are concerned with is the posterior
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distribution, which incorporates both the prior distribution and also information from the

observed samples.

1.2. Ferromagnetic Potts models

The Potts model is an extremely well studied mathematical model in statistical

mechanics, which was introduced more than half a century ago by Renfrey Potts towards

the end of his PhD thesis (Potts, 1952). It is a generalization of the classic Ising model.

In the Ising model, all states are constrained to be binary, whereas the Potts model allows

the states to have a value from k discrete choices, where k ≥ 2. In this section, we will

present a very brief introduction to the Potts model as is relevant for the rest of the thesis

(chapter 2 in particular). We refer the reader to the survey monograph by Savchynskyy

(2019) for a more detailed introduction.

Given an undirected graph G(V,E) with edge weights w : E 7→ R≥0 and node costs

c : V × [k] 7→ R, for any labeling g : V 7→ {1, 2, . . . , k} for integer k ≥ 2, the energy Q(g)

is defined as

Q(g) :=
∑
u∈V

c(u, g(u)) +
∑

(u,v)∈E
w(u, v)1[g(u) ̸= g(v)]

Note that the first term in the above expression takes into account the individual node

preferences for each label and the second term leads to a “smoothening” effect i.e., leads

to adjacent nodes preferring the same label. In other words, the second term corresponds

to the weight of the cut edges. The reason why we call the specific Potts models we study

as “Ferromagnetic” is because the choice of the non-negativity of the edge-weights leads
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to an “attraction” between neighboring nodes i.e., neighboring nodes preferring the same

state, similar to ferromagnets.

The term θ is often used in the graphical models literature to represent the edge weights

and node costs stacked together i.e., θ ∈ Rk|V |+k2|E| where θ = (θu, θuv) are the unary cost

functions and pairwise cost functions respectively. In Potts models, we have θu(i) = c(u, i)

and θuv(i, j) = w(u, v)1[i ̸= j].

The probability distribution corresponding to the Potts model parameterized by θ is

P(g, θ) = 1
Z(θ) exp(−Q(g, θ))

for all labelings g : V 7→ {1, 2, . . . , k}.

The normalizing constant Z(θ)∗ is also known as the Partition function. Computing the

partition function for the Potts model is a hard and interesting algorithmic question with

a flurry of work in the TCS community (Goldberg and Jerrum, 2012; Galanis, Stefankovic,

Vigoda, and Yang, 2016; Carlson, Davies, Fraiman, Kolla, Potukuchi, and Yap, 2022).

But note that, since Z(θ) is independent of g, we don’t need to compute Z as far as the

MAP inference question is concerned i.e., we only need to find arg max
g:V 7→[k]

P(g, θ), which is

the same as arg max
g:V 7→[k]

exp(−Q(g, θ)), which is equivalent to

arg min
g:V 7→[k]

Q(g, θ) = arg min
g:V 7→[k]

∑
u∈V

c(u, g(u)) +
∑
uv∈E

w(u, v)1g(u) ̸= g(v)

Indeed, for the rest of the thesis, we will exclusively consider this above problem, which

is also known as the energy minimization problem for graphical models. In particular, this

problem in the case of Ferromagnetic Potts models is also known as the Metric Labeling
∗The letter Z is used because it stands for the German word Zustandssumme, “sum over states”.
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problem (Kleinberg & Tardos, 2002), which is a generalization of the minimum multi-way

cut problem (Vazirani, 2001), which is further a generalization of the classic min s-t cut

problem. Although min s-t cut can be solved exactly in polynomial time, it turns out

that multi-way cut (and so Metric Labeling) is NP-hard (infact APX-hard) (Dahlhaus,

Johnson, Papadimitriou, Seymour, and Yannakakis, 1992) when k ≥ 3.

We will now provide a brief overview of our contributions related to MAP Inference of

Ferromagnetic Potts models (Lang, Reddy, Sontag, and Vijayaraghavan, 2021a):

Prior works (Lang, Sontag, and Vijayaraghavan, 2018; 2019) have shown that per-

turbation stable (Bilu & Linial, 2012; Makarychev & Makarychev, 2021) instances of the

MAP inference problem in Potts models can be solved exactly using a natural linear

programming (LP) relaxation. However, these works give few (or no) guarantees for the

LP solutions on instances that do not satisfy the relatively strict perturbation stability

definitions. In this work, we go beyond these stability results by showing that the LP

approximately recovers the MAP solution of a stable instance even after the instance

is corrupted by noise. This “noisy stable” model realistically fits with practical MAP

inference problems: we design an algorithm for finding “close” stable instances, and show

that several real-world instances from computer vision have nearby instances that are

perturbation stable. These results suggest a new theoretical explanation for the excellent

performance of this LP relaxation in practice.

1.3. Nonsymmetric Determinantal Point Processes

Determinantal Point Processes (DPPs) were first introduced in the context of quantum

mechanics (Macchi, 1975) and have subsequently been extensively studied with applications
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in several areas of pure and applied mathematics like graph theory, combinatorics, random

matrix theory (Hough, Krishnapur, Peres, and Virág, 2006; Borodin, 2009), and randomized

numerical linear algebra (Derezinski & Mahoney, 2021). Discrete DPPs have gained

widespread adoption in machine learning following the seminal work of Kulesza & Taskar

(2012), to which we refer the reader for a more comprehensive introduction.

A discrete DPP is a probability distribution over all subsets of items [n] characterized

by a kernel matrix L ∈ Rn×n such that the probability of sampling any subset S ⊆ [n]

i.e., P[S] ∝ det(LS) where LS is the principal submatrix of L obtained by keeping only

the rows and columns corresponding to indices in S. For the DPP corresponding to L

to be a valid probability distribution, we need det(LS) ≥ 0 for all S ⊆ [n] since P[S] ≥ 0

for all S ⊆ [n]. Matrices which satisfy this property are known as P0-matrices (Fiedler &

Pták, 1966). For any symmetric matrix L, det(LS) ≥ 0 for all S ⊆ [n] if and only if L

is positive semi-definite (PSD) i.e., xTLx ≥ 0 for all x ∈ Rn. Therefore, all symmetric

matrices which correspond to valid DPPs are PSD.

Until very recently, most prior work on DPPs focused on the setting where the kernel

matrix is symmetric. Due to this constraint, DPPs could only model negative correlations

between items. But there are P0-matrices which are not necessarily symmetric (or even

positive semi-definite). For example, L =

 1 1

−1 1

 is a nonsymmetric P0 matrix. Recent

work has shown that allowing the kernel matrix to be nonsymmetric can greatly increase

the expressive power of DPPs and allows them to model compatible sets of items (Gartrell,

Brunel, Dohmatob, and Krichene, 2019; Brunel, 2018). To differentiate this line of work

from prior literature on symmetric DPPs, the term Nonsymmetric DPPs (NDPPs) has

often been used. Modeling positive correlations can be useful in many practical scenarios.
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For instance, an E-commerce company trying to build a product recommendation system

would want the system to increase the probability of suggesting a router if a customer

adds a modem to a shopping cart.

State-of-the-art algorithms for MAP inference of NDPPs (Gartrell, Han, Dohmatob,

Gillenwater, and Brunel, 2021; Anari and Vuong, 2022) require storing the full data in

memory and take multiple passes over the complete dataset. Therefore, these algorithms

take too much memory to be useful for industry scale datasets, where the size of the entire

dataset can be much larger than the random-access memory available. In the paper (Reddy,

Rossi, Song, Rao, Mai, Lipka, Wu, Koh, and Ahmed, 2022a) on which Chapter 3 is based

on, we initiate the study of one-pass algorithms for solving the maximum-a-posteriori

(MAP) inference problem for Non-symmetric Determinantal Point Processes (NDPPs).

In particular, we formulate streaming and online versions of the problem and provide

one-pass algorithms for solving these problems. In our streaming setting, data points

arrive in an arbitrary order and the algorithms are constrained to use a single-pass over

the data as well as sub-linear memory, and only need to output a valid solution at the end

of the stream. Our online setting has an additional requirement of maintaining a valid

solution at any point in time. We design new one-pass algorithms for these problems and

show that they perform comparably to (or even better than) the offline greedy algorithm

while using substantially lower memory.
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CHAPTER 2

Beyond Perturbation Stability: LP Recovery Guarantees for

MAP Inference on Noisy Stable Instances

Note: This chapter is (mostly) a reprint of Lang, Reddy, Sontag, and Vijayaraghavan

(2021a).

2.1. Introduction

In this chapter, we study the MAP inference problem in the Ferromagnetic Potts model,

which is also known as uniform metric labeling (Kleinberg & Tardos, 2002). Given a graph

G = (V,E), the problem is to:

minimize
x:V→[k]

∑
u∈V

c(u, x(u)) +
∑

(u,v)∈E
w(u, v)1[x(u) ̸= x(v)].

Here we are optimizing over labelings x : V → [k] where [k] = {1, 2, . . . , k}. The objective

is comprised of “node costs” c : V × [k] → R, and “edge weights” w : E → R>0; a

labeling x pays the cost c(u, i) when it labels node u with label i and pays w(u, v) on

edge (u, v) when it labels u and v differently. This problem is NP-hard for variable

k ≥ 3 (Kleinberg & Tardos, 2002) even when the graph G is planar (Dahlhaus, Johnson,

Papadimitriou, Seymour, and Yannakakis, 1992). However, there are several efficient and

empirically successful approximation algorithms for the MAP inference problem—such as

TRW (Wainwright, Jaakkola, and Willsky, 2005) and MPLP (Globerson and Jaakkola,
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2008)—that are related in some way to the local LP relaxation, which is also sometimes

called the pairwise LP (Wainwright and Jordan, 2008; Chekuri, Khanna, Naor, and

Zosin, 2001). This LP relaxation returns an approximate MAP solution for most problem

instances. However, when the parameters of these models are learned so as to enable

good structured prediction, often the LP relaxation exactly or almost exactly recovers the

MAP solution (Meshi, London, Weller, and Sontag, 2019). The connection between the

LP relaxation and commonly used approximate MAP inference algorithms then leads to

the following compelling question, which is of great practical relevance for understanding

the “tightness” of the LP solution (informally, how close the LP solution is to the MAP

solution):

Can we explain the exceptional performance of the local LP relaxation in recovering

the MAP solution in practice?

Several works have studied different conditions that imply the local relaxation or related

relaxations are tight (e.g., Kolmogorov and Wainwright, 2005; Wainwright and Jordan,

2008; Thapper, 2012; Weller, Rowland, and Sontag, 2016; Rowland, Pacchiano, and Weller,

2017). Recent work on tightness of the local relaxation has focused on a class of several

related conditions known as perturbation stability. Intuitively, an instance is perturbation

stable if the solution x∗ to the MAP inference problem is unique, and moreover, x∗ is

the unique solution even when the edge weights w are multiplicatively perturbed by

a certain adversarial amount (Bilu & Linial, 2012; Makarychev & Makarychev, 2021).

This structural assumption about the instance (G, c, w) captures the intuition that, on

“real-world” instances, the ground-truth solution is stable and does not change much when

the weights are slightly perturbed.
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For constants β, γ ≥ 1, we say that w′ is a (β, γ)-perturbation of the weights w if
1
β
· w(u, v) ≤ w′(u, v) ≤ γ · w(u, v) for all (u, v) ∈ E. Suppose x∗ is the unique MAP

solution to the instance (G, c, w). Then, we say (G, c, w) is a (β, γ)-stable instance if x∗ is

also the unique MAP solution to every instance (G, c, w′) where w′ is a (β, γ)-perturbation

of w. Lang, Sontag, and Vijayaraghavan (2018) showed that when (G, c, w) is (2, 1)-stable,

the solution to the local LP relaxation is persistent i.e., the LP solution exactly recovers

the MAP solution x∗.

While theoretically interesting, (2, 1)-stability is a strict condition that is unlikely to

be satisfied in practice: the solution x∗ is not allowed to change at all when the weights

are perturbed. In practice, it is often the case that real-world instances are not exactly

(2, 1)-stable (Lang, Sontag, and Vijayaraghavan, 2019) and furthermore the LP relaxation

is also not exactly persistent on most of those instances. However, the solution of the local

LP relaxation is still nearly persistent i.e., the LP solution is very close to the MAP solution

x∗ (see Definition 2.3.1 for a formal definition). Those examples made it clear that theory

must go beyond perturbation stability to explain this phenomenon of near-persistence that

is prevalent in practice (see e.g., Sontag, 2010; Shekhovtsov, Swoboda, and Savchynskyy,

2017).

Why is the LP relaxation nearly persistent on MAP inference instances in practice?

There are several theoretical frameworks to explain exactness or tightness of LP

relaxations, such as total unimodularity, submodularity (Kolmogorov and Wainwright,

2005), and perturbation stability (Lang, Sontag, and Vijayaraghavan, 2018; 2019), as well

as structural assumptions about the graph G (Wainwright and Jordan, 2008), or combined

assumptions about G and the form of the objective function (Weller, Rowland, and Sontag,
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corrupted stable
(MAP solution)

LP solution 
(approximate recovery)
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stable instance
(MAP solution)

LP solution
(exact recovery)

labels

corruptions

LP fails to recover true label

Figure 2.1. Left: prior work (Lang, Sontag, and Vijayaraghavan, 2018)
showed that a stable instance can be exactly solved efficiently. Colors
indicate the label of each vertex in the MAP solution x∗. On stable instances,
solving the LP relaxation (represented by the arrow) recovers the MAP
solution. However, real-world instances are not suitably stable for this result
to apply in practice (Lang, Sontag, and Vijayaraghavan, 2019). Right: in
this work, we show that solving the LP relaxation on a (slightly) corrupted
stable instance (corruptions shown as bold edges) approximately recovers
the original MAP solution. This is true even if the corruption changes the
MAP solution (as in the bottom example). In other words, we prove that
“easy” instances are still approximately easy even after small perturbations.

2016; Rowland, Pacchiano, and Weller, 2017). However, these frameworks can not be used

to prove near-persistence.

Figure 2.1 (informally) shows our main result. The left side depicts the previous result

of Lang, Sontag, and Vijayaraghavan (2018): if the instance is (2, 1)-stable (a fairly strong

structural assumption), the LP relaxation exactly recovers the full solution x∗. This result

is limited because real-world instances have been shown to not satisfy (2, 1)-stability (Lang,

Sontag, and Vijayaraghavan, 2019). The right side shows our main result: if the instance

is a slightly corrupted (2, 1)-stable instance, the LP relaxation still approximately recovers

the solution x∗ to the stable instance.
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Intuitively, we may expect a real-world instance to be “close” to a stable instance (i.e.,

to be a “corrupted stable” instance, as in Figure 2.1) even if the instance itself is not

stable. We design an algorithm to check whether this is the case. We find that on several

real examples, sparse and small-norm changes to the instance make it appropriately stable

for our theorems to apply. In other words, we certify that these real instances are close to

stable instances. For these instances, our theoretical results explain why the LP relaxation

approximately recovers the MAP solution.

More formally, we assume that there is some latent stable instance (G, c̄, w̄), and

that the observed instance (G, ĉ, ŵ) is a noisy version of (G, c̄, w̄) that is close to it. Let

x̂ be the solution to the local LP on the observed instance (G, ĉ, ŵ), and let x̄ be the

(unknown) MAP solution on the unseen stable instance (G, c̄, w̄). We prove that under

certain conditions, the LP solution x̂ is nearly persistent i.e., the Hamming error ∥x̂− x̄∥1 is

small (see Definition 2.3.1). In other words, the local LP solution to the observed instance

approximately recovers the latent integral solution x̄.

We complement this by studying a natural generative model that generates noisy stable

instances which, with high probability, satisfy the above conditions for near persistency.

In other words, the observed instance (G, ĉ, ŵ) is obtained by random perturbations to the

latent stable instance (G, c̄, w̄), and the LP relaxation approximately recovers the MAP

solution to the latent instance with high probability.

Our theoretical results imply that the local LP approximately recovers the MAP

solution when the observed instance is close to a stable instance. Our empirical results

suggest that real-world instances are very close to stable instances. These results together

suggest a new explanation for the near-persistency of the solution of the local LP relaxation
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for MAP inference in practice. To prove these results and derive our algorithm for finding a

“close-by” stable instance, we make several novel technical contributions, which we outline

below.

Technical contributions.

• In Section 2.4, we generalize the (2, 1)-stability result of Lang, Sontag, and

Vijayaraghavan (2018) to work under a much weaker assumption, which we

call (2, 1)-expansion stability. That is, we prove the local LP is tight on (2, 1)-

expansion stable instances. Additionally, given the instance’s MAP solution,

(2, 1)-expansion stability is efficiently checkable. To the best of our knowledge,

most other perturbation stability assumptions are not known to satisfy this

desirable property. This generalization is crucial for the efficiency of our algorithm

for finding stable instances that are close to a given observed instance.

• In Section 2.5, we give a simple extension of (2, 1)-expansion stability called

(2, 1, ψ)-expansion stability. We prove it implies a “curvature” result around the

MAP solution x̄. On instances that satisfy this condition, if a labeling x̂ is close

in objective value to x̄, it must also be close in the solution space. This result

lets us translate between objective gap and Hamming distance.

• In Section 2.6, we study a natural generative model where the observed instance

is generated from an arbitrary latent stable instance by random (sub-Gaussian)

perturbations to the costs and weights. We prove that, with high probability,

every feasible LP solution takes close objective values on the latent and observed

instances. The proof uses a rounding algorithm for metric labeling in a novel

way to obtain stronger guarantees. When combined with our other results, this



32

proves that when the latent instance is (2, 1, ψ)-expansion stable, the LP solution

is nearly persistent on the observed instance with high probability. These results

suggest a theoretical explanation for the phenomenon of near-persistence of the

LP solution in practice.

• We design an efficient algorithm for finding (2, 1, ψ)-expansion stable instances that

are “close” to a given instance (G, ĉ, ŵ) in Section 2.7. To the best of our knowledge,

this is the first algorithm for finding close-by stable instances, and is also an

efficient algorithm for checking (2, 1, ψ)-expansion stability. This algorithm allows

us to check whether real-world instances can plausibly be considered “corrupted

stable” instances as shown in Figure 2.1.

• We run our algorithm on several real-world instances of MAP inference in Section

2.8, and find that the observed instances (G, ĉ, ŵ) often admit close-by (2, 1, ψ)-

stable instances (G, c̄, w̄). Moreover, we find that the local LP solution x̂ typically

has very close objective to x̄ in (G, c̄, w̄). Our curvature result for (2, 1, ψ)-stable

instances thus gives an explanation for the tightness of the local LP relaxation on

(G, ĉ, ŵ).

2.2. Related work

Perturbation stability. Several works have given recovery guarantees for the local

LP relaxation on perturbation stable instances of uniform metric labeling (Lang, Sontag,

and Vijayaraghavan, 2018; 2019) and for similar problems (Makarychev, Makarychev, and

Vijayaraghavan, 2014; Angelidakis, Makarychev, and Makarychev, 2017). Lang, Sontag,

and Vijayaraghavan (2019) give partial recovery guarantees for the local LP when parts



33

(blocks) of the observed instance satisfy a stability-like condition, and they showed that

practical instances have blocks that satisfy their condition. However, the required block

stability condition in turn depends on certain quantities related to the LP dual. This is

unsatisfactory since this does not explain when and why such instances are likely to arise

in practice. For a more extensive treatment of Perturbation Stability and its applications

in other problems, we refer the reader to Makarychev and Makarychev (2021).

Easy instances corrupted with noise. Our random noise model is similar to

several planted average-case models like stochastic block models (SBMs) considered in the

context of problems like community detection, correlation clustering and partitioning (see

e.g., McSherry, 2001; Abbe, 2018; Globerson, Roughgarden, Sontag, and Yildirim, 2015).

Instances generated from these models can also be seen as the result of random noise

injected into an instance with a nice block structure that is easy to solve. Several works

give exact recovery and approximate recovery guarantees for semidefinite programming

(SDP) relaxations for such models in different parameter regimes (Abbe, 2018; Guédon

and Vershynin, 2016). In our model however, we start with an arbitrary stable instance as

opposed to an instance with a block structure.

Partial optimality algorithms. Several works have developed fast algorithms for

identifying parts of the MAP assignment. These algorithms output an approximate solution

x̂ and a set of vertices where x̂ provably agrees with the MAP solution x∗ (e.g., Kovtun,

2003; Shekhovtsov, 2013; Swoboda, Shekhovtsov, Kappes, Schnörr, and Savchynskyy,

2016; Shekhovtsov, Swoboda, and Savchynskyy, 2017). Like these works, our results also

prove that an approximate solution x̂ has small error |x̂− x∗|. However, these previous

approaches are more concerned with designing fast algorithms for finding such x̂. In
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contrast, we focus on giving structural conditions that explain why a particular x̂ (the

solution to the local LP relaxation) often approximately recovers x∗. Our algorithm in

Section 2.7 is thus not meant as an efficient method for certifying that |x̂− x∗| is small,

but rather as a method for checking whether our structural condition (that the observed

instance is close to a stable instance) is satisfied in practice.

2.3. Preliminaries

In this section we introduce our notation, define the local LP relaxation for MAP

inference, and give more details on perturbation stability. As in the previous section, the

MAP inference problem in the ferromagnetic Potts model on the instance (G, c, w) can be

written in energy minimization form as:

(2.1) minimize
x:V→[k]

∑
u∈V

c(u, x(u)) +
∑

(u,v)∈E
w(u, v)1[x(u) ̸= x(v)].

Here x is an assignment (or labeling) of vertices to labels i.e., x : V → {1, 2, . . . , k}.

We can identify each labeling x with a point (xu : u ∈ V ;xuv : (u, v) ∈ E), where each

xu ∈ {0, 1}k and each xuv ∈ {0, 1}k×k.

In this chapter, we consider all node costs c(u, i) ∈ R and all edge weights w(u, v) > 0.

We note that this is equivalent to the formulation where all node costs and edge weights are

non-negative (Kleinberg & Tardos, 2002). See Appendix A.1 for a proof of this equivalence.

We encode the node costs and the edge weights in a vector θ ∈ Rnk+mk2 where

n = |V | and m = |E| s.t. θ(u, i) = c(u, i), θ(u, v, i, j) = w(u, v)1[i ≠ j]. Then the

objective can be written as ⟨θ, x⟩. We set xu(i) = 1 when x(u) = i, and 0 otherwise.

Similarly, we set xuv(i, j) = 1 when x(u) = i and x(v) = j, and 0 otherwise. Where
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convenient, we use x to refer to this point rather than the labeling x : V → [k]. We can

then rewrite equation 2.1 as:

min.
x

∑
u∈V

k∑
i=1

c(u, i)xu(i) +
∑

(u,v)∈E
w(u, v)

∑
i ̸=j

xuv(i, j)

subject to:
k∑
i=1

xu(i) = 1 ∀ u ∈ V

k∑
i=1

xuv(i, j) = xv(j) ∀ (u, v) ∈ E, j ∈ [k]

k∑
j=1

xuv(i, j) = xu(i) ∀ (u, v) ∈ E, i ∈ [k]

xuv(i, j) ∈ {0, 1} ∀ (u, v), (i, j)

xu(i) ∈ {0, 1} ∀ u, i.

This is equivalent to equation 2.1, and is an integer linear program (ILP). By relaxing the

integrality constraints from {0, 1} to [0, 1], we obtain the local LP relaxation:

min.
x∈L(G)

∑
u∈V

k∑
i=1

c(u, i)xu(i) +
∑

(u,v)∈E
w(u, v)

∑
i ̸=j

xuv(i, j),

where L(G) is the polytope defined by the same constraints as above, with x ∈ {0, 1}

replaced with x ∈ [0, 1]. This is known as the local polytope (Wainwright & Jordan, 2008).

The vertices of L(G) are either integral, meaning all xu and xuv take values in {0, 1}, or

fractional, when some variables take values in (0, 1). Integral vertices of this polytope

correspond to labelings x : V → [k], so if the LP solution is obtained at an integral vertex,

then it is also a MAP assignment.
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If the solution x∗ of this relaxation on an instance (G, c, w) is obtained at an integral

vertex, we say the LP is tight on the instance, because the LP has exactly recovered a

MAP assignment. If the LP is not tight, there may still be some vertices u where x∗
u takes

integral values. In this case, if x∗
u(i) = 1 and x̄(u) = i, i.e., the LP solution agrees with the

MAP assignment x̄ at vertex u, the LP is said to be persistent at u. x∗
u(i) ∈ {0, 1} does

not imply the LP is persistent at u, in general. The LP solution x∗ is said to be persistent

if it agrees with x̄ at every vertex u ∈ V .

Recovery error: In practice, the local LP relaxation is often not tight, but is nearly persistent.

We will measure the recovery error of our LP solution in terms of the “Hamming error”

between the LP solution and the MAP assignment.

Definition 2.3.1 (Recovery error). Given an instance (G, c, w) of equation 2.1, let x̄

be a MAP assignment, and let x∗ be a solution to the local LP relaxation. The recovery

error is given by (with some abuse of notation)

1
2∥x

∗ − x̄∥1 := 1
2∥x

∗
V − x̄V ∥1

= 1
2
∑
u∈V

∑
i∈[k]

∣∣∣x∗
u(i)− 1[x̄(u) = i]

∣∣∣.
xV ∈ Rnk denotes the portion of x restricted to the vertex set V . If x∗ is integral,

the recovery error measures the number of vertices where x∗ disagrees with x̄. When the

recovery error of x∗ is 0, the solution x∗ is persistent. We will say that the LP solution x∗

is nearly persistent when the recovery error of solution x∗ is a small fraction of n.

In our analysis, we will consider the following subset L∗(G) of L(G) which is easier to

work with, and which contains all points we are interested in.
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Definition 2.3.2 (L∗(G)). We define L∗(G) ⊆ L(G) to be the set of points x ∈ L(G)

which further satisfy the constraint that xuv(i, i) = min(xu(i), xv(i)) for all (u, v) ∈ E and

i ∈ [k].

Claim 2.3.3. For a given graph G, every solution x ∈ L(G) that minimizes ⟨θ, x⟩ for

some valid objective vector θ = (c, w) also belongs to L∗(G). Further, all integer solutions

in L(G) also belong to L∗(G).

We prove this claim in Appendix A.1.

Our new stability result relies on the set of expansions of a labeling x.

Definition 2.3.4 (Expansion). Let x : V → [k] be a labeling of V . For any label

α ∈ [k], we say that x′ is an α-expansion of x if x′ ≠ x and the following hold for all u ∈ V :

x(u) = α =⇒ x′(u) = α,

x′(u) ̸= α =⇒ x′(u) = x(u).

That is, x′ may only expand the set of points labeled α, and cannot make other changes

to x.

2.4. Expansion Stability

In this section, we generalize the stability result of Lang, Sontag, and Vijayaraghavan

(2018) to a much broader class of instances. This generalization allows us to efficiently

check whether a real-world instance could plausibly have the structure shown in Figure

2.1 (that is, whether the instance is close to a suitably stable instance).
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1 + ε

1 + ε 1 + ε

Node Costs
u .5 ∞ ∞
v 1 0 ∞
w 1 ∞ 0

Figure 2.2. (2, 1)-expansion stable instance that is not (2, 1)-stable. In
the original instance (shown left), the optimal solution labels each vertex
with label 1, for an objective of 2.5. This instance is not (2, 1)-stable:
consider the (2, 1)-perturbation that multiples all edge weights by 1/2. In
this perturbed instance, the original solution still has objective 2.5, and the
new optimal solution labels (u, v, w) → (1, 2, 3). This has a node cost of
0.5 and an edge cost of (3 + 3ε)/2, for a total of 2 + 3ε/2 < 2.5. Since the
original solution is not optimal in the perturbed instance, this instance is
not (2, 1)-perturbation stable. However, note that the only expansions of
the original solution (which had all label 1) that have non-infinite objective
are (u, v, w)→ (1, 2, 1) and (u, v, w)→ (1, 1, 3). These each have objective
2.5 + ε, which is strictly greater than the perturbed objective of the original
solution. In fact, checking this single perturbation, known as the adversarial
perturbation is enough to verify expansion stability: this instance is (2, 1)-
expansion stable. We include the full details in Appendix A.2.

Consider a fixed instance (G, c, w) with a unique MAP solution x̄. Theorem 1 of

Lang, Sontag, and Vijayaraghavan (2018) requires that for all θ′ ∈ {(c, w′) | w′ ∈

{(2, 1)-perturbations of w}}, ⟨θ′, x⟩ > ⟨θ′, x̄⟩ for all labelings x ̸= x̄. That is, that result

requires x̄ to be the unique optimal solution in any (2, 1)-perturbation of the instance.

By contrast, our result only requires x̄ to have better perturbed objective than the set of

expansions of x̄ (c.f. Definition 2.3.4).

Definition 2.4.1 ((2,1)-expansion stability). Let x̄ be the unique MAP solution for

(G, c, w), and let Ex̄ be the set of expansions of x̄ (see Definition 2.3.4). Let

Θ = {(c, w′) | w′ ∈ {(2, 1)-perturbations of w}}
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be the set of all objective vectors within a (2, 1)-perturbation of θ = (c, w). We say the

instance (G, c, w) is (2, 1)-expansion stable if the following holds for all θ′ ∈ Θ and all

x ∈ Ex̄:

⟨θ′, x⟩ > ⟨θ′, x̄⟩.

That is, x̄ is better than all of its expansions x ̸= x̄ in every (2, 1)-perturbation of the

instance.

Theorem 2.4.2 (Local LP is tight on (2, 1)-expansion stable instances). Let x̄ and x̂ be

the MAP and local LP solutions to a (2, 1)-expansion stable instance (G, c, w), respectively.

Then x̄ = x̂ i.e., the local LP is tight on (G, c, w).

We defer the proof of this theorem to Appendix A.2 as it is similar to the proof of

Theorem 1 from Lang, Sontag, and Vijayaraghavan (2018). The (2, 1)-expansion stability

assumption is much weaker than (2, 1)-stability because the former only compares x̄ to its

expansions, whereas the latter compares x̄ to all labelings. While the rest of our results

can also be adapted to the (2, 1)-stability definition, this relaxed assumption gives better

empirical results. Figure 2.2 shows an example of a (2, 1)-expansion stable instance that is

not (2, 1)-stable. This shows that our new stability condition is less restrictive.

2.5. Curvature around MAP solution and near persistence of the LP solution

In this section, we show that a condition related to (2, 1)-expansion stability, called

(2, 1, ψ)-expansion stability, implies a “curvature” result for the objective function around

the MAP solution x̄. On instances satisfying this condition, any point x̂ ∈ L(G) with

objective close to x̄ also has small ∥x̂ − x̄∥1, so x̂ and x̄ are close in solution space. In
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other words, if the LP solution x̂ to a “corrupted” (2, 1, ψ)-expansion stable instance is

near-optimal in the original (2, 1, ψ)-expansion stable instance (whose solution is x̄), then

the result in this section implies ∥x̂− x̄∥1 is small. This immediately gives a version of

the result in the right panel of Figure 2.1: suppose we define an instance to be close to a

(2, 1, ψ)-expansion stable (G, c̄, w̄) if its LP solution x̂ is approximately optimal in (G, c̄, w̄).

Then the curvature result implies that the LP approximately recovers the stable instance’s

MAP solution x̄ for all close instances. In Section 2.6, we give a generative model where

the generated instances are “close” according to this definition with high probability.

The (2, 1, ψ)-expansion stability condition, for ψ > 0, says that the instance is (2, 1)-

expansion stable even if we allow all node costs c(u, i) to be additively perturbed by up

to ψ. This extra additive stability will allow us to prove the curvature result. This is

related to the use of additive stability in Lang, Sontag, and Vijayaraghavan (2019) to give

persistency guarantees.

Definition 2.5.1 ((2, 1, ψ)-expansion stable). For ψ > 0, we say an instance (G, c, w) is

(2, 1, ψ)-expansion stable if (G, c′, w) is (2, 1)-expansion stable for all c′ with c ≤ c′ ≤ c+ψ ·1

where 1 is the all-ones vector.

The following theorem shows low recovery error i.e., near persistence of the LP solution

on (2, 1, ψ) expansion stable instances in terms of the gap in objective value.

Theorem 2.5.2. Let (G, c, w) be a (2, 1, ψ)-expansion stable instance with MAP

solution x̄. Let θ = (c, w). Then for any x ∈ L∗(G), the recovery error (see Def. 2.3.1)
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satisfies

(2.2) 1
2∥x− x̄∥1 := 1

2∥xV − x̄V ∥1 ≤
1
ψ
|⟨θ, x⟩ − ⟨θ, x̄⟩|.

Proof (sketch). For any x ∈ L∗(G), we construct a feasible solution x̂ which is a

strict convex combination of x and x̄ that is very close to x̄. Then, we apply a rounding

algorithm to x̂ to get a random integer solution h. Let θ̂ represent the worst (2, 1)-

perturbation for x̄. This is the instance where all the edges not cut by x̄ have their weights

multiplied by 1/2. We define the objective difference using θ̂ as Ah = ⟨θ̂, h⟩ − ⟨θ̂, x̄⟩. First

we show an upper bound for E[Ah] using properties of the rounding algorithm. Then we

show that for any solution h in the support of our rounding algorithm, Ah ≥ ψ ·Bh where

Bh is the Hamming error of h (when compared to x̄). On the other hand, one can also use

the properties of the rounding algorithm to get a lower bound on E[Bh] in terms of the

recovery error (i.e., Hamming error) of the LP solution. These bounds together imply the

required upper bound on the recovery error of the LP solution. ■

We defer the complete proof and an alternate dual-based proof to Appendix A.3.

Theorem 2.5.2 shows that on a (2, 1, ψ)-expansion stable instance, small objective gap

⟨θ, x⟩− ⟨θ, x̄⟩ implies small distance ||xV − x̄V ||1 in solution space. Although this holds for

any x ∈ L∗(G), we will be interested in x that are LP solutions to an observed, corrupted

version of the stable instance.

We now show that if the observed instance has a nearby stable instance, then the

LP solution for the observed instance has small Hamming error. For any two instances

θ̂ = (ĉ, ŵ) and θ̄ = (c̄, w̄) on the same graph G, the metric between them d(θ̂, θ̄) :=

supx∈L∗(G) |⟨θ̂, x⟩ − ⟨θ̄, x⟩|.
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Corollary 2.5.3 (LP solution is good if there is a nearby stable instance). Let x̂MAP

and x̂ be the MAP and local LP solutions to an observed instance (G, ĉ, ŵ). Also, let x̄ be

the MAP solution for a latent (2, 1, ψ)-expansion stable instance (G, c̄, w̄). If θ̂ = (ĉ, ŵ)

and θ̄ = (c̄, w̄),
1
2∥x̂V − x̂

MAP
V ∥1 ≤

2d(θ̂, θ̄)
ψ

+ 1
2∥x̂

MAP
V − x̄V ∥1.

We defer the proof of this corollary to Appendix A.3.

2.6. Generative model for noisy stable instances

In the previous section, we showed that if an instance (G, ĉ, ŵ) is “close” to a (2, 1, ψ)-

expansion stable instance (G, c̄, w̄) (i.e., the LP solution x̂ to (G, ĉ, ŵ) has good objective

in (G, c̄, w̄)), then ∥x̂− x̄∥ is small, where x̄ is the MAP solution to the stable instance. In

this section, we give a natural generative model for (G, ĉ, ŵ), based on randomly corrupting

(G, c̄, w̄), in which x̂ has good objective in (G, c̄, w̄) with high probability. Together with

the curvature result from the previous section (Theorem 2.5.2), this implies that the

LP relaxation, run on the noisy instances (G, ĉ, ŵ), approximately recovers x̄ with high

probability.

We now describe our generative model for the problem instances, which starts with

an arbitrary stable instance and perturbs it with random additive perturbations to the

edge costs and node costs (of potentially varying magnitudes). The random perturbations

reflect possible uncertainty in the edge costs and node costs of the Markov random field.

We will assume the random noise comes from any distribution that is sub-Gaussian∗.

However, there is a small technicality: the edge costs need to be positive (node costs can
∗All of the results that follow can also be generalized to sub-exponential random variables; however

for convenience, we restrict our attention to sub-Gaussians.
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be negative). For this reason we will consider truncated sub-Gaussian random variables

for the noise for the edge weights. We define sub-Gaussian and truncated sub-Gaussian

random variables in Appendix A.4.

Generative Model: We start with an instance (G, c̄, w̄) that is (2, 1, ψ)-expansion stable,

and perturb the edge costs and node costs independently. Given any instance (G, c̄, w̄), an

instance (G, ĉ, ŵ) from the model is generated as follows:

(1) For all node-label pairs (u, i), ĉ(u, i) = c̄(u, i)+c̃(u, i), where c̃(u, i) is sub-Gaussian

with mean 0 and parameter σu,i.

(2) For all edges (u, v), ŵ(u, v) = w̄(u, v) + w̃(u, v), where w̃(u, v) is an independent

r.v. that is (−w(u, v), γu,v)-truncated sub-Gaussian with mean 0.

(3) (G, ĉ, ŵ) is the observed instance.

By the definition of our model, the edge weights ŵ(u, v) ≥ 0 for all (u, v) ∈ E. The

parameters of the model are the unperturbed instance (G, c̄, w̄), and the noise parameters

{ γu,v, σu,i }u,v∈V,i∈[k]. On the one hand, the above model captures a natural average-case

model for the problem. For a fixed ground-truth solution x∗ : V → [k], consider the stable

instance (H, c, w) where w∗
uv = 2 for all u, v in the same cluster (i.e., x∗(u) = x∗(v)) and

w∗
uv = 1 otherwise; and with c∗(u, i) = 1 if x∗(u) = i, and c∗(u, i) = 1 + ψ otherwise.

The above noisy stable model with stable instance (H, c, w) generates instances that are

reminiscent of (stochastic) block models, with additional node costs. On the other hand,

the above model is much more general, since we can start with any stable instance (G, c, w).

With high probability over the random corruptions of our stable instance, the local

LP on the corrupted instance approximately recovers the MAP solution x̄ of the stable
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instance. The key step in the proof of this theorem is showing that, with high probability,

the observed instance is close to the latent stable instance in the metric we defined earlier.

Lemma 2.6.1 (d(θ̂, θ̄) is small w.h.p. ). There exists a universal constant c < 1 such

that for any instance in the above model, with probability at least 1− o(1),

sup
x∈L∗(G)

|⟨θ̂, x⟩ − ⟨θ̄, x⟩| ≤ c
√
nk

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v

Proof (sketch). For any fixed x ∈ L∗(G), we can show that |⟨θ̂, x⟩ − ⟨θ̄, x⟩| is small

w.h.p. using a standard large deviations bound for sums of sub-Gaussian random variables.

The main technical challenge is in showing that the supremum over all feasible solutions is

small w.h.p. The standard approach is to perform a union bound over an ε-net of feasible

LP solutions in L∗. However, this gives a loose bound. Instead, we upper bound the

supremum by using a rounding algorithm for LP solutions in L∗(G), and union bound

only over the discrete solutions output by the rounding algorithm. This gives significant

improvements over the standard approach; for example, in a d-regular graph with equal

variance parameter γuv, this saves a factor of
√
d apart from logarithmic factors in n. ■

We defer the details to Appendix A.4. The above proof technique that uses a rounding

algorithm to provide a deviation bound for a continuous relaxation is similar to the analysis

of SDP relaxations for average-case problems (see e.g., Makarychev, Makarychev, and

Vijayaraghavan, 2013; Guédon and Vershynin, 2016). The above lemma, when combined

with Theorem 2.5.2 gives the following guarantee.

Theorem 2.6.2 (LP solution is nearly persistent). Let x̂ be the local LP solution to

the observed instance (G, ĉ, ŵ) and x̄ be the MAP solution to the latent (2, 1, ψ)-expansion
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stable instance (G, c̄, w̄). With high probability over the random noise,

1
2∥x̂V − x̄V ∥1 ≤

2
ψ
· c
√
nk ·

√∑
u,i

σ2
u,i + k2

∑
uv

γ2
u,v

Proof. We know that for any feasible solution x ∈ L(G), ⟨θ̄, x⟩ ≥ ⟨θ̄, x̄⟩. Therefore,

⟨θ̄, x̂⟩ ≥ ⟨θ̄, x̄⟩. Remember that we defined d(θ̂, θ̄) as supx∈L∗(G) |⟨θ̂, x⟩ − ⟨θ̄, x⟩|. Since x̂

and x̄ are both points in L∗(G),

⟨θ̄, x̂⟩ ≤ ⟨θ̂, x̂⟩+ d(θ̂, θ̄) ≤ ⟨θ̂, x̄⟩+ d(θ̂, θ̄)

≤ ⟨θ̄, x̄⟩+ 2d(θ̂, θ̄)

The first and third inequalities follow from the definition of d(θ̂, θ̄). The second inequality

follows from the fact that x̂ is the minimizer of ⟨θ̄, x⟩ over all x ∈ L(G). Therefore,0 ≤

⟨θ̄, x̂⟩ − ⟨θ̄, x̄⟩ ≤ 2d(θ̂, θ̄). Using this in Theorem 2.5.2, we get 1
2∥x̂ − x̄∥1 ≤ 2d(θ̂,θ̄)

ψ
.

Lemma 2.6.1 then gives an upper bound on d(θ̂, θ̄) that holds w.h.p. ■

For a d-regular graph in the uniform setting, we get the following useful corollary:

Corollary 2.6.3 (MAP solution recovery for regular graphs ). Suppose we have a

d-regular graph G with γ2
u,v = γ2 for all edges (u, v), and σ2

u,i = σ2 for all vertex-label pairs

(u, i). Also, suppose only a fraction ρ of the vertices and η of the edges are subject to the

noise. With high probability over the random noise,

∥x̂V − x̄V ∥1

2n ≤
2ck

√
ρσ2 + ηdk

8 γ2

ψ
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Note that when x̂ is an integer solution, the left-hand-side is the fraction of vertices

misclassified by x̂.

2.7. Finding nearby stable instances

In this section, we describe an algorithm for efficiently finding (2, 1, ψ)-expansion stable

instances that are “close” to an observed instance (G, ĉ, ŵ). This algorithm allows us to

check whether we can plausibly model real-world instances as “corrupted” versions of a

(2, 1, ψ)-expansion stable instance.

In addition to an observed instance (G, ĉ, ŵ), the algorithm takes as input a “target”

labeling xt. For example, xt could be a MAP solution of the observed instance. Surprisingly,

once given a target solution, this algorithm is efficient.

We want to search over costs c and weights w. The broad goal to solve the following

optimization problem:

minimize
c≥0,w≥0

f(c, w)(2.3)

subject to (G, c, w) is (2, 1, ψ)-expansion stable

with MAP solution xt,

where f(c, w) is any convex function of c and w. In particular, we will use f1(c, w) =

||(c, w)−(ĉ, ŵ)||1 and f2(c, w) = 1
2 ||(c, w)−(ĉ, ŵ)||22 for minimizing the L1 and L2 distances

between to the observed instance. The output of this optimization problem will give the

closest objective vector (c̄, w̄) for which the instance (G, c̄, w̄) is (2, 1, ψ)-expansion stable.

If the optimal objective value of this optimization is 0, the observed instance (G, ĉ, ŵ) is

(2, 1, ψ)-expansion stable.
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There is always a feasible (c, w) for equation 2.3 (see Appendix A.5 for a proof), but it

may change many weights and costs. Next we derive an efficiently-solvable reformulation

of equation 2.3. In the next section, we find that the changes to ĉ and ŵ required to find

a (2, 1, ψ)-expansion stable instance are relatively sparse in practice.

Theorem 2.7.1. The optimization problem equation 2.3 can be expressed as a con-

vex minimization problem over a polytope described by poly(n,m, k) constraints. When

f(c, w) = ||(c, w)− (ĉ, ŵ)||1, equation 2.3 can be expressed as a linear program.

The instance (G, c, w) is (2, 1, ψ)-expansion stable if xt is better than every expansion y

of xt in every (2, 1, ψ)-perturbation of (c, w). Let E be the set of all expansions of the target

solution xt. Then for all θ′ within a (2, 1, ψ)-perturbation of θ = (c, w), we should have

that ⟨θ′, xt⟩ ≤ miny∈E⟨θ′, xt⟩. It is enough to check the adversarial (2, 1, ψ)-perturbation

θadv. This perturbation makes the target solution xt as bad as possible. If xt is better

than all the expansions y ∈ E in this perturbation, it is better than all y ∈ E in every

(2, 1, ψ)-perturbation (see Appendix A.5 for a proof). We set θadv = (cadv, wadv) as:

cadv(u, i) =


c(u, i) + ψ i = xt(u),

c(u, i) otherwise.

wadv(u, v) =


w(u, v) xt(u) ̸= xt(u),

1
2w(u, v) otherwise.

The target solution xt is fixed, so ⟨θadv, xt⟩ is a linear function of the optimization variables

c and w. For α ∈ [k], let Eα be the set of α-expansions of xt. Because E = ∪α∈[k]Eα, we
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have ⟨θ′, xt⟩ ≤ miny∈E⟨θ′, xt⟩ if and only if ⟨θ′, xt⟩ ≤ miny∈Eα⟨θ′, xt⟩ for all α ∈ [k]. We

can simplify the original optimization problem to:

minimize
c≥0,w≥0

f(c, w)

subject to ⟨θadv, xt⟩ ≤ min
y∈Eα
⟨θadv, y⟩ ∀ α ∈ [k],

θadv is a linear function of c, w as defined above. We now use the structure of the sets Eα

to simplify the constraints. The optimal value of miny∈Eα⟨θadv, y⟩ is the objective value

of the best (w.r.t. θadv) α-expansion of xt. The best α-expansion of a fixed solution xt

can be found by solving a minimum cut problem in an auxiliary graph Gxt

aux(α) whose

weights depend on linearly on the objective θadv, and therefore depend linearly on our

optimization variables (c, w) (Boykov, Veksler, and Zabih, 2001, Section 4). Therefore,

the optimization problem miny∈Eα⟨θadv, y⟩ can be expressed as a minimum cut problem.

Because this minimum cut problem can be written as a linear program, we can rewrite

each constraint as

(2.4) ⟨θadv, xt⟩ ≤ min
z:A(α)z=b(α),z≥0

⟨θadv, z⟩,

where {A(α)z = b(α), z ≥ 0} is the feasible region of the standard metric LP corresponding

to the minimum cut problem in Gxt

aux(α). The number of vertices in Gxt

aux(α) and the

number of constraints in A(α)z = b(α) is poly(m,n, k) for all α. We now derive an

equivalent linear formulation of equation 2.4 using a careful application of strong duality.
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The dual to the LP on the RHS is:

maximize
ν

⟨b(α), ν⟩, s.t. A(α)Tν ≤ θadv.

Because strong duality holds for this linear program, we have that equation 2.4 holds if

and only if there exists ν with A(α)Tν ≤ θadv such that ⟨θadv, xt⟩ ≤ ⟨b(α), ν⟩.

This is a linear constraint in (c, w, ν). By using this dual witness trick for each label

α ∈ [k], we obtain:

minimize
c≥0,w≥0,{να}

f(c, w)(2.5)

subject to ⟨θadv, xt⟩ ≤ ⟨b(α), να⟩ ∀ α

A(α)Tνα ≤ θadv ∀ α.

The constraints of equation 2.5 are linear in the optimization variables (c, w) and να.

The dimension of θadv is nk + mk2, so there are k(nk + mk2 + 1) constraints and nk +

m+∑
α |b(α)| = poly(m,n, k) variables. Because minimization of the L1 distance f1(c, w)

can be encoded using a linear function and linear constraints, equation 2.5 is a linear

program in this case. It is clear from the derivation of equation 2.5 that it is equivalent to

equation 2.3. This proves Theorem 2.7.1. This formulation equation 2.5 can easily be input

into “off-the-shelf” convex programming packages such as Gurobi (Gurobi Optimization,

2020).
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Table 2.1. Results from the output of equation 2.5 on three stereo vision
instances. The "Error bound" column has the normalized recovery error
bound. More details in Appendix A.6.

Instance Costs changed Weights changed Error bound ||x̂V − x̂MAP
V ||1/2n

tsukuba 4.9% 2.3% 0.0518 0.0027
venus 22.5% 1.3% 0.0214 0.0016
cones 1.2% 2.1% 0.0437 0.0022

2.8. Numerical results

Table 2.1 shows the results of running equation 2.5 on real-world instances of MAP

inference to find nearby (2, 1, ψ)-expansion stable instances. We study stereo vision models

using images from the Middlebury stereo dataset (Scharstein & Szeliski, 2002) and Potts

models from Tappen & Freeman (2003). Please see Appendix A.6 for more details about

the models and experiments.

We find, surprisingly, that only relatively sparse changes are required to make the

observed instances (2, 1, ψ)-expansion stable with ψ = 1. On these instances, we evaluate

the recovery guarantees by our bound from Theorem 2.5.2 and compare it to the actual

value of the recovery error ||x̂ − x̂MAP ||1/2n. In all of our experiments, we choose the

target solution xt for equation 2.5 to be equal to the MAP solution x̂MAP of the observed

instance. Therefore, we find a (2, 1, ψ)-expansion stable instance that has the same MAP

solution as our observed instance. The recovery error bound given by Theorem 2.5.2 is

then also a bound for the recovery error between x̂ and x̂MAP , because x̂MAP = xt. On

these instances, the bounds from our curvature result (Theorem 2.5.2) are reasonably

close to the actual recovery value. However, this bound uses the property that x̂ has good

objective in the stable instance and so it is still a “data-dependent” bound in the sense

that it uses an empirically observed property of the LP solution x̂. In Appendix A.6,
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we show how to refine Corollary 2.5.3 to give non-vacuous recovery bounds that do not

depend on x̂.

2.9. Conclusion

We studied the phenomenon of near persistence of the local LP relaxation on instances

of MAP inference in ferromagnetic Potts model. We gave theoretical results, algorithms

(for finding nearby stable instances) and empirical results to demonstrate that even after

a (2, 1, ψ)-perturbation stable instance is corrupted with noise, the solution to the LP

relaxation is nearly persistent i.e., it approximately recovers the MAP solution. Our

theoretical results imply that the local LP approximately recovers the MAP solution when

the observed instance is close to a stable instance. Our empirical results suggest that

real-world instances are very close to stable instances. These results together suggest a

new explanation for the near-persistency of the solution of the local LP relaxation for

MAP inference in practice.
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CHAPTER 3

One-Pass algorithms for MAP Inference of Nonsymmetric

Determinantal Point Processes

Note: This chapter is (mostly) a reprint of Reddy, Rossi, Song, Rao, Mai, Lipka, Wu,

Koh, and Ahmed (2022a).

3.1. Introduction

Determinantal Point Processes (DPPs) were first introduced in the context of quantum

mechanics (Macchi, 1975) and have subsequently been extensively studied with applications

in several areas of pure and applied mathematics like graph theory, combinatorics, random

matrix theory (Hough, Krishnapur, Peres, and Virág, 2006; Borodin, 2009), and randomized

numerical linear algebra (Derezinski & Mahoney, 2021). Discrete DPPs have gained

widespread adoption in machine learning following the seminal work of (Kulesza & Taskar,

2012) and have also seen a recent explosion of interest in the machine learning community.

For instance, some of the very recent uses of DPPs include automation of deep neural

network design (Nguyen, Le, Yamada, and Osborne, 2021), deep generative models (Chen

and Ahmed, 2021), document and video summarization (Perez-Beltrachini and Lapata,

2021), image processing (Launay, Desolneux, and Galerne, 2021), and learning in games

(Perez-Nieves, Yang, Slumbers, Mguni, Wen, and Wang, 2021).

A DPP is a probability distribution over subsets of items and is characterized by some

kernel matrix such that the probability of sampling any particular subset is proportional
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to the determinant of the submatrix corresponding to that subset in the kernel. Until

very recently, most prior work on DPPs focused on the setting where the kernel matrix is

symmetric. Due to this constraint, DPPs can only model negative correlations between

items. Recent work has shown that allowing the kernel matrix to be nonsymmetric can

greatly increase the expressive power of DPPs and allows them to model compatible sets

of items (Gartrell, Brunel, Dohmatob, and Krichene, 2019; Brunel, 2018). To differentiate

this line of work from prior literature on symmetric DPPs, the term Nonsymmetric DPPs

(NDPPs) has often been used. Modeling positive correlations can be useful in many

practical scenarios. For instance, an E-commerce company trying to build a product

recommendation system would want the system to increase the probability of suggesting a

router if a customer adds a modem to a shopping cart.

State-of-the-art algorithms for MAP inference of NDPPs (Gartrell, Han, Dohmatob,

Gillenwater, and Brunel, 2021; Anari and Vuong, 2022) require storing the full data in

memory and take multiple passes over the complete dataset. Therefore, these algorithms

take too much memory to be useful for industry scale datasets, where the size of the entire

dataset can be much larger than the random-access memory available.

Technical contributions.

• We give the first problem formulations for streaming and online versions of MAP

Inference of low-rank-NDPPs. Our formulations provide a good structure on how

to store NDPP models which are so large that they cannot fit by themselves

in the memory (RAM) of any single machine (this is an extremely important

practical problem due to the massive scale of industry datasets) i.e., store the C

matrix separately and all the vi and bi as (vi, bi) pairs (the straight-forward way
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to store the data would be to store V ,C,B separately (as in the open-source

code provided by (Gartrell, Han, Dohmatob, Gillenwater, and Brunel, 2021)).

• In Section 3.4, we provide our first streaming algorithm, Partition Greedy,

which is a streaming version of the standard greedy algorithm for submodular

maximization (Nemhauser, Wolsey, and Fisher, 1978), and provide bounds for

the approximation ratio, space used, and time taken.

• In Section 3.5, we provide Online-LSS and Online-2-Neighbour, our online

algorithms based on local search with a stash, which are generalizations of the

online local search algorithm for MAP Inference of symmetric DPPs by Bhaskara,

Karbasi, Lattanzi, and Zadimoghaddam (2020), and provide bounds for the space

used and time taken.

• In Section 3.6, we provide a hard instance for one-pass sublinear-space MAP

Inference of NDPPs on which all of our algorithms fail to output solutions with a

bounded approximation ratio. This illustrates that it might even be impossible

to prove approximation factor guarantees for our algorithms without additional

strong assumptions. The hard instance uses properties of NDPPs that differ

from symmetric DPPs illustrating some of the divergence between them. We also

provide some additional comparison between MAP Inference of nonsymmetric

DPPs and symmetric DPPs in this section.

• In Section 3.7, we evaluate our proposed online NDPP MAP Inference algorithms

on several datasets and show that they show that they perform comparably to (or

even better than) the offline greedy algorithm which takes multiple passes over

the data and also uses substantially more memory (linear in number of items).
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3.2. Related Work

Nonsymmetric DPPs. A special subset of NDPPs called signed DPPs were the

first class of NDPPs that were studied by Brunel, Moitra, Rigollet, and Urschel (2017).

Gartrell, Brunel, Dohmatob, and Krichene (2019) studied a more general class of NDPPs

and provided learning and MAP Inference algorithms, and also showed that NDPPs have

additional expressiveness over symmetric DPPs and can better model certain problems.

This was improved by Gartrell, Han, Dohmatob, Gillenwater, and Brunel (2021) in which

they provided a new decomposition which enabled linear time learning and MAP Inference

for NDPPs. More recently, Anari and Vuong (2022) proposed the first algorithm with a

kO(k) approximation factor for MAP Inference on NDPPs where k is the number of items

to be selected.

DPP MAP Inference. MAP Inference in DPPs is a very well studied NP-hard

problem (Ko, Lee, and Queyranne, 1995) with numerous applications in machine learning

(Gillenwater, Kulesza, and Taskar, 2012; Han, Kambadur, Park, and Shin, 2017; Chen,

Zhang, and Zhou, 2018; Han and Gillenwater, 2020). Since matrix log-determinant is a

submodular function, several offline algorithms for submodular function maximization

(Krause and Golovin, 2014) have been applied to the problem. For instance, Civril and

Magdon-Ismail (2009) showed that the standard greedy algorithm of Nemhauser, Wolsey,

and Fisher (1978) provides an O(k!) factor approximation. Nevertheless, even in the

case of symmetric DPPs, the study of streaming and online algorithms is in a nascent

stage. In particular, Indyk, Mahabadi, Oveis Gharan, and Rezaei (2019; 2020); Mahabadi,

Razenshteyn, Woodruff, and Zhou (2020) provided streaming algorithms for MAP inference

of DPPs and Bhaskara, Karbasi, Lattanzi, and Zadimoghaddam (2020) were the first
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to propose online algorithms for MAP inference of DPPs. Also, Liu, Soni, Kang, Wang,

and Parsana (2021) designed the first streaming algorithms for the maximum induced

cardinality objective proposed by Gillenwater, Kulesza, Mariet, and Vassilvitskii (2018).

However, there has not yet been any work other than ours which has focused on either

streaming or online algorithms for NDPPs.

Streaming and Online Algorithms. Streaming (Alon, Matias, and Szegedy, 1999;

Muthukrishnan, 2005) and online (Karp, Vazirani, and Vazirani, 1990; Karp, 1992; Borodin

and El-Yaniv, 2005) algorithms have been extensively studied in theoretical computer

science.

3.3. Preliminaries

3.3.1. Notation

Throughout the paper, we use uppercase bold letters (A) to denote matrices and lowercase

bold letters (a) to denote vectors. Letters in normal font (a) will be used for scalars. For

any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. A matrix M is said to

be skew-symmetric if M = −M⊤ where ⊤ is used to represent matrix transposition.

3.3.2. Background on DPPs

A DPP is a probability distribution on all subsets of [n] characterized by a matrix L ∈ Rn×n.

The probability of sampling any subset S ⊆ [n] i.e., P[S] ∝ det(LS) where LS is the

submatrix of L obtained by keeping only the rows and columns corresponding to indices

in S. The normalization constant for this distribution can be computed efficiently since

we know that ∑S⊆[n] det(LS) = det(L + In) (Kulesza & Taskar, 2012, Theorem 2.1).
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Therefore, P[S] = det(LS)
det(L+In) . For the DPP corresponding to L to be a valid probability

distribution, we need det(LS) ≥ 0 for all S ⊆ [n] since P[S] ≥ 0 for all S ⊆ [n]. Matrices

which satisfy this property are known as P0-matrices (Fiedler & Pták, 1966). For any

symmetric matrix L, det(LS) ≥ 0 for all S ⊆ [n] if and only if L is positive semi-definite

(PSD) i.e., xTLx ≥ 0 for all x ∈ Rn. Therefore, all symmetric matrices which correspond

to valid DPPs are PSD. But there are P0-matrices which are not necessarily symmetric

(or even positive semi-definite). For example, L =

 1 1

−1 1

 is a nonsymmetric P0 matrix.

Any matrix L can be uniquely written as the sum of a symmetric and skew-symmetric

matrix: L = (L + L⊤)/2 + (L−L⊤)/2. For the DPP characterized by L, the symmetric

part of the decomposition can be thought of as encoding negative correlations between

items and the skew-symmetric part as encoding positive correlations. Gartrell, Brunel,

Dohmatob, and Krichene (2019) proposed a decomposition which covers the set of all

nonsymmetric PSD matrices (a subset of P0 matrices) which allowed them to provide a

cubic time algorithm (in the ground set size) for NDPP learning. This decomposition is

L = V ⊤V + (BC⊤ −CB⊤). Gartrell, Han, Dohmatob, Gillenwater, and Brunel (2021)

provided more efficient (linear time) algorithms for learning and MAP inference using a

new decomposition L = V ⊤V + B⊤CB. Although both these decompositions only cover

a subset of P0 matrices, it turns out that they are quite useful for modeling real world

instances and provide improved results when compared to (symmetric) DPPs.

For the decomposition L = V ⊤V + B⊤CB, we have V ,B ∈ Rd×n,C ∈ Rd×d and C

is skew-symmetric. Here we can think of the items having having a latent low-dimensional

representation (vi, bi) where vi, bi ∈ Rd. Intuitively, a low-dimensional representation
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(when compared to n) is sufficient for representing items because any particular item only

interacts with a small number of other items in real-world datasets, as evidenced by the

fact that the maximum basket size encountered in real-world data is much smaller than n.

3.3.3. Background on Streaming and Online Algorithms

The main difference between streaming and online algorithms are their parameters of

interest. In streaming algorithms (Muthukrishnan, 2005), the main focus is on the solution

quality at the end of the stream and memory used by the algorithm throughout the stream.

Instead, in online algorithms (Karp, Vazirani, and Vazirani, 1990), the main focus is on

the solution quality at every time step and update time after seeing a new input. In

the streaming and online models we will define, the online setting is a more restrictive

version of the streaming setting. Therefore, for us, any algorithms which are valid online

algorithms are also valid streaming algorithms. However, not all streaming algorithms

are online algorithms. For instance, our main streaming algorithm (Algorithm 1) is not a

valid online algorithm.

3.4. Streaming MAP Inference

In this section, we formulate the streaming MAP inference problem for NDPPs and

design an algorithm for this problem with guarantees on the solution quality, space, and

time.

3.4.1. Streaming MAP Inference Problem

We study the MAP Inference problem in low-rank NDPPs in the streaming setting where

we see columns of a 2d × n matrix in order (column-arrival model). Given some fixed
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skew-symmetric matrix C ∈ Rd×d, consider a stream of 2d-dimensional vectors (which can

be viewed as pairs of d-dimensional vectors) arriving in order:

(v1, b2), (v2, b2), . . . , (vn, bn) where vt, bt ∈ Rd,∀ t ∈ [n]

The main goal in the streaming setting is to output the maximum likelihood subset

S ⊆ [n] of cardinality k at the end of the stream assuming that S is drawn from the NDPP

characterized by L = V ⊤V + B⊤CB i.e.,

S = argmax
S⊆[n],|S|=k

det(LS)(3.1)

= argmax
S⊆[n],|S|=k

det(V ⊤
S VS + B⊤

S CBS)

For any S ⊆ [n],VS ∈ Rd×|S| is the matrix whose each column corresponds to {vi, i ∈ S}.

Similarly, BS ∈ Rd×|S| is the matrix whose columns correspond to {bi, i ∈ S}. In the case

of symmetric DPPs, this maximization problem in the non-streaming setting corresponds

to MAP Inference in cardinality constrained DPPs, also known as k-DPPs (Kulesza &

Taskar, 2011).

Definition 3.4.1. Given three matrices V ∈ Rd×k,B ∈ Rd×k and C ∈ Rd×d, let

Tdet(k, d) denote the running time of computing det(V ⊤V + B⊤CB). We can take

Tdet(k, d) being O(kd2) as a crude estimate.

Note that Tdet(k, d) = 2Tmat(d, k, d) + Tmat(d, d, k) + Tmat(k, k, k) where Tmat(a, b, c) is

the time required to multiply two matrices of dimensions a× b and b× c. We have the

last Tmat(k, k, k) term because computing the determinant of a k × k matrix can be done
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Algorithm 1 Streaming Partition Greedy MAP Inference for low-rank NDPPs
1: Input: Length of the stream n and a stream of data points
{(v1, b1), (v2, b2), . . . , (vn, bn)}

2: Output: A solution set S of cardinality k at the end of the stream.
3: S0 ← ∅, s0 ← ∅
4: while new data (vt, bt) arrives in stream at time t do
5: i← ⌈ tk

n
⌉

6: if f(Si−1 ∪ {t}) > f(Si−1 ∪ {si}) then
7: si ← t

8: if t is a multiple of n
k

then
9: Si ← Si−1 ∪ si

10: si ← ∅
11: return Sk

(essentially) in the same time as computing the product of two matrices of dimension k× k

(Aho et al., 1974, Theorem 6.6).

We will now describe a streaming algorithm for MAP inference in NDPPs, which we

call the Streaming Partition Greedy algorithm.

3.4.2. Streaming Partition Greedy

Outline of Algorithm 1: Our algorithm picks the first element of the solution greedily

from the first seen n
k

elements, the second element from the next sequence of n
k

elements

and so on. As described in Algorithm 1, let us use S0, S1, . . . , Sk to denote the solution sets

maintained by the algorithm, where Si represents the solution set of size i. In particular,

we have that Si = Si−1 ∪ {si} where si = arg maxj∈Pi
f(S ∪ {j}) and Pi denotes the i’th

partition of the data i.e., Pi := { (i−1)·n
k

+ 1, (i−1)·n
k

+ 2, . . . , i·n
k
}.

(v1, b1), (v2, b2), ..., (vn/k, bn/k)︸ ︷︷ ︸
P1

, . . . , (vn−(n/k)+1, bn−(n/k)+1), ..., (vn, bn)︸ ︷︷ ︸
Pk

(3.2)
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Theorem 3.4.2. For a random-order arrival stream, if S is the solution output by

Algorithm 1 at the end of the stream and σmin > 1 where σmin and σmax denote the smallest

and largest singular values of LS among all S ⊆ [n] and |S| ≤ 2k, then

E[log det(LS)]
log(OPT) ≥

1− 1
σ

(1− 1
e

)·(2 log σmax−log σmin)
min


where LS = V ⊤

S VS + B⊤
S CBS and OPT = max

R⊆[n], |R|=k
det(V ⊤

R VR + B⊤
RCBR).

We will first give a high-level proof sketch for this theorem and defer the full proof to

Appendix B.1.

Proof sketch. For a random-order arrival stream, the distribution of any set of

consecutive n/k elements is the same as the distribution of n/k elements picked uniformly

at random (without replacement) from [n]. If the objective function f is submodular,

then this algorithm has an approximation guarantee of (1 − 2/e) by Mirzasoleiman,

Badanidiyuru, Karbasi, Vondrák, and Krause (2015). But neither det(LS) nor log det(LS)

are submodular. Instead, Gartrell, Han, Dohmatob, Gillenwater, and Brunel (2021)

[Equation 45] showed that log det(LS) is “close” to submodular when σmin > 1 where this

closeness is measured using a parameter known as “submodularity ratio” (Bian, Buhmann,

Krause, and Tschiatschek, 2017). Using this parameter, we can prove a guarantee for our

algorithm. ■

Theorem 3.4.3. For any length-n stream (v1, b1), . . . , (vn, bn) where (vt, bt) ∈ Rd ×

Rd ∀ t ∈ [n], the space used is O(k2 +d2) and the total time taken is O(n · Tdet(k, d)) where

Tdet(k, d) is the time taken to compute f(S) = det(V ⊤
S V + B⊤

S CB) for |S| = k.
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Algorithm 2 Online-LSS: Online MAP Inference for low-rank NDPPs with Stash.
1: Input: A stream of data points {(v1, b1), . . . , (vn, bn)}, and a constant α ≥ 1
2: Output: A solution set S of cardinality k at the end of the stream.
3: S, T ← ∅
4: while new data point (vt, bt) arrives in stream at time t do
5: if |S| < k and f (S ∪ {t}) ̸= 0 then
6: S ← S ∪ {t}
7: else
8: i← arg maxj∈S f(S ∪ {t} \ {j})
9: if f (S ∪ {t} \ {i}) > α · f(S) then

10: S ← S ∪ {t} \ {i}
11: T ← T ∪ {i}
12: while ∃ a ∈ S, b ∈ T : f (S ∪ {b} \ {a}) > α · f(S) do
13: S ← S ∪ {b} \ {a}
14: T ← T ∪ {a} \ {b}
15: return S

Proof. For any particular data-point (vt, bt), Algorithm 1 needs to compute f(Si−1 ∪

{t}), where f(S) = det(V ⊤
S V +B⊤

S CBS) and S = Si−1∪{t}. This takes at most O(k2+d2)

space and Tdet(k, d) time. The algorithm also needs to store Si−1, si and f(Si−1 ∪ {si})

but all of these are dominated by O(k2 + d2) space needed to compute the determinant.

All the other comparison and update steps are also much faster and so the total time is

O(n · Tdet(k, d)) ■

3.5. Online MAP Inference for NDPPs

We now consider the online MAP inference problem for NDPPs, which is natural in

settings where data is generated on the fly. In addition to the constraints of the streaming

setting (Section 3.4.1), our online setting requires us to maintain a valid solution at every

time step. In this section, we provide two algorithms for solving this problem.
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3.5.1. Online Local Search with a Stash

Outline of Algorithm 2: On a high-level, our algorithm is a generalization of the

Online-LS algorithm for DPPs from (Bhaskara, Karbasi, Lattanzi, and Zadimoghaddam,

2020). At each time step t ∈ [n] (after t ≥ k), our algorithm maintains a candidate solution

subset of indices S of cardinality k from the data seen so far i.e., S ⊆ [t] s.t. |S| = k in

a streaming fashion. Additionally, it also maintains two matrices VS,BS ∈ Rd×|S| where

the columns of VS are {vi, i ∈ S} and the columns of BS are {bi, i ∈ S}. Whenever the

algorithm sees a new data point (vt, bt), it replaces an existing index from S with the

newly arrived index if doing so increases f(S) at-least by a factor of α ≥ 1 where α is

a parameter to be chosen (we can think of α being 2 for understanding the algorithm).

Instead of just deleting the index replaced from S, it is stored in an auxiliary set T called

the “stash” (and also maintains corresponding matrices VT ,BT ), which the algorithm then

uses to performs a local search over to find a locally optimal solution.

We now define a data-dependent parameter ∆ which we will need to describe the time

and space used by Algorithm 2.

Definition 3.5.1. Let the first non-zero value of f(S) with |S| = k that can be

achieved in the stream without any swaps be valnz i.e., till S reaches a size k, any index

seen is added to S if f(S) remains non-zero even after adding it. Let us define ∆ := OPTk

valnz

where OPTk = maxS⊆[n],|S|=k det(V ⊤
S VS + B⊤

S CBS).

Note that ∆ is a data-dependent parameter which can potentially be unbounded.

This happens in the hard-instance we will describe in Section 3.6. However, for practical
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datasets, ∆ doesn’t seem to be too bad (see the experiments section for a more detailed

discussion).

Theorem 3.5.2. For any length-n stream (v1, b1), . . . , (vn, bn) where (vt, bt) ∈ Rd ×

Rd ∀ t ∈ [n], the worst case update time of Algorithm 2 is O(Tdet(k, d) · k log2(∆))

where Tdet(k, d) is the time taken to compute f(S) = det(V ⊤
S V + B⊤

S CB) for |S| = k.

Furthermore, the amortized update time is O(Tdet(k, d) · (k + k log2(∆)
n

)) and the space used

at any time step is at most O(k2 + d2 + d logα(∆)).

Proof. For every iteration of the while loop in line 4: It takes at most Tdet(k, d) time for

checking the first if condition (lines 5-6). The argmaxj∈S f(S ∪{t}\{j} step takes at most

k · Tdet(k, d) time. The while loop in line 12 takes time at most |S| · |T | · Tdet(k, d) for every

instance of an increase in f(S). Note that f(S) can increase at most logα(∆) times since the

value of f(S) cannot exceed OPTk. Therefore, the update time of Algorithm 2 is at most

Tdet(k, d) + k · Tdet(k, d) + logα(∆) · (|S| · |T | · Tdet(k, d)) ≤ Tdet(k, d) ·
(
k + 1 + k log2

α(∆)
)

since |S| ≤ k and |T | ≤ logα(∆). Notice that the cardinality of T can increase by 1 only

when the value of f(S) increases at least by a factor of α and so |T | ≤ logα(∆).

During any time step t, the algorithm needs to store the indices in S, T and the

corresponding matrices VS,BS,VT ,BT . Since |S| ≤ k, |T | ≤ logα(∆) and it takes d words

to store every vi and bi, we need at most k + logα(∆) + 2dk + 2d logα(∆) words to store

all these in memory. The space needed to compute det(V ⊤
S VS + B⊤

S CBS) is at most

O(k2 + d2). We compute all such determinants one after the other in our algorithm. So

the algorithm only needs space for one such computation during it’s run. Therefore, the

space required by Algorithm 2 is O(k2 + d2 + d logα(∆)). ■
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3.5.2. Online 2-neighborhood Local Search Algorithm with a Stash

Algorithm 3 Online-2-neighbor: Local Search over 2-neighborhoods with Stash for
Online NDPP MAP Inference.

1: Input: A stream of data points {(v1, b1), (v2, b2), . . . , (vn, bn)}, and a constant α ≥ 1
2: Output: A solution set S of cardinality k at the end of the stream.
3: S, T ← ∅
4: while new data (vt, bt) arrives in stream at time t do
5: if |S| < k and f (S ∪ {t}) ̸= 0 then
6: S ← S ∪ {t}
7: else
8: {i, j} ← arg maxa,b∈S (f(S ∪ {t} \ {a}), f(S ∪ {t− 1, t} \ {a, b}))
9: fmax ← maxa,b∈S (f(S ∪ {t} \ {a}), f(S ∪ {t− 1, t} \ {a, b}))

10: if fmax > α · f(S) then
11: if two items are chosen to be replaced: then
12: S ← S ∪ {t− 1, t} \ {i, j}
13: T ← T ∪ {i, j}
14: else
15: S ← S ∪ {t} \ {i}
16: T ← T ∪ {i}
17: while ∃ a, b ∈ S, c, d ∈ T : f (S ∪ {c, d} \ {a, b}) > α · f(S) do
18: S ← S ∪ {c, d} \ {a, b}
19: T ← T ∪ {a, b} \ {c, d}
20: return S

Before we describe our algorithm, we will define a neighborhood of any solution, which

will be useful for describing the local search part of our algorithm.

Definition 3.5.3 (Nr(S, T )). For any natural number r ≥ 1 and any sets S, T we

define the r-neighborhood of S with respect to T

Nr(S, T ) := {S ′ ⊆ S ∪ T | |S ′| = |S| and |S ′ \ S| ≤ r}

Outline of Algorithm 3: Similar to Algorithm 2, our new algorithm also maintains

two subsets of indices S and T , and corresponding data matrices VS,BS,VT ,BT . Whenever
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the algorithm sees a new data-point (vt, bt), it checks if the solution quality f(S) can be

improved by a factor of α by replacing any element in S with the newly seen data-point.

Additionally, it also checks if the solution quality can be made better by including both

the points (vt, bt) and the data-point (vt−1, bt−1). Further, the algorithm tries to improve

the solution quality by performing a local search on N2(S, T ) i.e., the neighborhood of the

candidate solution S using the stash T by replacing at most two elements of S. There

might be interactions captured by pairs of items which are much stronger than single

items in NDPPs (see example 5 from (Anari and Vuong, 2022)).

Theorem 3.5.4. For any length-n stream (v1, b1), . . . , (vn, bn) where (vt, bt) ∈ Rd ×

Rd ∀ t ∈ [n], the worst case update time of Algorithm 3 is O(Tdet(k, d) · k2 log3(∆)) where

Tdet(k, d) is the time taken to compute f(S) = det(V ⊤
S V + B⊤

S CB) for |S| = k. The

amortized update time is O
(
Tdet(k, d) ·

(
k2 + k2 log3(∆)

n

))
and the space used at any time

step is at most O(k2 + d2 + d logα(∆)).

Proof. It takes at most Tdet(k, d) time for lines 5-6 (same as in LSS).

The arg maxa,b∈S (f(S ∪ {t} \ {a}), f(S ∪ {t− 1, t} \ {a, b})) step takes at most k2·Tdet(k, d)

time. The while loop in line 18 takes time at most |S|2 · |T |2 · Tdet(k, d) for every instance of

an increase in f(S). Similar to LSS, f(S) can increase at most by a factor of logα(∆) since

the value of f(S) cannot exceed OPTk. Therefore, the update time of Algorithm 3 is at most

Tdet(k, d)+k2·Tdet(k, d)+logα(∆)·(|S|2 · |T |2 · Tdet(k, d)) ≤ Tdet(k, d)·
(
k2 + 1 + k2 log3

α(∆)
)

since |S| ≤ k and |T | ≤ logα(∆).

Although Algorithm 3 executes more number of determinant computations than

Algorithm 2, all of them are done sequentially and only the maximum value among all
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the previously computed values in any specific iteration needs to be stored in memory.

Therefore, the space needed is (nearly) the same for both the algorithms. ■

3.6. Hard Instance for One-Pass MAP Inference of NDPPs

We will now give a high-level description of a hard instance for one-pass MAP inference

of NDPPs with sub-linear memory (inspired by (Anari & Vuong, 2022, Example 5)) on

which all of our algorithms output solutions with zero objective value whereas the optimal

solution has non-zero value. Due to this, we believe it might be impossible to prove any

bounded approximation factor guarantees for our algorithms without any strong additional

assumptions.

Sketch of the hard instance. Suppose we have a total of 2d items consisting of

pairs of complementary items like modem-router, printer-ink cartridge, pencil-eraser etc.

Let us use {1, 1c, 2, 2c, . . . , d, dc} to denote them. Any item i is independent of every item

other than it’s complement ic. Individually, P[{i}] = P[{ic}] = 0 . And P[{i, ic}] = x2
i

with xi > 0 for all i ∈ [d]. Also, we have P[{i, j}] = 0 for any i ̸= j. Suppose any of our

online algorithms are given the sequence {1, 2, 3, . . . , d, rc} where r ∈ [d] is some arbitrary

item and the algorithm needs to pick 2 items i.e., k = 2. Then, OPT > 0 whereas all of

our online algorithms (Online LSS, Online 2-neighbor, Online-Greedy) will fail to output

a valid solution. We provide a more complete description with the instantiations of the

matrices B,C,V in Appendix B.2.

Comparison between MAP Inference for NDPPs and symmetric DPPs.

The hard instance described above necessarily uses the skew-symmetric component of the

kernel matrix to form such complementary pairs and this illustrates some of the divergence
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between NDPPs and symmetric DPPs. NDPPs are significantly more general (and complex)

than DPPs and unlike the case for DPPs where the objective function corresponds to a

nice geometric notion i.e., volume, the objective function for MAP Inference on NDPPs

doesn’t have a corresponding clean notion. This is a core issue because of which it is

unclear how the proofs of approximation factors for similar algorithms for DPPs would

generalize to NDPPs (the proof techniques for DPPs from (Bhaskara, Karbasi, Lattanzi,

and Zadimoghaddam, 2020) for Online-LS heavily use the fact that the objective function

is a volume and thus use properties of coresets developed for related geometric problems).

3.7. Experiments

We first learn all the matrices B,C, and V by applying the learning algorithm of

(Gartrell, Han, Dohmatob, Gillenwater, and Brunel, 2021) on several real-world datasets.

For example, some datasets consist of carts of items bought by Amazon customers. Then,

we run our inference algorithms on the learned B,C, and V . More details about the

experiments and the datasets used can be found in Appendix B.3.

As a point of comparison, we also use the offline greedy algorithm from (Gartrell, Han,

Dohmatob, Gillenwater, and Brunel, 2021). This algorithm stores all data in memory and

makes k passes over the dataset and in each round, picks the data point which gives the

maximum marginal gain in solution value. Online-Greedy (Algorithm 4) is a simple online

variant of the greedy algorithm which replaces a point in the current solution set with the

observed point if doing so increases the objective.

First, we want to mention that the performance of our streaming algorithm (Algorithm

1) on the datasets we consider is (unfortunately) pretty bad (the objective function value
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Figure 3.1. Solution quality i.e., objective function value as a function of
the number of data points analyzed for all our online algorithms and also
the offline greedy algorithm. All our online algorithms give comparable (or
even better) performance to offline greedy using only a single pass and a
small fraction of the memory.

is close to zero in most cases). This is because in real-world datasets, adjacent pairs of

items have a very high likelihood of occurring together when compared to pairs of items

far from each other. For example, white socks and grey socks might be adjacent to each

other in numbering. And customers tend to buy both of them in a basket. Our streaming

algorithm is forced to ignore most such pairs.

Results for a various datasets for our online algorithms are provided in Figure 3.1.

Surprisingly, the solution quality of our online algorithms compare favorably with the
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Algorithm 4 Online-Greedy: Online Greedy MAP Inference for NDPPs
1: Input: A stream of data points {(v1, b1), (v2, b2), . . . , (vn, bn)}
2: Output: A solution set S of cardinality k at the end of the stream.
3: S ← ∅
4: while new data (vt, bt) arrives in stream at time t do
5: if |S| < k and f (S ∪ {t}) ̸= 0 then
6: S ← S ∪ {t}
7: else
8: i← arg maxj∈S f(S ∪ {t} \ {j})
9: if f (S ∪ {t} \ {i}) > f(S) then

10: S ← S ∪ {t} \ {i}
11: return S

offline greedy algorithm while using only a single-pass over the data, and a tiny fraction of

memory. In most cases, Online-2-neighbor (Algorithm 3) performs better than Online-LSS

(Algorithm 2) which in turn performs better than the online greedy algorithm (Algorithm 4).

Strikingly, our online-2-neighbor algorithm performs even better than offline greedy in

many cases.

We also perform several experiments comparing the number of determinant computa-

tions (as a system-independent proxy for time) and the number of swaps (as a measure of

solution consistency) of all our online algorithms. Results for determinant computations

(Figure B.1) and swaps (Figure B.2) can be found in Appendix B.4. We summarize the

main findings here. The number of determinant computations of Online-LSS is comparable

to that of Online Greedy but the number of swaps performed is significantly smaller.

Online-2-neighbor is the most time-consuming but superior performing algorithm in terms

of solution quality.

Our experimental results in Appendix B.4 demonstrate that our online algorithms

use substantially lower memory than any offline algorithms. Note that the main memory
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bottleneck for offline inference algorithms (Gartrell et al., 2021; Anari & Vuong, 2022) is

the need to store the entire data-set in memory. We can consider other factors (like the

memory needed for computing det(k, d) i.e., O(k2 + d2) (which can be re-used every-time)

to be essentially free because the regime of interest is n≫ d ≥ k. The memory usage by

our online algorithms is also primarily dominated by the size of the stash, which is upper

bounded by the number of swaps for which we have plots in Appendix B.4.2. Similarly,

the update times also depend only on the size of the stash (which are quite small and so

we have very fast update times).

We also investigate the performance of our algorithms under the random stream

paradigm, where we consider a random permutation of some of the datasets used earlier.

Results for the solution quality (Figure B.3), number of determinant computations and

swaps (Figure B.4) can be found in Appendix B.4.3. In this setting, we see that Online-

LSS and Online-2-neighbor have nearly identical performance and are always better than

Online-Greedy in terms of solution quality and number of swaps.

We study the effect of varying α in Online-LSS (Algorithm 2) for various values of set

sizes k in Appendices B.4.4 and B.4.5. We notice that, in general, the solution quality,

number of determinant computations, and the number of swaps increase as α decreases

(Figure B.5). We also see that as k increases, the solution value decreases across all values

of α (Figure B.6). This is in accordance with our intuition that the probability of larger

sets should be smaller.
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3.8. Conclusion & Future Directions

In this paper, we formulate and study the streaming and online MAP inference problems

for Nonsymmetric Determinantal Point Processes. To the best of our knowledge, this is

the first work to study these problems in these practical settings. We design new one-pass

algorithms for these problems, prove theoretical guarantees for them in terms of space

required, time taken, and solution quality for our algorithms, and empirically show that

they perform comparably or sometimes even better than state-of-the-art offline algorithms

while using substantially lower memory.

As we have discussed in the experiments section, the empirical performance of our

partition greedy algorithm is quite bad. The main reason we have chosen to include it

in this paper is because it is the only one for which we have a provable guarantee on the

approximation quality (albeit with strong assumptions). This also leads us to an important

open direction from our work, i.e., gaining a better theoretical understanding of our online

algorithms, potentially by proving approximation bounds going beyond worst-case analysis

(Roughgarden, 2021). For instance, by assuming that the learned NDPP model satisfies

natural assumptions like perturbation stability (Bilu & Linial, 2012; Makarychev et al.,

2014; Angelidakis et al., 2017). For example, in the line of prior work (Lang et al., 2018;

2019; 2021a;b) studying MAP inference for Potts models. Another interesting direction is

in providing parallelizable algorithms which use a small number of passes (greater than

one but less than k) - similar to the k-means∥ (read as “k-means parallel”) algorithm

(Bahmani et al., 2012; Makarychev et al., 2020)

We have only studied 1-neighbor and 2-neighbor online local search algorithms in our

paper. Extending them to arbitrary sizes of subsets (3-neighbor, etc.) is also another
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interesting open direction. Understanding at which point the degree of interactions cease

to provide benefits that are worth the increase in memory/time constraints would be

of interest to the DPP research community. Are pairwise interactions, as in 2-neighbor,

sufficient to characterize most of the necessary NDPP properties?
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APPENDIX A

Appendix to Chapter 2

A.1. Preliminaries Details

Claim A.1.1. For Uniform Metric Labeling, we can assume c(u, i) ≥ 0 and w(u, v) > 0

without loss of generality.

Proof. For problem instances where some node costs are strictly negative, let cmin be

the minimum value among all the node costs. Consider a new problem instance where we

keep the edge costs the same, but set c′(u, i) = c(u, i) + |cmin| for all u ∈ V and i ∈ [k].

This new problem instance has all non-negative node costs, and the optimization problem

is equivalent, because we added the same constant for all solutions. This reformulation

also does not affect the (2, 1)-expansion stability or (2, 1, ψ)-expansion stability of the

instance.

Likewise, for problem instances where some edge weights are 0, let E0 be the set of all

edges with 0 edge weight. Consider a new problem instance with E ′ = E \E0, with w(u, v)

unchanged for (u, v) ∈ E \ E0, and identical node costs. The MAP optimization problem

remains the same, and the new instance ((V,E ′), c, w) is equivalent: it has the same MAP

solution, and satisfies the stability definitions if and only if the original instance does as

well. ■
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Claim 2.3.3. For a given graph G, every solution x ∈ L(G) that minimizes ⟨θ, x⟩ for

some valid objective vector θ = (c, w) also belongs to L∗(G). Further, all integer solutions

in L(G) also belong to L∗(G).

Proof of Claim 2.3.3. Recall the local LP:

min.
x

∑
u∈V

∑
i

c(u, i)xu(i) +
∑

(u,v)∈E
w(u, v)

∑
i ̸=j

xuv(i, j)(A.1)

subject to:
∑
i

xu(i) = 1 ∀ u ∈ V(A.2)

∑
i

xuv(i, j) = xv(j) ∀ (u, v) ∈ E, j ∈ [k](A.3)

∑
j

xuv(i, j) = xu(i) ∀ (u, v) ∈ E, i ∈ [k](A.4)

xuv(i, j) ∈ [0, 1] ∀ (u, v), (i, j)(A.5)

xu(i) ∈ [0, 1] ∀ u, i.(A.6)

The feasible region defined by the above constraints is L(G). L∗(G) ⊆ L(G) is the set

of points that satisfy the additional constraint that xuv(i, i) = min(xu(i), xv(i)) for all

(u, v) ∈ E and i ∈ [k]. For any feasible node variable assignments {xu}, L∗(G) is not

empty: a simple flow argument∗ implies that the constraints equation A.3, equation A.4,

∗For an edge (u, v), consider the bipartite graph G̃ = ((U, V ), E), where |U | = |V | = k. We let
xu(i) represent the supply at node i in U , and let xv(i) represent the demand at node j in V . Because
xu and xv are both feasible, the total supply equals the total demand. E contains all edges between
U and V , so we can send flow from i ∈ U to j ∈ V for any (i, j) pair. Let xuv(i, j) represent this
flow, and set xuv(i, i) = min(xu(i), xv(i)). For every i, this either satisfies the demand at node Vi

or exhausts the supply at node Ui. In each case, we can remove that satisfied/exhausted node from
the graph. After this choice of xu(i, i), the total remaining supply equals the total remaining demand
(
∑

i xu(i)−min(xu(i), xv(i)) =
∑

i xv(i)−min(xu(i), xv(i))), all supplies and demands are nonnegative,
and the remaining graph G̃′ is a complete bipartite graph (over fewer nodes). This implies that the flow
constraints equation A.3, equation A.4, equation A.5 are still feasible.
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and equation A.5 are always satisfiable even when we set xuv(i, i) = min(xu(i), xv(i)). For

all integer feasible solutions in L(G), notice that xuv(i, j) = 1 if xu(i) = 1 and xv(j) = 1

or 0 otherwise. Therefore, all integer solutions satisfy this additional constraint. Consider

a θ where all edge weights are strictly positive. If x minimizes ⟨θ, x⟩, x must pay the

minimum edge cost consistent with its node variables xu(i). So if we fix the xu(i) portion

of x, we know that the edge variables xuv of x are a solution to:

min
x∈L(G)

∑
(u,v)∈E

w(u, v)
∑
i ̸=j

xuv(i, j).

Notice that since we have fixed the node variables xu(i), there is no interaction between the

xuv variables across different edges. So we can minimize this objective by minimizing each

individual term w(u, v)∑i ̸=j xuv(i, j). Since wuv > 0 for all edges, we need to minimize∑
i ̸=j xuv(i, j). Notice that for every edge (u, v) ∈ E, we get that ∑i

∑
j xuv(i, j) = 1

by substituting xu(i) in constraint A.2 with ∑j xuv(i, j) from constraint A.4. Therefore∑
i ̸=j xuv(i, j) = 1 − ∑i xuv(i, i). Thus, minimizing ∑

i ̸=j xuv(i, j) is the same as maxi-

mizing ∑i xuv(i, i). And the maximizing choice for xuv(i, i) = min(xu(i), xv(i)) due to

constraints A.3 and A.4. ■
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u w

v

1 + ε

1 + ε 1 + ε

Node Costs
u .5 ∞ ∞
v 1 0 ∞
w 1 ∞ 0

Figure A.1. (2, 1)-expansion stable instance that is not (2, 1)-stable. In
the original instance (shown left), the optimal solution labels each vertex
with label 1, for an objective of 2.5. The adversarial (2, 1)-perturbation
for this instance replaces all the edge weights of 1 + ε with (1 + ε)/2. In
this perturbed instance, the optimal solution labels (u, v, w) → (1, 2, 3).
This has a node cost of 0.5 and an edge cost of (3 + 3ε)/2, for a total of
2 + 3ε/2 < 2.5. Since the original solution is not optimal in the perturbed
instance, this instance is not (2, 1)-perturbation stable. However, note that
the only expansions of the original solution (which had all label 1) that have
non-infinite objective are (u, v, w)→ (1, 2, 1) and (u, v, w)→ (1, 1, 3). These
each have objective 2.5 + ε, which is strictly greater than the perturbed
objective of the original solution. Therefore, this instance is (2, 1)-expansion
stable.

A.2. Expansion Stability details

Claim A.2.1. An instance (G,w, c) is (2, 1)-expansion stable iff the MAP solution

x̄ is strictly better than all its expansions in the adversarial perturbation θadv. That is,

for all x ∈ Ex̄, ⟨θadv, x⟩ > ⟨θadv, x̄⟩ where θadv has the same node costs c but has weights

wadv(u, v) =


1
2w(u, v) x̄(u) = x̄(v)

w(u, v) x̄(u) ̸= x̄(v).

Proof. Consider θ′ = (c, w′), any valid (2, 1)-perturbation of θ = (c, w) i.e., for every

edge (u, v) ∈ E, w(u,v)
2 ≤ w′(u, v) ≤ w(u, v). For any valid labeling x, let Ex represent the
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edges cut by x. Then, for any x which is an expansion of x̄ i.e., x ∈ Ex̄,

⟨θ′, x⟩ − ⟨θ′, x̄⟩ =
∑
u∈V

c(u, x(u))− c(u, x̄(u)) +
∑

(u,v)∈Ex

w′(u, v)−
∑

(u,v)∈Ex̄

w′(u, v)

=
∑
u∈V

c(u, x(u))− c(u, x̄(u)) +
∑

(u,v)∈Ex\Ex̄

w′(u, v)−
∑

(u,v)∈Ex̄\Ex

w′(u, v)

= ⟨θadv, x⟩ − ⟨θadv, x̄⟩+
∑

(u,v)∈Ex\Ex̄

w′(u, v)− wadv(u, v)

+
∑

(u,v)∈Ex̄\Ex

wadv − w′(u, v)

= ⟨θadv, x⟩ − ⟨θadv, x̄⟩+
∑

(u,v)∈Ex\Ex̄

w′(u, v)− w(u, v)
2

+
∑

(u,v)∈Ex̄\Ex

w(u, v)− w′(u, v)

Since w′ is a valid (2, 1)-perturbation, w′(u, v) ≥ w(u, v)/2 and w′(u, v) ≤ w(u, v). There-

fore, for any valid (2, 1)-perturbation θ′, we have

⟨θ′, x⟩ − ⟨θ′, x̄⟩ ≥ ⟨θadv, x⟩ − ⟨θadv, x̄⟩.

If the instance is (2, 1)-expansion stable, then certainly ⟨θadv, x⟩ > ⟨θadv, x̄⟩ for all

x ∈ E x̄, since θadv is a valid (2, 1)-perturbation of θ. If the instance is not (2, 1)-expansion

stable, there exists a θ′ and an x ∈ E x̄ for which ⟨θ′, x⟩ − ⟨θ′, x̄⟩ ≤ 0. But the above

inequality then implies that ⟨θadv, x⟩−⟨θadv, x̄⟩ ≤ 0 as well. This gives both directions. ■

This claim shows that to check whether an instance is (2, 1)-expansion stable, it is

sufficient to check that the MAP solution is strictly better than all its expansions in the

adversarial perturbation θadv. We don’t need to verify that this condition is satisfied in
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every valid (2, 1)-perturbation. Because the optimal expansion of x̄ in the instance with

objective θadv can be computed efficiently, this claim also implies that (2, 1)-expansion

stability can be efficiently checked once the MAP solution x̄ is known.

Claim A.2.2. (2, 1)-expansion stability is strictly weaker than (2, 1)-perturbation

stability.

Proof. Figure 2.2 gives an instance of uniform metric labeling that is (2, 1)-expansion

stable but not (2, 1)-perturbation stable. Here, 0 < ε < 1/3. ■

Theorem 2.4.2 (Local LP is tight on (2, 1)-expansion stable instances). Let x̄ and x̂ be

the MAP and local LP solutions to a (2, 1)-expansion stable instance (G, c, w), respectively.

Then x̄ = x̂ i.e., the local LP is tight on (G, c, w).

Proof. First, we note that for any x ∈ L∗(G), the objective value of the local LP

can be written in a form that depends only on the node variables xV . The objective term

corresponding to the edges

∑
(u,v)∈E

w(u, v)
∑
i ̸=j

xuv(i, j) =
∑

(u,v)∈E
w(u, v)

∑
i,j

xuv(i, j)−
∑
i

xuv(i, i)


=
∑

(u,v)∈E
w(u, v)

(
1−

∑
i

xuv(i, i)
)

=
∑

(u,v)∈E
w(u, v)

(
1−

∑
i

min(xu(i), xv(i))
)

=
∑

(u,v)∈E
w(u, v)

(
1−

∑
i

(
xu(i) + xv(i)

2 − |xu(i)− xv(i)|2

))

=
∑

(u,v)∈E
w(u, v)

(
1
2
∑
i

|xu(i)− xv(i)|
)
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Here we used the definition of L∗(G) and the facts that ∑i xu(i) = 1 for all (u, i) and∑
j xuv(i, j) = xu(i) for all (u, v) ∈ E, i ∈ [k].

Thus, for any x ∈ L∗(G), the objective of the local LP can be written as

∑
u∈V

∑
i

c(u, i)xu(i) +
∑

(u,v)∈E
w(u, v)d(u, v)

where d(u, v) := 1
2
∑
i |xu(i)−xv(i)|. This is the objective function of another LP relaxation

for uniform metric labeling called the “metric LP”, which is equivalent to the local LP

(Archer, Fakcharoenphol, Harrelson, Krauthgamer, Talwar, and Tardos, 2004). Note that

both x̄ and x̂ are in L∗(G) by Claim 2.3.3. Therefore, the objective function can be written

in the above form for both of them.

In the next section, we introduce a rounding algorithm and prove some guarantees

for the random solutions h output by it. We then use these guarantees to show an upper

bound on the expected cost of these random solutions in a perturbed instance of the

problem. Finally, we use this upper bound to prove that x̂ = x̄.

A.2.1. ε-close rounding:

Given any feasible solution x ∈ L(G) and a valid labeling x̄, we construct a related feasible

solution x′ which is ε-close to x̄ in the ℓ∞-norm i.e., ∥x′ − x̄∥∞ ≤ ε:

(A.7) x′ = εx+ (1− ε)x̄,

where ε < 1/k and we have identified the labeling x̄ : V → L with its corresponding vertex

of the marginal polytope (a vector in {0, 1}nk+mk2). We consider the following rounding
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algorithm applied to x′, which is a modified version of the ε-close rounding algorithm used

in Lang, Sontag, and Vijayaraghavan (2018):

Algorithm 5 ε-close rounding
1: Choose i ∈ {1, . . . , k} uniformly at random.

2: Choose r ∈ (0, 1/k) uniformly at random.

3: Initialize labeling h : V → [k].

4: for each u ∈ V do

5: if x′
u(i) > r then

6: Set h(u) = i.

7: else

8: Set h(u) = x̄(u)

9: Return h

Lemma A.2.3 (Rounding guarantees). Given any x′ constructed using equation A.7,

the labeling h output by Algorithm 5 satisfies the following guarantees:

P {h(u) = i } = x′
u(i) ∀ u ∈ V, i ∈ [k]

P {h(u) ̸= h(v) } ≤ 2d(u, v) ∀ (u, v) ∈ E : x̄(u) = x̄(v)

P {h(u) = h(v) } = (1− d(u, v)) ∀ (u, v) ∈ E : x̄(u) ̸= x̄(v),

where d(u, v) = 1
2
∑
i |x′

u(i)− x′
v(i)| is the edge separation of the constructed feasible point

x′.

Proof of Lemma A.2.3 (rounding guarantees). First, fix u ∈ V and a label

i ̸= x̄(u). We output h(u) = i precisely when i is chosen and 0 < r < x′
u(i), which occurs
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with probability 1
k
x′

u(i)
1/k = x′

u(i) (we used here that x′
u(i) ≤ ε < 1/k for all i ̸= x̄(u)). Now

we output h(u) = x̄(u) with probability 1−∑j ̸=x̄(u) P {h(u) = j } = 1−∑j ̸=x̄(u) x
′
u(j) =

x′
u(x̄(u)), since ∑i x

′
u(i) = 1. This proves the first guarantee.

For the second, consider an edge (u, v) not cut by x̄, so x̄(u) = x̄(v). Then (u, v) is cut

by h when some i ̸= x̄(u) is chosen and r falls between x′
u(i) and x′

v(i). This occurs with

probability

1
k

∑
i ̸=x̄(u)

max(x′
u(i), x′

v(i))−min(x′
u(i), x′

v(i))
1/k =

∑
i ̸=x̄(u)

|x′
u(i)− x′

v(i)| ≤ 2d(u, v).

Finally, consider an edge (u, v) cut by x̄, so that x̄(u) ̸= x̄(v). Here h(u) = h(v) if some

i, r are chosen with r < min(x′
u(i), x′

v(i)). We have r < min(x′
u(i), x′

v(i)) with probability
min(x′

u(i),x′
v(i))

1/k . Note that this is still valid if i = x̄(u) or i = x̄(v), since only one of those

equalities can hold. So we get

1
k

∑
i

min(x′
u(i), x′

v(i))
1/k = 1

2

(∑
i

x′
u(i) + x′

v(i)− |x′
u(i)− x′

v(i)|
)

= 1− d(u, v),

where we used again that ∑i x
′
u(i) = 1. ■

Given these rounding guarantees, we can relate the expected cost difference between h

and x̄ in a perturbation of the original instance to the cost difference between x and x̄

in the original instance. We are only interested in the case when x ∈ L∗(G) and so the

objective function f(x) = ∑
u∈V

∑
i c(u, i)xu(i) +∑

(u,v)∈E w(u, v)d(u, v).
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A.2.2. Using the rounding guarantees

Lemma A.2.4. Given an integer solution x̄, a feasible LP solution x ∈ L∗(G), and a

random output h of Algorithm 5 on an input x′ = εx+ (1− ε)x̄, define

w′(u, v) =


1
2w(u, v) x̄(u) = x̄(v)

w(u, v) x̄(u) ̸= x̄(v)

and let f ′(y) = ∑
u∈V

∑
i c(u, i)yu(i) + ∑

(u,v)∈E w
′(u, v)d(y, u, v) be the objective in the

instance with the original costs, but using weights w′. Here d(y, u, v) = 1
2
∑
i |yu(i)− yv(i)|.

Let Ah := f ′(h)− f ′(x̄) be the difference in this perturbed objective between h and x̄. Then,

E[Ah] = E[f ′(h)− f ′(x̄)] ≤ ε · (f(x)− f(x̄)) .



91

Proof.

E[f ′(h)− f ′(x̄)] =
∑
u∈V

∑
i

c(u, i)P {h(u) = i } −
∑
u∈V

c(u, x̄(u))

+
∑

uv:x̄(u)=x̄(v)
w′(u, v)P {h(u) ̸= h(v) }

−
∑

uv:x̄(u) ̸=x̄(v)
w′(u, v)P {h(u) = h(v) }

=
∑
u

∑
i

c(u, i)x′
u(i)−

∑
u

c(u, x̄(u)) +
∑

uv:x̄(u)=x̄(v)
2w′(u, v)d(x′, u, v)

−
∑

uv:x̄(u) ̸=x̄(v)
w′(u, v)(1− d(x′, u, v))

=
∑
u

∑
i

c(u, i)x′
u(i)−

∑
u

c(u, x̄(u)) +
∑
uv∈E

w(u, v)d(x′, u, v)

−
∑

uv:x̄(u) ̸=x̄(v)
w(u, v)

= f(x′)− f(x̄).

where the second-to-last equality used the definition of w′ (note that w′ is identical to

the worst-case perturbation wadv for x̄). Because f is convex (in particular, d(x, u, v) is

convex in x), we have f(x′) ≤ εf(x) + (1− ε)f(x̄). Therefore,

E[f ′(h)− f ′(x̄)] ≤ εf(x) + (1− ε)f(x̄)− f(x̄) = ε(f(x)− f(x̄)),

which is what we wanted. ■
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A.2.3. Final proof of Theorem 2.4.2:

Suppose the local LP solution x̂ is not the same as the MAP solution x̄ i.e., x̂ ̸= x̄.

Consider x′ = εx̂+ (1− ε)x̄ where 0 < ε < 1/k (see equation equation A.7). Let h be the

random integer solution output by using Algorithm 5 on x′. By Lemma A.2.4, we have

E[f ′(h)− f ′(x̄)] ≤ ε · (f(x̂)− f(x̄))

We note that any solution h that we get from rounding x′ is either x̄ or an expansion

move of x̄. This is because we pick only a single label i in step 1 of Algorithm 5 and label

all vertices u either i or x̄(u). Therefore, for the i picked in step 1, h is an i-expansion of

x̄ if h ̸= x̄.

E[f ′(h)− f ′(x̄)] = E[f ′(h)− f ′(x̄)|h ̸= x̄] P[h ̸= x̄] + E[f ′(h)− f ′(x̄)|h = x̄] P[h = x̄]

= E[f ′(h)− f ′(x̄)|h ̸= x̄] P[h ̸= x̄]

Since (G, c, w) is a (2, 1)-expansion stable instance, we know that f ′(h) > f ′(x̄) when h ̸= x̄

since all h in the support of the rounding (other than x̄) are expansion moves of x̄ and we

get f ′ by a valid (2, 1)-perturbation of (G, c, w). Therefore, E[f ′(h)− f ′(x̄)|h ̸= x̄] > 0. We

also have that P[h ≠ x̄] > 0 since we assumed that x̂ ̸= x̄. Therefore, E[f ′(h)− f ′(x̄)] > 0.

But we know that f(x̂) − f(x̄) ≤ 0 since x̂ is the minimizer of f(x) among all feasible

x ∈ L(G). So Lemma A.2.4 implies E[f ′(h)− f ′(x̄)] ≤ 0. Thus we have a contradiction

and so the local LP solution x̂ has to be the same as the MAP solution x̄.

■
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A.3. Stability and Curvature around MAP solution details

Theorem 2.5.2. Let (G, c, w) be a (2, 1, ψ)-expansion stable instance with MAP

solution x̄. Let θ = (c, w). Then for any x ∈ L∗(G), the recovery error (see Def. 2.3.1)

satisfies

(2.2) 1
2∥x− x̄∥1 := 1

2∥xV − x̄V ∥1 ≤
1
ψ
|⟨θ, x⟩ − ⟨θ, x̄⟩|.

Here, we provide two proofs for this theorem, one deals directly with the local LP

relaxation and the other uses the dual of the relaxation. The dual proof is more general

than the primal proof as it works for all x ∈ L(G), not just for those in L∗(G).

A.3.1. Primal-based proof

Proof. For any x ∈ L∗(G), consider a feasible solution x′ which is ε-close to x̄

constructed using Equation A.7 i.e., x′ = εx + (1 − ε)x̄. Let h be the random solution

output by Algorithm 5 on x′.

Lemma A.3.1 (Bound for E[Bh]). For any h in the support of the rounding of

x′ = εx+ (1− ε)x̄, let us define Bh to be the number of vertices which it labels differently

from x̄. In other words, it is the number of vertices which are misclassified by h i.e.,

Bh := ∑
u∈V 1[h(u) ̸= x̄(u)]. Then,

E[Bh] = ε
∑
u∈V

1
2∥xu − x̄u∥1
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Proof.

E[Bh] =
∑
u∈V

E[1[h(u) ̸= x̄(u)]] =
∑
u∈V

P {h(u) ̸= x̄(u) } =
∑
u∈V

1− P {h(u) = x̄(u) }

=
∑
u∈V

1− x′
u(x̄(u)) =

∑
u∈V

1− (εxu(x̄(u)) + (1− ε)) =
∑
u∈V

ε (1− xu(x̄(u)))

= ε
∑
u∈V

1
2

1− xu(x̄(u)) +
∑

i ̸=x̄(u)
xu(i)

 = ε
∑
u∈V

1
2∥xu − x̄u∥1

Here, we used the fact that for all u ∈ V, x̄u(x̄(u)) = 1 and x̄u(i) = 0 ∀ i ̸= x̄(u) and since

x is a feasible solution to the LP, it satisfies ∑i ̸=x̄(u) xu(i) = 1−xu(x̄(u)) for all u ∈ V . ■

Lemma A.3.2 (Lower bound for Ah using (2, 1, ψ)-expansion stability). If (G,w, c)

is a (2, 1, ψ)-expansion stable instance, then for any h in the support of the rounding of

x′ = εx+ (1− ε)x̄,

Ah ≥ ψ ·Bh

where Ah = f ′(h)− f ′(x̄) and f ′ is the objective in the instance (G, c, w′) where w′ is the

worst (2, 1) perturbation for x̄ i.e.,

w′(u, v) =


1
2w(u, v) x̄(u) = x̄(v)

w(u, v) x̄(u) ̸= x̄(v)

Proof. Note that Ah here is the same as the one defined for Lemma A.2.4. Since the

instance (G, c, w) is (2, 1, ψ)-expansion stable, we know that (G, c′, w) should be (2, 1)-

expansion stable for all c′ such that c ≤ c′ ≤ c + ψ · 1. Consider the worst c′ for x̄ i.e.,
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c′(u, i) =


c(u, i) + ψ i = x̄(u)

c(u, i) i ̸= x̄(u)
. Let f ′′ be the objective in the instance (G, c′, w′). As

discussed in section A.2.3, we know that any h ̸= x̄ in the support of the rounding is an

expansion move of x̄. Therefore, for any h ̸= x̄ in the support of the rounding of x′,

f ′′(h)− f ′′(x̄) > 0

=⇒
∑
u∈V

c′(u, h(u))− c′(u, x̄(u)) +
∑

(u,v):h(u)̸=h(v)
w′(u, v)−

∑
(u,v):x̄(u)̸=x̄(v)

w′(u, v) > 0

=⇒
∑
u∈V

c(u, h(u))− (c(u, x̄(u)) + ψ · 1[h(u) ̸= x̄(u)]) +
∑

(u,v):h(u) ̸=h(v)
w′(u, v)

−
∑

(u,v):x̄(u) ̸=x̄(v)
w′(u, v) > 0

=⇒ f ′(h)− f ′(g) > ψ ·
∑
u∈V

1[h(u) ̸= x̄(u)] =⇒ Ah > ψ ·Bh.

This is true for all h ̸= x̄ in the support of the rounding of x′. When h = x̄, we have

Ah = Bh = 0. Therefore for all h in the support of the rounding of x′, we have that

Ah ≥ ψ ·Bh. ■

A.3.2. Final proof of Theorem 2.5.2:

We use the Lemmas A.2.4(upper bound for E[Ah]), A.3.2(lower bound for Ah), and

A.3.1(bound for E[Bh]) to prove Theorem 2.5.2. For all h in the support of rounding of x,

Ah ≥ ψ ·Bh. Also,

E[Ah] ≤ ε (f(x)− f(x̄)) , E[Bh] = ε
∑
u∈V

1
2∥xu − x̄u∥1
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Suppose that ∥x− x̄∥1 > τ · (f(x)− f(x̄)). Then,

E[Ah]
E[Bh]

≤ f(x)− f(x̄)∑
u∈V

1
2∥xu − x̄u∥1

<
2
τ

But since Ah ≥ ψ ·Bh for every h in the rounding of x, we get that E[Ah]
E[Bh]

≥ ψ.

Setting τ = 2
ψ

, we get a contradiction and thus we get,

1
2∥x− x̄∥1 ≤

1
ψ
· (f(x)− f(x̄)) = 1

ψ
· (⟨θ, x⟩ − ⟨θ, x̄⟩)

■

Corollary 2.5.3 (LP solution is good if there is a nearby stable instance). Let x̂MAP

and x̂ be the MAP and local LP solutions to an observed instance (G, ĉ, ŵ). Also, let x̄ be

the MAP solution for a latent (2, 1, ψ)-expansion stable instance (G, c̄, w̄). If θ̂ = (ĉ, ŵ)

and θ̄ = (c̄, w̄),
1
2∥x̂V − x̂

MAP
V ∥1 ≤

2d(θ̂, θ̄)
ψ

+ 1
2∥x̂

MAP
V − x̄V ∥1.

Proof of Corollary 2.5.3. First, we note that for the nearby stable instance, the

MAP and the local LP solutions are the same due to Theorem 2.4.2. Therefore, for any

feasible solution x ∈ L(G), ⟨θ̄, x⟩ ≥ ⟨θ̄, x̄⟩. In particular, this implies that ⟨θ̄, x̂⟩ ≥ ⟨θ̄, x̄⟩

and ⟨θ̄, x̂MAP ⟩ ≥ ⟨θ̄, x̄⟩ since x̂, x̂MAP are also feasible solutions. Remember that we defined

d(θ̂, θ̄) := supx∈L∗(G) |⟨θ̂, x⟩ − ⟨θ̄, x⟩|. Therefore,

⟨θ̄, x̂⟩ ≤ ⟨θ̂, x̂⟩+ d(θ̂, θ̄) ≤ ⟨θ̂, x̄⟩+ d(θ̂, θ̄) ≤ ⟨θ̄, x̄⟩+ 2d(θ̂, θ̄).
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The first and third inequalities hold due to the definition of d(θ̂, θ̄). The second inequality

follows from the fact that x̂ is the minimizer for ⟨θ̂, x⟩ among x ∈ L(G). Thus, 0 ≤

⟨θ̄, x̂⟩ − ⟨θ̄, x̄⟩ ≤ 2d(θ̂, θ̄). From Theorem 2.5.2, we get 1
2∥x̂V − x̄V ∥1 ≤ 2d(θ̂,θ̄)

ψ
. Thus,

1
2∥x̂V − x̂

MAP
V ∥1 ≤

1
2∥x̂V − x̄V ∥1 + 1

2∥x̂
MAP
V − x̄V ∥1

≤ 2d(θ̂, θ̄)
ψ

+ 1
2∥x̂

MAP
V − x̄V ∥1.

■

A.3.3. Dual-based proof

Here we provide an alternate proof of the curvature result using the dual of the local LP

relaxation. First, we show that the curvature bound is related to the dual margin of the

instance. Then we show that (2, 1, ψ)-expansion stability implies that the dual margin

is at least ψ. Throughout this section, we assume the local LP solution x̂ is unique and

integral (as guaranteed, for example, by (2, 1)-expansion stability), so x̂ = x̄.

Relaxing the local LP’s marginalization constraints in both directions for each edge,

we obtain the following Lagrangian for the local LP:

L(δ, x) =
∑
u

∑
i

θu(i) +
∑

v∈N(u)
δuv(i)

xu(i) +
∑
uv

∑
ij

(θuv(i, j)− δuv(i)− δvu(j))xuv(i, j)

where each xu is constrained to be in the (k − 1)-dimensional simplex, and each xuv the

k2 − 1-dimensional simplex (i.e., the normalization constraints remain). There are no

constraints on the dual variables δ. Observe that for any δ and any primal-feasible x,

L(δ, x) = ⟨θ, x⟩. This gives rise to the reparametrization view: for a fixed δ, define θδu(i) =
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θu(i) + ∑
v∈N(u) δuv(i), and θδuv(i, j) = θuv(i, j) − δuv(i) − δvu(j). Then L(δ, x) = ⟨θδ, x⟩.

This will allow us to define equivalent primal problems with simpler structure than the

original. L(δ, x) also gives the dual function:

D(δ) = min
x
L(δ, x) =

∑
u

min
i

θu(i) +
∑

v∈N(u)
δuv(i)

+
∑
uv

min
i,j

(θuv(i, j)− δuv(i)− δvu(j)) .

A dual point δ is a dual solution if δ ∈ argmaxδ′ D(δ′). Theorem 2.4.2 implies that the

local LP has a unique, integral solution when the instance is (2, 1, ψ)-expansion stable.

Sontag, Globerson, and Jaakkola (2011, Theorem 1.3) show that this implies the existence

of a dual solution δ∗ that is locally decodable at all nodes u: for each u, argmini θδ
∗
u (i) is

unique, and moreover, the edge and node dual subproblems agree:

(A.8)
(

argmin
i

θδ
∗

u (i), argmin
j

θδ
∗

v (j)
)
∈ argmin

i,j
θδ

∗

uv(i, j).

In this case, the primal solution defined by “decoding” δ∗, x(u) = argmini θδ
∗
u (i), is the

MAP solution (Sontag, Globerson, and Jaakkola, 2011).

For locally decodable δ∗, we define the node margin ψu(δ∗) at a node u as:

ψu(δ∗) = min
i ̸=argminj θ

δ∗ (j)
θδ

∗(i)−min
j
θδ

∗(j).

This is the difference between the optimal reparametrized node cost at u and the next-

smallest cost. Local decodability of δ is the property that ψu(δ) > 0 for every u.

Together with equation A.8, the following lemma implies that we need only consider

locally decodable dual solutions where the optimal primal solution pays zero edge cost.
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Lemma A.3.3 (Dual edge “removal”). Given a locally decodable dual solution δ, we

can transform it to a locally decodable dual solution δ′ that satisfies mini,j θδ
′
uv(i, j) = 0 and

has the same (additive) margin at every node.

Proof. Fix an edge (u, v), and consider any pair i∗, j∗ in argmini,j θδuv(i, j). Put

θδuv(i∗, j∗) = θuv(i∗, j∗) + ε for ε ∈ R. Now define δ′
uv(i) = δuv(i) − ε for all i (or,

equivalently, δ′
vu(j) = δvu(j) − ε for all j). Because we changed θδu(i) by a constant for

each i, local decodability is preserved and the additive margin of local decodability is

not changed. We incurred a change of +ε in the dual objective of δ from the edge term

mini,j θδ
′
uv(i, j), and a −ε in the objective from the decrease in the node term mini θδ

′
u (i),

so δ′ is still optimal. We can repeat this process for every edge (u, v). ■

Lemma A.3.3 implies that when (x∗, δ∗) is a pair of primal/dual optima and δ∗ is

locally decodable, we can assume that L(x∗, δ∗) = ∑
u θ

δ∗
u (x∗

u), where we overload notation

to define x∗
u to be the label for which x∗

u(i) = 1. That is, the primal optimum pays no

edge cost in the problem reparametrized by the dual opt δ∗. Finally, Lemma A.3.3 implies

that we can always assume that θδ∗
uv(i, j) ≥ 0 for all (u, v), (i, j). Therefore, if there is any

locally decodable dual solution, and the primal LP solution is integral and unique, we may

assume there exists a locally decodable dual solution δ such that x̄(u) = argmini θδ(i),

(x̄(u), x̄(v)) ∈ argmini,j θδuv(i, j), θδuv(x̄(u), x̄(v)) = 0, and θδuv(i, j) ≥ 0.

Lemma A.3.4 (Dual margin implies curvature around x̄). For an instance with

objective θ and MAP solution x̄, assume there exists a locally decodable dual solution δ

such that x̄(u) = argmini θδ(i), (x̄(u), x̄(v)) ∈ argmini,j θδuv(i, j), θδuv(x̄(u), x̄(v)) = 0, and

θδuv(i, j) ≥ 0. Additionally, let ψ(δ) = minu ψu(δ) be the smallest node margin. Note that
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ψ(δ) > 0 because δ is locally decodable. Then for any x ∈ L(G),

1
2 ||xV − x̄V ||1 ≤

⟨θ, x− x̄⟩
ψ(δ)

Proof. Let ∆ = ⟨θ, x− x̄⟩. Since x and x̄ are both primal-feasible, we have L(x, δ) =

⟨θ, x⟩ and L(x̄, δ) = ⟨θ, x̄⟩. Therefore,

(A.9) L(x, δ) = L(x̄, δ) + ∆.

Because θδ(x̄(u), x̄(v)) = 0 for all (u, v), we have

L(x̄, δ) =
∑
u

θδu(x̄(u)).

Additionally, because θδuv(i, j) ≥ 0,

L(x, δ) =
∑
u

∑
i

θδu(i)xu(i) +
∑
uv

∑
ij

θδuv(i, j)xuv(i, j) ≥
∑
u

∑
i

θδu(i)xu(i).

Combining the above two inequalities with equation A.9 gives:

(A.10)
∑
u

∑
i

θδu(i)xu(i) ≤
∑
u

θδu(x̄(u)) + ∆

Because δ is locally decodable to x̄, and the smallest node margin is equal to ψ(δ), we have

that for every u, θδu(x̄(u)) + ψ(δ) ≤ θδu(i) for all i ̸= x̄(u). The margin condition implies:

∑
u

θδu(x̄(u))xu(x̄(u)) +
∑
u

∑
i ̸=x̄(u)

(θδu(x̄(u)) + ψ(δ))xu(i) <
∑
u

∑
i

θδu(i)xu(i),
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and simplifying using ∑i xu(i) = 1 gives:

∑
u

θδu(x̄(u)) + ψ(δ)
∑
u

∑
i ̸=x̄(u)

xu(i) <
∑
u

∑
i

θδu(i)xu(i).

Plugging in to equation A.10 gives:

∑
u

∑
i ̸=x̄(u)

xu(i) <
∆
ψ(δ) .

The left-hand-side is precisely ||xV − x̄V ||1/2. ■

Now we show that (2, 1, ψ)-expansion stability implies that there exists a locally

decodable dual solution δ with dual margin ψ(δ) ≥ ψ.

Lemma A.3.5 ((2, 1, ψ)-expansion stability gives a lower bound on dual margin). Let

(G, c, w) be a (2, 1, ψ)-expansion stable instance with ψ > 0. Then there exists a locally

decodable dual solution δ with dual margin ψ(δ) ≥ ψ.

Proof. Define new costs cψ as

cψ(u, i) =


c(u, i) + ψ x̄(u) = i

c(u, i) otherwise.

By definition, the instance (G, cψ, w) is (2, 1)-expansion stable (see Definition 2.4.1).

Theorem 2.4.2 implies the pairwise LP solution is unique and integral on (G, cψ, w). This

implies there exists a dual solution δ0 that is locally decodable to x̄. The only guarantee on

the dual margin of δ0 is that ψ(δ0) > 0. But note that δ0 is also an optimal dual solution for

(G, c, w), since its objective in that instance is the same as the objective of x̄. But in that
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instance, the dual margin at every node is at least ψ, because cψ(u, x̄(u))− c(u, x̄(u)) = ψ.

So ψ(δ) ≥ ψ. ■

These two lemmas directly imply Theorem 2.5.2. This dual proof is slightly more

general than the primal proof, since the curvature result applies to any x ∈ L(G).

A.4. Generative model details

Definition A.4.1 (sub-Gaussians and (b, σ)-truncated sub-Gaussians). Suppose b ∈

R, σ ∈ R+. A random variable X with mean µ is sub-Gaussian with parameter σ if and

only if E[eλ(X−µ)] ≤ exp(λ2σ2/2) for all λ ∈ R. The random variable X is (b, σ)-truncated

sub-Gaussian if and only if X is supported in (b,∞) and X is sub-Gaussian with parameter

σ.

We remark that the above definition captures many well-studied families of bounded

random variables e.g., Rademacher distributions, uniform distributions on an interval etc.

We remark that a bounded random variable supported on [−M,M ] is also sub-Gaussian

with parameter M . However in our setting, it needs to be truncated only on negative

side, and the bound M will be much larger than the variance parameter σ; the bound is

solely to ensure non-negativity of edge costs. A canonical example to keep in mind is a

truncated Gaussian distribution.We use the following standard large deviations bound for

sums of sub-Gaussian random variables (for details, refer to Thm 2.6.2 from Vershynin

(2018)). Given independent r.v.s X1, X2, . . . , Xn, with Xi drawn from a sub-Gaussian with

parameter σi we have for µ = ∑n
i=1 E[Xi] and σ2 = ∑n

i=1 σ
2
i ,

(A.11) P
[∣∣∣∣ n∑
i=1

Xi − µ
∣∣∣∣ ≥ t

]
≤ 2 exp

(
− t2

2σ2

)
.
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Lemma 2.6.1 (d(θ̂, θ̄) is small w.h.p. ). There exists a universal constant c < 1 such

that for any instance in the above model, with probability at least 1− o(1),

sup
x∈L∗(G)

|⟨θ̂, x⟩ − ⟨θ̄, x⟩| ≤ c
√
nk

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v

Proof. As discussed in section A.2, for any x ∈ L∗(G), the objective of the local LP

can be written as ∑
u∈V

∑
i

c(u, i)xu(i) +
∑

(u,v)∈E
w(u, v)d(u, v)

where d(u, v) := 1
2
∑
i |xu(i)− xv(i)|. Let f̂(x) := ⟨θ̂, x⟩, f̄(x) := ⟨θ̄, x⟩. Then,

|⟨θ̂, x⟩ − ⟨θ̄, x⟩| = |f̂(x)− f̄(x)| =
∣∣∣∣ ∑
u∈V

∑
i∈L

c̃(u, i)xu(i) +
∑

(u,v)∈E
w̃(u, v)d(u, v)

∣∣∣∣
For any feasible LP solution x, consider the following rounding algorithm R:
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Then, we have

E[f̂(R(x))− f̄(R(x))]

=
∑
u∈V

∑
i∈L

c̃(u, i)E[1[R(x)u(i) = 1]] +
∑

(u,v)∈E

w̃(u, v)
2

∑
i

E[1[R(x)u(i) ̸= R(x)v(i)]]

=
∑
u∈V

∑
i∈L

c̃(u, i)P[xu(i) > ri]

+
∑

(u,v)∈E

w̃(u, v)
2

∑
i

P[min (xu(i), xv(i)) ≤ ri < max (xu(i), xv(i))]

=
∑
u∈V

∑
i∈L

c̃(u, i)xu(i) +
∑

(u,v)∈E

w̃(u, v)
2

∑
i

|xu(i)− xv(i)|

=
∑
u∈V

∑
i∈L

c̃(u, i)xu(i) +
∑

(u,v)∈E
w̃(u, v)d(u, v) = f̂(x)− f̄(x)

Therefore,

sup
x∈L∗(G)

|f̂(x)− f̄(x)| = sup
x∈L∗(G)

|E[f̂(R(x))− f̄(R(x))]| ≤ sup
x̂V ∈{0,1}nk

|f̂(x̂V )− f̄(x̂V )|

Note that for all x ∈ L∗(G), f̂(x) and f̄(x) only depend on the portion of x restricted

to the vertices i.e., xV . This is why we only need to look at x̂v ∈ {0, 1}nk for the last

inequality.

For any fixed x̂V ∈ {0, 1}nk, since w̃(u, v), c̃(u, i) are all mean 0 and sub-Gaussian with

parameters γu,v, σu,i, we have for any t > 0,

P
[
|f̂(x̂V )− f̄(x̂)| > t

]
≤ 2 exp

 −t2

2
(∑

u,i σ
2
u,i + k2/4∑uv γ2

u,v

)


Taking t = c
√
nk
√∑

u,i σ
2
u,i + k2/4∑uv γ2

u,v, we get that for any fixed x̂V ∈ {0, 1}nk,
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P
[
|f̂(x̂)− f̄(x̂)| > t

]
≤ 2 exp

(
−c2nk

)
Taking a union bound over {0, 1}nk, we get that

P
[

sup
x̂V ∈{0,1}nk

|f̂(x̂)− f̄(x̂)| > t

]
≤ 2 exp

(
nk
(
log 2− c2

))
■

Here, c needs to be greater than
√

ln 2 ≈ 0.83 to get a high probability guarantee.

Corollary 2.6.3 (MAP solution recovery for regular graphs ). Suppose we have a

d-regular graph G with γ2
u,v = γ2 for all edges (u, v), and σ2

u,i = σ2 for all vertex-label pairs

(u, i). Also, suppose only a fraction ρ of the vertices and η of the edges are subject to the

noise. With high probability over the random noise,

∥x̂V − x̄V ∥1

2n ≤
2ck

√
ρσ2 + ηdk

8 γ2

ψ

Proof. From Theorem 2.6.2, we have that, with high probability over the random

noise
1
2∥x̂V − x̄V ∥1 ≤

2
ψ
· c
√
nk ·

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v

In this setting, this leads to

2
ψ
· c
√
nk ·

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v = 2

ψ
· c
√
nk ·

√
ρnkσ2 + η

k2

4
nd

2 γ2 =
2cnk

√
ρσ2 + ηdk

8 γ2

ψ

since |V | = n, |L| = k, and |E| = nd
2 .

■
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A.5. Algorithm for finding nearby stable instances details

Let x̄ be a MAP solution, and let E x̄ be the set of expansions of x̄. We prove that an

instance is (2, 1, ψ)-expansion stable if and only if ⟨θadv, x̄⟩ ≤ ⟨θadv, x⟩ for all x ∈ E x̄. In

other words, it is sufficient to check for stability in the adversarial perturbation for x̄. This

proves that we need not check every possible perturbation when finding a (2, 1, ψ)-expansion

stable instance.

Claim A.5.1. Let (G, c, w) be an instance of uniform metric labeling with MAP

solution x̄. Define:

wadv(u, v) =


1
2wuv x̄(u) = x̄(v)

w(u, v) x̄(u) ̸= x̄(v)

cadv(u, i) =


c(u, i) + ψ x̄(u) = i

c(u, i) otherwise.

Let θadv be the objective vector in the instance (G, cadv, wadv). Then

⟨θ′, x̄⟩ ≤ ⟨θ′, x⟩

for all (2, 1, ψ)-perturbations θ′ of θ and all x ∈ E x̄ if and only if:

⟨θadv, x̄⟩ ≤ ⟨θadv, x⟩

for all x ∈ E x̄.

Proof. The proof is analogous to that of Claim A.2.1. If the instance is (2, 1, ψ)-

expansion stable, then ⟨θ′, x⟩−⟨θ′, x̄⟩ ≥ 0 for all (2, 1, ψ)-perturbations θ′ and all expansions



107

x of x̄. Because θadv is a valid (2, 1, ψ)-perturbation, this gives one direction. For the other,

note that if the instance is not (2, 1, ψ)-expansion stable, there exists a θ′ and an x ∈ E x̄ for

which ⟨θ′, x⟩ − ⟨θ′, x̄⟩ < 0. A direct computation shows that ⟨θ′, x⟩ − ⟨θ′, x̄⟩ ≥ ⟨θadv, x⟩ −

⟨θadv, x̄⟩ for all (2, 1, ψ)-perturbations θ′ of θ. Then we have ⟨θadv, x⟩ − ⟨θadv, x̄⟩ < 0. ■

This claim justifies equation 2.5, which only enforces that x̄ is at least as good as all of

its expansions in θadv. The following claim implies that there is always a feasible point of

equation 2.5 that makes modifications of bounded size to c and w.

Claim A.5.2. Consider an instance (G, c, w) with a unique MAP solution x̄. Let w′

be defined as

w′(u, v) =


w(u, v) x̄(u) ̸= x̄(v)

2w(u, v) x̄(u) = x̄(v),

and let c′ be defined as

c′(u, i) =


c(u, i)− ψ x̄(u) = i

c(u, i) x̄(u) ̸= i.

Then the instance (G, c′, w′) is (2, 1, ψ)-expansion stable with MAP solution x̄.

Proof (sketch). The original MAP solution x̄ is also the MAP solution to (G, c′, w′).

Then the original instance (G, c, w) is obtained from (G, c′, w′) by performing the adversarial

(2, 1, ψ)-perturbation for x̄ (see Claim A.5.1). Because x̄ was the unique MAP solution to

this instance, it has better objective than all of its expansions. Therefore, (G, c′, w′) is

(2, 1, ψ)-expansion stable, by Claim A.5.1. ■
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(G, c′, w′) is a “nearby” stable instance to (G, c, w), but it requires changes to quite a

few edges—every edge that is not cut by x̄—and changes the node costs of every vertex.

Surprisingly, the stable instances we found in Section 2.8 were much closer than (G, c′, w′)—

that is, only sparse changes were required to transform the observed instance (G, c, w) to

a (2, 1, ψ)-expansion stable instance.

A.6. Experiment details

In this section, we give more details for the numerical examples for which we evaluate

our curvature bound from Theorem 2.5.2. We studied instances for stereo vision, where

the input is two images taken from slightly offset locations, and the desired output is

the disparity of each pixel location between the two images (this disparity is inversely

proportional to the depth of that pixel). We used the models from Tappen & Freeman

(2003) on three images from the Middlebury stereo dataset (Scharstein & Szeliski, 2002). In

this model, G is a grid graph with one node corresponding to each pixel in one of the images

(say, the one taken from the left), the costs c(u, i) are set using the Birchfield-Tomasi

matching costs (Birchfield & Tomasi, 1998), and the edge weights w(u, v) are set as:

w(u, v) =


P × s |I(u)− I(v)| < T

s otherwise.

Here I(u) is the intensity of one of the images (again, say the left image) at pixel location

u, and we set (P, T, s) = (2, 50, 4). This is a Potts model. The tsukuba, cones, and

venus images were 120 x 150, 125 x 150, and 383 x 434, respectively. These models

had k = 7, k = 5, and k = 5, respectively.
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To generate Table 2.1, we ran the algorithm in equation 2.5 using Gurobi (Gurobi Op-

timization, 2020) for the L1 distance. For each observed instance (G, ĉ, ŵ), this output

a nearby (2, 1, ψ)-stable instance (G, c̄, w̄). In all of our experiments, we used ψ = 1.

Additionally, we always set the target MAP solution xt in equation 2.5 to be equal to the

observed MAP solution x̂MAP . To evaluate our recovery bound, we compared the objective

of the observed LP solution x̂ to the x̂MAP in (G, c̄, w̄). That is, if θ̄ is the objective for

(G, c̄, w̄), we computed ⟨θ̄, x̂⟩ − ⟨θ̄, x̂MAP ⟩ = ⟨θ̄, x̂⟩ − ⟨θ̄, x̄⟩, where the second equality is

because we set the target solution xt to be equal to x̂MAP , so x̂MAP = x̄. Because ψ = 1,

the difference between these two objectives is precisely the value of our curvature bound.

In particular, Theorem 2.5.2 guarantees that

1
2n ||x̂V − x̂

MAP
V ||1 ≤

1
n

(
⟨θ̄, x̂⟩ − ⟨θ̄, x̂MAP ⟩

)
.

The right-hand-side is shown for these instances in the “Recovery error bound” column of

Table 2.1, and the true value of 1
2n ||x̂V − x̂

MAP
V ||1 (i.e., the true recovery error) is shown

in the identically titled column of Table 2.1. On these instances, 1
n

(
⟨θ̄, x̂⟩ − ⟨θ̄, x̂MAP ⟩

)
is

close to 0, so our curvature bound “explains” a large portion of x̂’s recovery of x̂MAP . These

instances are close to (2, 1, ψ)-stable instances where x̂ and x̂MAP have close objective,

and this implies by Theorem 2.5.2 that x̂ approximately recovers x̂MAP .

However, this result relies on a property of the LP solution x̂: that it has good objective

in the stable instance discovered by the procedure equation 2.5. Compare this to Corollary

2.5.3, which only depends on properties of the observed instance θ̂ and the stable instance

θ̄ (in particular, some notion of “distance” between them). Given an observed instance θ̂

and stable instance θ̄, we can try to compute d(θ̄, θ̂) from Corollary 2.5.3 to give a bound
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that does not depend on x̂. Unfortunately, this distance can be large, leading to a bound

that can be vacuous (i.e., normalized Hamming recovery > 1). The following refinement

of Corollary 2.5.3 gives much tighter bounds.

Corollary A.6.1 (LP solution is good if there is a nearby stable instance, refined).

Let x̂MAP and x̂ be the MAP and local LP solutions to an observed instance (G, ĉ, ŵ).

Also, let x̄ be the MAP solution for a latent (2, 1, ψ)-expansion stable instance (G, c̄, w̄).

If θ̂ = (ĉ, ŵ) and θ̄ = (c̄, w̄), define

d(θ̄, θ̂) := sup
x∈L∗(G)

⟨θ̄, x⟩ − ⟨θ̄, x̄⟩ − (⟨θ̂, x⟩ − ⟨θ̂, x̄⟩).

Note that while we still use the name d(·, ·), evoking a metric, d is not symmetric. Then

1
2∥x̂V − x̂

MAP
V ∥1 ≤

d(θ̄, θ̂)
ψ

+ 1
2∥x̂

MAP
V − x̄V ∥1.

Proof. Note:

1
2∥x̂V − x̂

MAP
V ∥1 ≤

1
2∥x̂V − x̄V ∥1 + 1

2∥x̂
MAP
V − x̄V ∥1.

By the definition of d, for any x ∈ L∗(G),

⟨θ̄, x⟩ − ⟨θ̄, x̄⟩ ≤ d(θ̄, θ̂) + (⟨θ̂, x⟩ − ⟨θ̂, x̄⟩).

Now if we set x = x̂, the LP solution to the observed instance, we have ⟨θ̂, x̂⟩− ⟨θ̂, x̄⟩) ≤ 0,

so

⟨θ̄, x̂⟩ − ⟨θ̄, x̄⟩ ≤ d(θ̄, θ̂).
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Theorem 2.5.2 then implies 1
2∥x̂V − x̄V ∥1 ≤ d(θ̄, θ̂)/ψ, which gives the claim. ■

Given an observed instance θ̂ and a (2, 1, ψ)-expansion stable instance θ̄ output by

equation 2.5 with x̄MAP = x̂MAP , we can upper bound d(θ̄, θ̂) by computing

dup(θ̄, θ̂) := sup
x∈L(G)

⟨θ̄, x⟩ − ⟨θ̄, x̄⟩ − (⟨θ̂, x⟩ − ⟨θ̂, x̄⟩),

which is a linear program in x because we relaxed L∗(G) to L(G). Corollary A.6.1 then

implies that the recovery error of x̂ is at most dup(θ̄, θ̂)/ψ, which we can compute. Table

A.1 shows the results of this procedure on two of the same instances from Table 2.1 in

the “Unconditional bound” column. While the values of this bound are much larger than

the “Curvature bound” of Theorem 5.2, they are much more theoretically appealing, since

they only depend on the difference between θ̂ and θ̄ rather than on a property of the LP

solution x̂ to θ̂. For Table A.1, we did a grid search for ψ over {1, . . . , 10}; ψ = 4 gave the

optimal unconditional bound for both instances. The difference in ψ explains the slight

differences between the other columns of Tables 2.1 and A.1.

Table A.1. Results from the output of equation 2.5 on two stereo vision
instances. Curvature bound shows the bound obtained from Theorem 2.5.2,
which depends on the observed LP solution x̂. Unconditional bound shows
the bound from the refined version of Corollary 2.5.3, which depends only on
the observed instance and the stable instance. This “unconditional” bound
explains a reasonably large fraction of the LP solution’s recovery for these
instances: because the instance is close to a stable instance, the LP solution
approximate recovers the MAP solution.

Instance Costs changed Weights changed Curvature bound Unconditional bound
||x̂V −x̂MAP

V ||1
2n

tsukuba 4.9% 2.8% 0.0173 0.4878 0.0027
cones 2.81% 2.31% 0.0137 0.2819 0.0022
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APPENDIX B

Appendix to Chapter 3

B.1. Streaming MAP Inference Details

Theorem 3.4.2. For a random-order arrival stream, if S is the solution output by

Algorithm 1 at the end of the stream and σmin > 1 where σmin and σmax denote the smallest

and largest singular values of LS among all S ⊆ [n] and |S| ≤ 2k, then

E[log det(LS)]
log(OPT) ≥

1− 1
σ

(1− 1
e

)·(2 log σmax−log σmin)
min


where LS = V ⊤

S VS + B⊤
S CBS and OPT = max

R⊆[n], |R|=k
det(V ⊤

R VR + B⊤
RCBR).

Proof. As described in Algorithm 1, we will use S0, S1, . . . , Sk to denote the solution

sets maintained by the algorithm, where Si represents the solution set of size i. In

particular, we have that Si = Si−1∪{si} where si = arg maxj∈Bi
f(S∪{j}) and Bi denotes

the i’th partition i.e., Bi := { (i−1)·n
k

+ 1, (i−1)·n
k

+ 2, . . . , i·n
k
}.

For i ∈ [k], let us use Xi := [Bi ∩ (S∗ \ Si−1) ̸= ∅] to denote the event that there is

at least one element of the optimal solution which has not already been picked by the
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algorithm in the batch Bi and λi := |S∗ \ Si−1|. Then,

P[Xi] = 1− P[Xc
i ]

= 1− (1− λi
n

)(1− λi
n− 1) . . . (1− λi

n− n
k

+ 1)

≥ 1−
(

1− λi
n

)n
k

≥ 1− e− λi
k

≥ λi
k
·
(

1− 1
e

)

Here we use the facts: ex ≥ 1 + x for all x ∈ R, 1− e− λ
k is concave as a function of λ, and

λ ∈ [0, k].

For any element s ∈ [n] and set S ⊆ [n], let us use f(s | S) := f(S ∪ {s})− f(S) to

denote the marginal gain in f obtained by adding the element s to the set S. For any

round i ∈ [k], we then have that f(Si)− f(Si−1) = f(si | Si−1).

Note that

E[f(si | Si−1) | Xi] ≥
∑
ω∈OPT\Si−1 f(ω | Si−1)
|OPT \ Si−1|

.

This happens due to the fact that conditioned on Xi, every element in S∗\Si−1 is equally

likely to be present in Bi and the algorithm picks si such that f(si | Si−1) ≥ f(s | Si−1)
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for all s ∈ Bi.

E[f(si | Si−1) | Si−1] = E[f(si | Si−1) | Si−1, Xi]P[Xi]

+ E[f(si | Si−1) | Si−1, X
c
i ]P[Xc

i ]

≥ E[f(si | Si−1) | Si−1, Xi]P[Xi]

≥ λi
k

(
1− 1

e

)
·
∑
ω∈S∗\Si−1 f(ω | Si−1)
|S∗ \ Si−1|

= λi
|S∗ \ Si−1|

(
1− 1

e

)
· 1
k
·

∑
ω∈S∗\Si−1

f(ω | Si−1)

=
(

1− 1
e

)
· 1
k
·

∑
ω∈S∗\Si−1

f(ω | Si−1)

≥
(

1− 1
e

)
· 1
k
· γ · (f(Si−1 ∪ S∗)− f(Si−1))

≥
(

1− 1
e

)
· 1
k
· γ · (OPT− f(Si−1))

For the last 2 inequalities, we use the fact that f(S) = log det(LS) is monotone non-

decreasing and has a submodularity ratio of γ =
(
2 log σmax

log σmin
− 1

)−1
when σmin > 1 (Gartrell

et al., 2021)[Eq. 45].

Taking expectation over all random draws of Si−1, we get

E[f(si | Si−1)] ≥
(

1− 1
e

)
· γ
k

(OPT− E[f(Si−1)])

Combining the above equation with f(si|Si−1) = f(Si)− f(Si−1), we have

E[f(Si)]− E[f(Si−1)] ≥
(

1− 1
e

)
· γ
k
· (OPT− E[f(Si−1)])
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Next we have

−(OPT− E[f(Si)]) + (OPT− E[f(Si−1)]) ≥
(

1− 1
e

)
· γ
k
· (OPT− E[f(Si−1)])

Re-organizing the above equation, we obtain

OPT− E[f(Si)] ≤
(

1−
(

1− 1
e

)
· γ
k

)
(OPT− E[f(Si−1)])

Applying the above equation recursively k times,

OPT− E[f(Sk)] ≤
(

1−
(

1− 1
e

)
· γ
k

)k
(OPT− E[f(S0)])

=
(

1−
(

1− 1
e

)
· γ
k

)k
OPT

where the last step follows from f(S0) = 0.

Re-organized the terms again, we have

E[f(Sk)] ≥
(

1−
(

1−
(

1− 1
e

)
· γ
k

)k)
OPT

≥
(
1− e−γ(1− 1

e
)
)

OPT

When we substitute γ =
(
2 log σmax

log σmin
− 1

)−1
, we get our final inequality:

E[f(Sk)] ≥
1− 1

σ
(1− 1

e
)·(2 log σmax−log σmin)

min

OPT

■



116

B.2. Hard instance for One-Pass MAP Inference of NDPPs

Outline: We will now give a high-level description of a hard instance for online MAP

inference of NDPPs (this is inspired by (Anari & Vuong, 2022, Example 5)) . Suppose we

have a total of 2d items consisting of pairs of complementary items like modem-router,

printer-ink cartridge, pencil-eraser etc. Let us use {1, 1c, 2, 2c, . . . , d, dc} to denote them.

Any item i is independent of every item other than it’s complement ic. Individually,

P[{i}] = P[{ic}] = 0 . And P[{i, ic}] = x2
i with xi > 0 for all i ∈ [d]. Also, we have

P[{i, j}] = 0 for any i ̸= j. Suppose any of our online algorithms are given the sequence

{1, 2, 3, . . . , d, rc} where r ∈ [d] is some arbitrary item and the algorithm needs to pick

2 items i.e., k = 2. Then, OPT > 0 whereas all of our online algorithms (Online LSS,

Online 2-neighbor, Online-Greedy) will fail to output a valid solution.

Details: Let 0 < x1 < x2 < · · · < xd. Suppose

C =



0 x1

−x1 0

0 x2

−x2 0
. . .

0 xd

−xd 0


C ∈ R2d×2d is a skew-symmetric (i.e., C = −C⊤) block diagonal matrix where the

blocks are of the form

 0 xi

−xi 0

. Suppose we have a total of 2d items consisting of
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d pairs of complementary items. We use {1, 1c, 2, 2c, . . . , d, dc} to denote them. Let

vi = vic = 0 ∀ i ∈ [d] and b1 = e1, b1c = e2, . . . , bdc = e2d where e1, e2, . . . , e2d are the

standard unit vectors in R2d i.e., B = I2d.

For a pair of complementary items S = {i, ic}, f(S) = x2
i . Without loss of generality,

consider S = {1, 1c}. Then we can compute B⊤
S CBS as follows:

B⊤
S CBS =

[
e1 e2

]⊤
C
[
e1 e2

]

=

 0 x1 0 0 · · · 0

−x1 0 0 0 · · · 0

 · [e1 e2

]

=

 0 x1

−x1 0


In this case, we have f(S) = x2

1.

For any pair of non-complementary items S = {i1, i2} where the indices are distinct,

f(S) = 0. Without loss of generality, we can consider S = {1, 2}. Then,

B⊤
S CBS =

[
e1 e3

]⊤
C
[
e1 e3

]

=

0 x1 0 0 · · · 0

0 0 0 x2 · · · 0

 · [e1 e3

]

=

0 0

0 0


And so, we have that f(S) = 0.
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B.3. Experiments and Datasets details

All experiments were performed using a standard desktop computer (Quad-Core Intel

Core i7, 16 GB RAM) using many real-world datasets composed of sets (or baskets) of

items from some ground set of items:

• UK Retail: This is an online retail dataset consisting of sets of items all

purchased together by users (in a single transaction) (Chen et al., 2012). There

are 19,762 transactions (sets of items purchased together) that consist of 3,941

items. Transactions with more than 100 items are discarded.

• MovieLens: This dataset contains sets of movies that users watched (Sharma

et al., 2019). There are 29,516 sets consisting of 12,549 movies.

• Amazon Apparel: This dataset consists of 14,970 registries (sets) from the

apparel category of the Amazon Baby Registries dataset, which is a public dataset

that has been used in prior work on NDPPs (Gartrell et al., 2021; 2019). These

apparel registries are drawn from 100 items in the apparel category.

• Amazon 3-category: We also use a dataset composed of the apparel, diaper,

and feeding categories from Amazon Baby Registries, which are the most popular

categories, giving us 31,218 registries made up of 300 items (Gartrell et al., 2019).

• Instacart: This dataset represents sets of items purchased by users on In-

stacart (Instacart, 2017). Sets with more than 100 items are ignored. This gives

3.2 million total item-sets from 49,677 unique items.

• Million Song: This is a dataset of song playlists put together by users where

every playlist is a set (basket) of songs played by Echo Nest users (McFee et al.,
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2012). Playlists with more than 150 songs are discarded. This gives 968,674

playlists from 371,410 songs.

• Customer Dashboards: This dataset consists of dashboards or baskets of

visualizations created by users (Qian et al., 2021). Each dashboard represents a

set of visualizations selected by a user. There are 63436 dashboards (baskets/sets)

consisting of 1206 visualizations.

• Web Logs: This dataset consists of sets of webpages (baskets) that were all

visited in the same session. There are 2.8 million baskets (sets of webpages) drawn

from 2 million webpages.

• Company Retail: This dataset contains the set of items viewed (or purchased)

by a user in a given session. Sets (baskets) with more than 100 items are discarded.

This results in 2.5 million baskets consisting of 107,349 items.

The last two datasets are proprietary Adobe data. The learning algorithm of (Gartrell

et al., 2021) takes as input a parameter d, which is the embedding size for V , B, C. We

use d = 10 for all datasets other than Instacart, Customer Dashboards, Company Retail

where d = 50 is used and Million Song, where d = 100 is used. For all of our results in 3.7,

we set k = 8 and choose α = 1.1.

B.4. Additional Experimental Results

B.4.1. Number of Determinant Computations

We perform several experiments comparing the number of determinant computations (as a

system-independent proxy for time) of all our online algorithms. We do not compare with

offline greedy here because that algorithm doesn’t explicitly compute all the determinants.
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Results comparing the number of determinant computations as a function of the number of

data points analyzed for a variety of datasets are provided in Figure B.1. Online-2-neighbor

requires the most number of determinant computations but also gives the best results

in terms of solution value. Online-LSS and Online-Greedy use very similar number of

determinant computations.

0 500 1000 1500 2000 2500 3000 3500 4000
Data points analyzed

0

25000

50000

75000

100000

125000

150000

175000

200000

De
t. 
co

m
pu

ta
tio

ns

UK Retail
Online 2-neighbor
Online LSS
Online Greedy

0 2000 4000 6000 8000 10000 12000
Data points analyzed

0

100000

200000

300000

400000

500000

600000

De
t. 

co
m

pu
ta

tio
ns

MovieLens
Online 2-neighbor
Online LSS
Online Greedy

20 40 60 80 100
Data points analyzed

0

2000

4000

6000

8000

10000

12000

14000

De
t. 
co
m
pu

ta
tio

ns

Amazon Apparel
Online 2-neighbor
Online LSS
Online Greedy

0 50 100 150 200 250 300
Data points analyzed

0

10000

20000

30000

40000

50000

De
t. 
co
m
pu

ta
tio

ns

Amazon 3-category
Online 2-neighbor
Online LSS
Online Greedy

0 10000 20000 30000 40000 50000
Data points analyzed

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

De
t. 
co

m
pu

ta
tio

ns

instacart
Online 2-neighbor
Online LSS
Online Greedy

0 50000100000150000200000250000300000350000
Data points analyzed

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
et
. c

om
pu

ta
tio

ns

1e7 Million Song
Online 2-neighbor
Online LSS
Online Greedy

0 200 400 600 800 1000 1200
Data points analyzed

0

10000

20000

30000

40000

De
t. 
co
m
pu

ta
tio

ns

Customer Dashboards
Online 2-neighbor
Online LSS
Online Greedy

Company Retail

Figure B.1. Results comparing the number of determinant computations as
a function of the number of data points analyzed for all our online algorithms.
Online-2-neighbor requires the most number of determinant computations
but also gives the best results in terms of solution value. Online-LSS and
Online-Greedy use very similar number of determinant computations.
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B.4.2. Number of Swaps

Results comparing the number of swaps (as a measure of solution consistency) of all our

online algorithms can be found in Figure B.2. Online-Greedy has the most number of

swaps and therefore the least consistent solution set. On most datasets, the number of

swaps by Online-2-neighbor is very similar to Online-LSS.
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Figure B.2. Results comparing the number of swaps of all our online algo-
rithms. Online-Greedy does the most number of swaps and therefore has
the least consistent solution set. On most datasets, the number of swaps by
Online-2-neighbor is very similar to Online-LSS.
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B.4.3. Random Streams

We also investigate our algorithms under the random stream paradigm. For this setting,

we use some of the previous real-world datasets, and randomly permute the order in

which the data appears in the stream. We do this 100 times and report the average of

solution values in Figure B.3 and the average of number of determinant computations and

swaps in Figure B.4. We observe that Online-2-neighbor and Online-LSS give very similar

performance in this regime and they are always better than Online-Greedy.
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Figure B.3. Solution quality as a function of the number of data points
analyzed in the random stream paradigm. Online-2-neighbor and Online-
LSS give very similar performance in this setting and they are always better
than Online-Greedy.

B.4.4. Ablation study varying ε

To study the effect of ε in Online-LSS (Algorithm 2), we vary ε ∈ {0.05, 0.1, 0.3, 0.5} and

analyze the value of the obtained solutions, number of determinant computations, and

number of swaps. We notice that, in general, the solution quality, number of determinant

computations, and the number of swaps increase as ε decreases. Results are provided in

Figure B.5.
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Figure B.4. Number of determinant computations and swaps as a function
of the number of data points analyzed in the random stream setting. Online-
2-Neighbor needs more determinant computations than Online-LSS but has
very similar number of swaps in this setting. Note that ε = α− 1

.
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Figure B.5. Performance of Online-LSS varying ε for k = 8. Solution quality,
number of determinant computations, and number of swaps seem to increase
with decreasing ε.
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B.4.5. Ablation study varying set size k and ε

In this set of experiments on the Amazon-Apparel dataset using Online-LSS, we study the

choice of set size k and ε on the solution quality, number of determinant computations,

and number of swaps while fixing all other settings to be same as those used previously in

Figure B.3. We can see that as k increases, the solution value decreases across all values

of ε. This is in accordance with our intuition that the probability of larger sets should

be smaller. In general, the number of determinant computations and swaps increases for

increasing k across different values of ε.
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Figure B.6. Comparing the effect of set size k and ε on the solution value,
number of determinant computations, and number of swaps for Online-lss.
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