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ABSTRACT

Chip Multiprocessors (CMP) are everywhere, from mobile systems to servers. Thread-Level

Parallelism (TLP) is the characteristic of a program that makes use of the parallel cores of a CMP

to improve performance. Programming language abstractions are a way to generate TLP, which

allows CMP to reach their full potential.

This dissertation focuses on two main contributions:

• STATS, a parallelizing compiler designed to extract TLP from nondeterministic programs by

leveraging a novel programming language abstraction.

• CARMOT, a tool intended to aid programmers in effectively utilizing this innovative program-

ming language abstraction.

TLP in today’s programs is limited by data dependences that must be satisfied as the program

executes. Nondeterministic programs suffer from this same limitation, but the nondeterminism

gives them an additional degree of freedom that deterministic programs do not have: the ability to

satisfy some dependences with many different data, which results in different outputs even when

they run with the same input. Some of these outputs can be generated more quickly in paral-

lel than others can.STATS is the first compiler to generate a new source of parallelism that has

never been explored before, and it does so by taking advantage of this extra degree of freedom

in nondeterministic programs. This resulted in STATS being able to achieve significant perfor-

mance improvements in nondeterministic programs. To use STATS, developers have to express

this additional degree of freedom in the code explicitly. STATS enables developers to encode this

knowledge by extending the C++ language with a new abstraction.

While STATS allows developers to obtain significantly more performance, using the C++ ab-

straction we introduced can be challenging in large code-bases. To assist developers in using this
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abstraction, we created a new tool called CARMOT. We found that CARMOT can also support de-

velopers in using many other programming language abstractions beyond the STATS abstraction.

Hence, we developed an approach that generalizes the STATS-specific needs to reach many other

modern programming language abstractions such as those offered by OpenMP pragmas and C++

features such as smart pointers.

Thesis Statement:

Thread-Level Parallelism of programs is limited by data dependences that must be satisfied in their

intended sequential order to preserve program semantics. However, nondeterministic programs

have an additional degree of freedom that deterministic programs do not have: the ability to satisfy

some dependences with different data. We explore this additional degree of freedom and uncover

a new subset of data dependences that can be satisfied in an alternative way, which generates

Thread-Level Parallelism while preserving the semantics of nondeterministic programs.



5

ACKNOWLEDGEMENTS

I want to express my appreciation and profund gratitude to the following people who have

played an essential role in my academic journey and the completion of my PhD.

To my advisor: Simone Campanoni, for his guidance, dedication, expertise, and mentorship

throughout my research, for the opportunities he gave me, and the knowledge he shared.

To my thesis committee members and collaborators: Peter Dinda, Nikos Hardavellas, Robby

Findler, Margo Seltzer, and Arthur “Barney” Maccabe, for their feedback, support, and insightful

ideas.

To my friends and lab mates: Tommy McMichen, Brian Homerding, Yian Su, Federico Sossai,

Atmn Patel, Nathan Greiner, David Dlott, Brian Suchy, Mike Wilkins, Nick Wanninger, Vijay Kan-

diah, Lukas Lazarek, Sanchit Kalhan, Madhav Suresh, Michalis Mamakos, and my Italian friends

Ettore M. G. Trainiti and Simone Bianconi, for all the fun we had, and the beers at Sketchbook.

To my family, for their boundless love, encouragement, and sacrifices, and for supporting me

throughout my studies for many, many, oh so many years.



6



7

TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Generating TLP in Nondeterministic Programs with STATS . . . . . . . . . . . . . 20

1.2 Aiding Programmers in Using Programming Language Abstractions with CARMOT 21

1.3 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2: Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 State Dependences Allow STATS to Generate a New Source of TLP . . . . . . . . 27

2.2.1 Today’s Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 PSEs Analysis is the Key for Programming Language Abstractions Support . . . . 33

2.3.1 Challenges in Adopting Abstractions . . . . . . . . . . . . . . . . . . . . . 33



8

2.3.2 Benefits of PSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Overhead of PSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 Limitations of Current Dynamic Analyses . . . . . . . . . . . . . . . . . . 36

Chapter 3: Unconventional Parallelization of Nondeterministic Applications . . . . . . 38

3.1 The STATS Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 The STATS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.4 Compilers and Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.5 Autotuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Evaluating STATS-Generated TLP . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Taking Advantage of State Dependences . . . . . . . . . . . . . . . . . . . 57

3.2.4 STATS and its Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 Developer Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.6 Non-Representative Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.7 Autotuning in STATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.8 When STATS Should Be Used . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 STATS Sources of Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



9

3.3.1 Unbalanced Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Extra Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Threads Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.4 Sequential Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.5 Mispeculation and Unreachability . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Evaluating the Impact of STATS-Generated Overhead . . . . . . . . . . . . . . . . 75

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.4 Impact of STATS-Generated Overhead on Benchmarks . . . . . . . . . . . 77

3.4.5 Performance Obtained by TLP Sources . . . . . . . . . . . . . . . . . . . 78

3.4.6 Performance Effects of STATS Overhead . . . . . . . . . . . . . . . . . . 80

3.4.7 Extra Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.8 Architecture Effects of STATS-Generated TLP . . . . . . . . . . . . . . . 86

3.4.9 Output Variability Due to Nondeterminism . . . . . . . . . . . . . . . . . 87

Chapter 4: Program State Element Characterization . . . . . . . . . . . . . . . . . . . 90

4.1 Performing PSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Components of PSEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.2 From PSEC to Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 CARMOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



10

4.2.1 PSEC with CARMOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Advantages of CARMOT’s Dynamic Approach . . . . . . . . . . . . . . . 96

4.2.3 CARMOT as a System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.4 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.5 Pin Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.6 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 STATS Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.3 OpenMP Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.4 Smart Pointers Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 5: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 STATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Extracting TLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.2 Autotuning/Search-based Optimization . . . . . . . . . . . . . . . . . . . 114

5.1.3 Parallel Workload Characterization . . . . . . . . . . . . . . . . . . . . . . 114

5.2 CARMOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Memory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Parallelism Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Reference Cycle Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 116



11

Chapter 6: Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Opportunities for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.1 An Improved Version of STATS with Program Summarization . . . . . . . 118

6.1.2 Improvements and Increased Abstraction Support for CARMOT . . . . . . 120

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix A: The LLVM compiler optimization mem2reg introduces ambiguities be-
tween source code and IR . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



12

LIST OF FIGURES

1.1 Sequential code performance has reached a plateau and it is now 62× (or 11 years)
behind what it should have been. Furthermore, the performance improvements
since approximately 2015 have not been significant. . . . . . . . . . . . . . . . . . 19

2.1 Example of a source code region of interest and its program state. . . . . . . . . . . 24

2.2 Examples of control and data dependences, along with apparent and actual depen-
dences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Taxonomy of dependences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Output variability of nondeterministic PARSEC benchmarks. Several exhibit high
variability and are particularly amenable to STATS. . . . . . . . . . . . . . . . . . 29

2.5 Highest speedup obtained by nondeterministic PARSEC benchmarks on a 28-core
Intel-based platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 bodytrack execution is serialized by a chain of actual dependences. . . . . . . . 30

2.7 Code pattern that includes a state dependence. . . . . . . . . . . . . . . . . . . . . 31

2.10 State of the art dynamic analyses based on dependence graph and/or memory
footprint of instructions miss important parallelization opportunities compared to
PSEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Alternative execution model obtained by using auxiliary code to satisfy a state
dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



13

3.2 STATS includes three compilers, a runtime, an autotuner, and a profiler to opti-
mize a nondeterministic C++ program for which the developer has identified state
dependences via the STATS Interface. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 The State Dependence Interface makes the pattern of Figure 2.7 explicit to the
compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 For most benchmarks, STATS generates a significant amount of extra parallelism
that saturates the hardware resources of our platform. “Original” is the out-of-the-
box benchmark that has been parallelized by traditional means. “Seq. STATS”
(“Par. STATS”) is the binary generated by STATS starting from the sequential
(multi-threaded) version of a benchmark. The bar graphs show maximum speedup. 55

3.9 Geometric mean of speedups shown in Figure 3.8. . . . . . . . . . . . . . . . . . 56

3.10 The performance obtained by STATS using a single socket with Hyper-Threading
is constrained by hardware resources and not by low TLP. . . . . . . . . . . . . . 58

3.11 The binaries generated by STATS use considerably less energy compared to the
original benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 STATS can increase the original output quality by spending the saved time to iterate
more over the same dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.13 Only STATS takes advantage of non-trivial state dependences: they require the
auxiliary code only STATS generates. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Developers gain most of the STATS benefits with a minimum effort (by encoding
only two tradeoffs). This figure shows the average performance (geometric mean)
relative to the best STATS speedup, by number of tradeoffs encoded. . . . . . . . . 64

3.15 STATS loses only a small amount of performance when not representative inputs
are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.16 Average performance (geometric mean) of the final binary identified by the STATS
autotuner after exploring a number of configurations. . . . . . . . . . . . . . . . . 66

3.17 Processing different number of inputs leads to unbalanced computation. . . . . . . 68



14

3.18 STATS parallelized programs perform extra work because of the execution model
that STATS enforces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.19 STATS enforces an execution model that requires copies of the computational state
to execute the computation in parallel. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.20 Threads created by STATS need to synchronize among each others to send or re-
ceive data or signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.21 Sequential code outside the code region of STATS does not benefit from the addi-
tional TLP that STATS generates. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.22 For most benchmarks, STATS generates a significant amount of extra parallelism.
“Original” is the out-of-the-box benchmark that has been parallelized by traditional
means. “Seq. STATS” (“Par. STATS”) is the binary generated by STATS starting
from the sequential (multi-threaded) version of a benchmark. . . . . . . . . . . . . 78

3.23 Percentage of speedup lost by benchmarks that take advantage of both original TLP
and STATS TLP, on 28 cores. The number at the right of each bar is the amount
of speedup lost with respect to the ideal speedup. Every benchmark is limited by
different sources of overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.24 Percentage of speedup lost due to the “Extra computation” fraction of Figure 3.23.
The number at the right of each bar is the amount of speedup lost only because of
“Extra computation”. The two main sources of overhead are related to the gener-
ation of the speculative state and multiple original states. The overhead due to the
STATS setup phase only accounts for a small fraction of the speedup lost. . . . . . 79

3.25 Percentage of speedup lost by benchmarks that take advantage of STATS TLP only,
on both 14 and 28 cores. The number at the right of each bar is the amount of
speedup lost with respect to the ideal speedup of 28× and 14× respectively. The
fraction of speedup lost due to STATS “Extra computation” dramatically increases
when more TLP is generated from state dependences. . . . . . . . . . . . . . . . . 82

3.26 Percentage of speedup lost due to the “Extra computation” fraction of Figure 3.25.
The number at the right of each bar is the amount of speedup lost only because of
“Extra computation”. As in Figure 3.24, the main overhead components are related
to the STATS speculation scheme (speculative state and multiple original states),
while the speedup lost because of the STATS setup is negligible. . . . . . . . . . . 83



15

3.27 Extra amount of instructions executed by STATS parallelized benchmarks on 28
cores. The benchmarks bodytrack and facedet-and-track, execute a
considerable amount of extra instructions than their original version. . . . . . . . . 85

3.28 Extra instructions breakdown related to the “Extra computation” of Figure 3.27.
Instructions related to the generation of the “Speculative state” by the alternative
producer, and “State copying” dominate the other sources of extra instructions. . . 85

3.29 Output variability before and after the transformation performed by STATS (lower
values are better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 PSEC follows a Finite State Automaton (FSA). . . . . . . . . . . . . . . . . . . . 95

4.2 CARMOT automatically builds the PSEC containing the information to parallelize
this for-loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 CARMOT produces the mapping between source/IR code and runs an instrumented
binary to build the PSEC, which is then used to generate the target abstraction in-
formation for the programmer at the source code level. . . . . . . . . . . . . . . . 98

4.4 The runtime utilizes batching, shadow profiling, and pipeline parallelism to effi-
ciently perform PSEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 The CARMOT overhead to generate the Input-Output-State abstraction of STATS
is one order of magnitude less than a naive approach. . . . . . . . . . . . . . . . . 106

4.6 CARMOT-generated OpenMP pragmas achieve the same speedup of the original
program parallelism manually implemented by a programmer. These experiments
use the production-size inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 The CARMOT overhead to generate OpenMP pragma information is two orders of
magnitude less than a naive approach. . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Overhead reduction of Figure 4.7 characterized per CARMOT optimization. . . . 109

4.9 CARMOT-identified reference cycle across files, functions, and data structure in
the nab benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



16

4.10 The CARMOT overhead for identifying reference cycles is two orders of magni-
tude less than a naive approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 A new version of STATS (STATS 2.0) does not need to autotune on training inputs.
It can use program summarization to detect the behavior of a program and tune the
parallel execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 In a new STATS execution model a fast, summarized version of the original pro-
gram is executed before the parallel, non-summarized version of the same program. 119



17

LIST OF TABLES

3.1 Most code changes required to take advantage of static dependences are automat-
ically performed by STATS compilers. The lines of code (LOC) modified/added
by a developer through the STATS interface is negligible compared to the ones au-
tomatically generated by STATS compilers. Moreover, the auxiliary code and the
STATS runtime add only a small amount of extra instructions at run-time (≤ 7.1%). 51

3.2 Total number of threads, computational states, and state size of the “Par. STATS”
version of the benchmarks shown in Figure 3.22b. . . . . . . . . . . . . . . . . . 76

3.3 Cache and branch mispredictions of the original and STATS transformed bench-
marks. For each entry the value on the left is the total number of mispredictions (in
billions), the value on the right is the misprediction rate. . . . . . . . . . . . . . . 89

4.1 Different abstractions need different parts of PSEC. . . . . . . . . . . . . . . . . . 93



18

CHAPTER 1

INTRODUCTION

Since approximately 2004, the increase of sequential code performance has reached a plateau due

to the end of Moore’s law and Dennard scaling (Figure 1.1 shows the speedup of SPEC CINT

benchmarks over the years). The scaling of CMOS technology has slowed down and the increase

in power consumption is the main barrier to improving sequential code performance. To tackle

this problem, single-core computer architectures evolved into multi-core architectures. Nowadays,

multi-core systems are everywhere, from mobile systems to servers. But, to fully take advantage

of these additional cores, programs need Thread-Level Parallelism (TLP). Unfortunately, most of

today’s workloads have low and non-scalable TLP because of their irregularity and complexity.

This complexity comes from the data that need to be moved from and to different parts of a pro-

gram, which creates a data dependence. Data dependences are the main obstacle that is blocking

programs’ TLP and making multi-core systems mostly underutilized. However, data dependences

must be satisfied in their intended sequential order to preserve programs semantics.

In this dissertation, we focus on nondeterministic programs, which are a substantial subset of

today’s workloads. Nondeterministic programs also suffer from low and non-scalable TLP. These

programs are widely used in many fields, from machine learning techniques (e.g., centroid se-

lection in clustering, choice of initial weights in neural networks) to multimedia analysis (e.g.,

video analysis, image retrieval) and financial applications (e.g., Monte Carlo simulations for op-

tions pricing). Their nondeterminism is often used to avoid local minima, decrease the average

computational complexity of algorithms, model stochastic variables, and more.

Nondeterministic programs naturally produce different outputs from run to run given the same
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Figure 1.1: Sequential code performance has reached a plateau and it is now 62× (or 11 years)
behind what it should have been. Furthermore, the performance improvements since approximately
2015 have not been significant.

input. This gives them an additional degree of freedom that deterministic programs do not have

and that has never been exploited before. We see this as an opportunity, and we ask the question:

Can we take advantage of the output variability of nondeterministic programs to liberate additional

TLP while preserving the output quality? This dissertation answers this question by considering

alternative ways of satisfying data dependences in nondeterministic programs.

We identify a subset of dependences in nondeterministic programs that can be satisfied via al-

ternative, dependence-specific code. We take advantage of these dependences to generate TLP in

nondeterministic programs following a parallel execution model that we implemented in a system

we call STATS (STAte Transition Speculator). STATS extends the C++ language with a program-

ming language abstraction that developers use to provide information to the STATS system about

the computational state and the nondeterminism of the program region that will be parallelized.

Furthermore, we implemented a tool called CARMOT (Compiler And Runtime Memory Observa-

tion Tool) that aids developers in using the STATS programming language abstraction (and many
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others) by collecting essential information about the computational state of a program. Next, we

describe how STATS generates TLP in nondeterministic programs and how CARMOT assists de-

velopers in using the STATS programming language abstraction.

1.1 Generating TLP in Nondeterministic Programs with STATS

Increasing Thread-Level Parallelism (TLP) is the chief way to improve performance on multi-core

systems. However, the inter-thread data movements present in most programs constrain their TLP

and hence their performance. These data movements are necessary for satisfying dependences,

hence to preserve the semantics of a program and its output quality. To generate parallelism we

must break dependences in order to make the producer of these data independent from the con-

sumer. Once the producer is independent from the consumer, both of those parts of the program

can run in parallel. However, we still need to preserve the semantics of the program. In other

words, we need a way to generate the data that will be fed to the consumer, independently from

the producer of those data. This is where nondeterminism becomes essential. In nondeterministic

programs, the data that flow from a producer to a consumer change at every run of the program

because of the nondeterminism in the computation. So, in nondeterministic programs we can gen-

erate any of the data that might have been generated by the nondeterministic producer. This gives

us more chances to predict these data correctly and break the dependence between the original

producer and the consumer.

We perform the prediction of the data that breaks the dependence between producer and con-

sumer with our system STATS (STAte Transition Speculator), a parallelizing compiler for nonde-

terministic programs. For STATS to work, the producer, the consumer, and the data exchange

between them, need to be expressed explicitly in the source code of the program. This knowledge

is program-specific and needs to be encoded by the developer. We enable developers to do so by
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exposing a new programming language abstraction that interfaces with STATS.

1.2 Aiding Programmers in Using Programming Language Abstractions with CARMOT

Programming languages evolve to give programmers powerful abstractions that improve perfor-

mance, energy savings, and code clarity. For example, the abstraction we introduced with STATS

enables programmers to obtain additional performance by taking advantage of the multiple cores

available in a chip. Unfortunately, programmers often struggle to use abstractions properly, which

leads to performance and correctness issues. The difficulty in using abstractions lies in the implicit

requirement that programmers must be omniscient regarding the behavior of the whole program.

For example, in the STATS abstraction, programmers need to understand what data (i.e., variables

and memory locations) flow from the producer to its consumer for the code region the abstraction is

applied to. More generally, programmers need to understand how variables and memory locations

evolve as the program executes, from the point of view of the target code region of an abstraction

(e.g., a memory object is always written before being read in a code region) to properly use modern

programming language abstractions. This can be a time-consuming and error-prone process.

Variables and memory locations form the state of a program. We refer to them as Program

State Elements (PSEs). We observe that many abstractions rely on a common piece of information

related to the access pattern of PSEs. Our approach studies this access pattern for the code region

where the abstraction is to be applied. We define a new concept that summarizes the impact of this

access pattern, which we call Program State Element Characterization (PSEC). PSEC describes:

(a) which, where, and how PSEs are used in a code region, (b) how data of PSEs flows across code

region boundaries, and (c) the reachability relationships between different PSEs. Intuitively, the

PSEC of a code region assists programmers by formalizing their mental process when thinking

about abstractions. PSEC presents this information to programmers in human-readable form by



22

reporting source code level information as instances of the target abstraction.

We are the first to automate PSEC. We do it with CARMOT (Compiler And Runtime Memory

Observation Tool), a compiler-runtime, co-designed tool that efficiently performs PSEC. A pro-

grammer invokes CARMOT with the abstraction they would like to use on a given code region

(e.g., the STATS abstraction). CARMOT then generates abstraction recommendations by synthe-

sizing an instance of the target abstraction using the PSEC of the target program.

1.3 Dissertation Contributions

The contributions of this dissertation are as follows.

• We show how we can take advantage of the nondeterminism of programs to generate TLP

through our programming language abstraction offered by ouri STATS system (§3).

• We perform an in-depth analysis of STATS-generated overhead to understand its limiting factors

from a performance point of view (§3.3).

• We observe that PSEC is the common information needed to use numerous abstractions correctly

and at their full potential, and we illustrate how CARMOT performs PSEC efficiently to provide

programmers with support for the STATS abstraction and many others (§4)).

Published work:

The STATS parallelizing compiler has been published at ASPLOS 2018 [1], our in-depth study

of STATS-generated overhead has been published at ISPASS 2019 [2], while CARMOT has been

published at CGO 2023 [3].
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CHAPTER 2

BACKGROUND AND MOTIVATION

We begin with an introduction of the basic concepts that we will often refer to in this dissertation

and that are in common between our parallelizing compiler STATS and our tool for programming

language abstractions CARMOT. We first provide a definition of these concepts in §2.1, then we

describe the opportunities that motivated STATS in §2.2 and CARMOT in §2.3.

2.1 Definitions

Source Code Region of Interest. In general, a code region is a delimited section of source code.

In the context of this dissertation we limit the general definition by considering only single-entry

single-exit code regions that are compound statements. In imperative languages such as C++,

a compound statement is formed using scopes (or code-blocks), which are delimited by curly

braces “{...}”. Examples of compound statements are functions, if-then-else blocks, and loops

(e.g., Figure 2.1).

Program State. The computational state of a program is comprised of all its variables and mem-

ory locations (i.e., globals, heap, and stack) and the data contained them. We call these components

Program State Elements (PSEs) [3]. In the context of a code region, the program state of the re-

gion is the subset of PSEs that are used (i.e., read or written) in that region; we show an example

in Figure 2.1.

Dependences. A dependence is a directed binary relation between two instructions [4].
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0 void function(unsigned N){
1 unsigned a = 1, b = 3, i = 0;
2    while (i < N){
3      a += 5;
4      ++i;
5    }
6 return a + b;
7 }

a Source Code ROI
The ROI’s Program State
is only composed by PSEs
variables a, i, and N,
because variable b
is not used in the ROI

Figure 2.1: Example of a source code region of interest and its program state.

Dependences can be classified in two sets: control dependences and data dependences. Control

dependences are related to the control-flow of a program (i.e., conditional branches such as if-

then-else and switch statements, loops, goto, etc.). An instruction i control-depends on another

instruction j if the outcome of j determines whether i will be executed or not. For example, in

Figure 2.2 instruction 4 control-depends on instruction 3 because 4 will be executed depending on

the outcome of 3. On the other hand, data dependences are related to the data-flow of a program,

which involves instructions that produce data and instructions that consume data. An instruction is

data-dependent on another instruction if they both access the same data (e.g., the same variable or

memory location) and at least one of them writes it. Data dependences can be further classified in

three categories: Read-After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW)

dependences. As the name suggests, a RAW dependence implies that an instruction first writes

some data, and a subsequent instruction reads that same data. WAR and WAW dependences are

defined similarly. Furthermore, when dependences can cross one or more loop iterations they are

defined as loop-carried RAW, WAR, and WAW. Examples of RAW, WAR, and WAW dependences

are shown in Figure 2.2.

Dependedences can also be orthogonally classified as apparent dependences or actual depen-

dences. Apparent dependences are those that are not in fact necessary, and do not need to be
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satisfied in order to correctly execute a program an preserve its semantics, however their existence

could not be disproved. We show an example of apparent dependence in Figure 2.2, where we

cannot prove that a RAW dependence between instructions 10 and 13 does not exist, even though

intuitively it is clear that the condition at line 12 can never be true because of 11. Conversely, all

actual dependences in a program need to be satisfied for the semantics of a program to be preserved,

and generally they need to be satisfied in the intended sequential order defined by the instructions

of the program. An example of actual dependence is the RAW dependence shown in Figure 2.2,

where instruction 6 is the producer of variable a (i.e., writes a value into a) and instruction 7 is

the consumer of such variable (i.e., reads the value from a). We define state dependences as the

subset of actual dependences that involve the update of the state of a code region and do not need

to follow a sequential execution to be satisfied. More details on state dependences are provided in

§2.2 and §3. We illustrate a taxonomy for this dependence classification in Figure 2.3.

Programming Language Abstractions. An abstraction is the representation of a concept or a

process that has been simplified by removing unnecessary details. Programming language abstrac-

tions hide the complex details of computer architectures, allowing developers to produce more

performant and easy to maintain code. In this dissertation, we explore: the STATS abstraction

that allows developers to generate TLP without worrying about the details of how this is done;

several OpenMP abstractions (parallel for, critical/ordered section, task), which allow developers

to declare TLP and asynchronous units of computation while hiding the complex implementation

details; and the C++ smart pointers abstraction, which performs automatic memory management

relieving the developer of having to do it manually.

Software Systems. In general, a system is a software program that manages hardware resources

and provides a platform to run applications. In the context of this dissertation, we focus on systems
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0 void function(int N){
1 unsigned a,b,c,d,e,f,g,h;
2    for (int i = 0; i < N; ++i){
3      if (e > 7){
4        f = b;
5      }
6 a = 3;
7 b = a;
8 d = c;
9      c = 5;
10     c = 7;
11     g = incrementBy1(g);
12   if (g == 0){
13       h = c;
14 }
15   }
16 return;
17 }

RAW

WAR

WAW

RAW
Loop Carried

Control Dependence

Apparent Dependence (RAW)

Figure 2.2: Examples of control and data dependences, along with apparent and actual depen-
dences.

that have a compiler and a runtime component.

A runtime provides an execution environment that a program can run in. Depending on the task,

a runtime can provide: memory management and garbage collection, input-output-error handling,

execution control, multithreading and synchronization support (e.g., the OpenMP runtime), access

and security control, and more. In STATS, the runtime provides support for generating TLP and

for predicting the data to satisfy a dependence. While in CARMOT, the runtime is responsible for

collecting information about the behavior of PSEs and for performing PSEC.

A compiler is responsible for analyzing, transforming, and translating high-level programming

language source code into machine-readable code that a processing unit (e.g., a CPU) can un-

derstand and execute. Typically, a compiler has three components: front-end, middle-end, and

back-end. The front-end parses the high-level, human-readable source code into a representation
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Figure 2.3: Taxonomy of dependences. State dependences are those that can be satisfied in an
alternative way.

more amenable for analyses and transformations called Intermediate Representation (IR). Then,

the middle-end is responsible for analyzing, transforming, and optimizing the IR. Finally, the back-

end translates the IR into machine code for the target computer architecture. The STATS compiler

inserts in the IR the program-specific knowledge embedded by a developer through the STATS

programming language abstraction. While the CARMOT compiler inserts calls to the CARMOT

runtime (this practice is called “code instrumentation”) to collect information on PSEs and per-

forms several middle-end optimizations to reduce the amount of instrumentation in order to reduce

CARMOT’s overhead.

In this dissertation we will touch upon other well-known compiler concepts such as: backward

and forward Data-Flow Analysis (and its GEN, KILL, IN, and OUT sets), basic blocks, invariants,

induction variables, callgraph, the LLVM mem2reg compiler optimization and others. Explaining

these concepts in detail is outside the scope of this dissertation. We refer readers who are not

familiar with these concepts to the canonical references [5], [6].

2.2 State Dependences Allow STATS to Generate a New Source of TLP

With the definition of the basic concepts that we build upon, we now motivate the research novelty

of this dissertation. We first motivate STATS, our parallelizing compiler for nondeterministic pro-

grams the generate a new source of TLP by satisfying a subset of actual dependences, which we

call state dependences, in an alternative way.
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The output of a deterministic program is determined solely by its input. To preserve its output

quality, all of its actual dependences must be satisfied by generating and forwarding the inter-

mediate data according to these dependences. Some programs, however, are nondeterministic by

design. For example, Monte Carlo simulations use random sampling to approximate a solution or

make predictions. These programs may exhibit variation in their output across runs for the same

input. Figure 2.4 shows such variation over 100 runs for six well-known nondeterministic, parallel

benchmarks of the PARSEC benchmark suite [7].

Output variations of nondeterministic programs originate from variations in their program’s in-

termediate data. A given intermediate datum generated by a producer and forwarded to a consumer

may vary across runs for the same input. If we were able to predict any of these intermediate data,

we could forward them to their respective consumer. This suggests a degree of freedom (i.e., any

of these data can be forwarded to its consumer) in satisfying the related dependence. This work is

the first that takes advantage of this opportunity. We describe our solution in §3.

The rest of this section shows the performance limitations of the considered nondeterministic

benchmarks. Then, it uses one of these benchmarks to demonstrate the described opportunity as

well as to give the intuition behind our solution. We end this section by describing a code pattern

we found in these programs that our approach targets to take advantage of this opportunity.

2.2.1 Today’s Limits

To understand the need for additional parallelizations for nondeterministic programs, we stud-

ied the PARSEC benchmark suite [7], which features multi-threaded implementations of modern

workloads, as well as the industrial-strength and widely adopted codebase OpenCV [8] (which is

composed of millions of lines of code). These programs have been manually parallelized exten-

sively leaving no room for simple additional parallelizations.
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Figure 2.4: Output variability of nondeterministic PARSEC benchmarks. Several exhibit high
variability and are particularly amenable to STATS.
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Figure 2.5: Highest speedup obtained by nondeterministic PARSEC benchmarks on a 28-core
Intel-based platform.

All benchmarks considered have limited TLP. Figure 2.5 shows the highest speedup obtained

by each benchmark compared to their sequential execution. The distance from an ideal speedup of

28× (the total number of cores available in our Intel-based machine) shows the need for creating

additional TLP.

2.2.2 Code Example

Now that we have shown that there is a need to generate additional TLP out of modern, nonde-

terministic workloads (Figure 2.5). We are going to explain how we can extract an additional
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0 1 2 3 4 5core 0

time

Analyzing quadruple 0
(producer)

Data (i.e., randomized body position)
transferred to the next quadruple analysis

Sequential chain of actual dependences in bodytrack

Analyzing quadruple 1
(consumer)

Figure 2.6: bodytrack execution is serialized by a chain of actual dependences.

source of TLP out of these benchmarks. To do so, we concretize the discussion using a specific

benchmark, which is a good representative of the others.

Benchmark. Let us consider the nondeterministic program bodytrack. This program tracks

a person’s body as captured by four cameras that target the same space (e.g., an office). To do so,

bodytrack analyzes the stream of four pictures, called quadruples, one quadruple at a time.

The analysis of a quadruple generates a datum, which represents the current belief of where the

body is in the 3D space. This datum is consumed by the analysis of the next quadruple to exploit

the fact that is likely that the person in quadruple i + 1 is relatively close to where he/she was in

quadruple i. By exploiting this correlation, bodytrack is capable of obtaining high accuracy

in its output. However, the TLP, and therefore performance, of bodytrack is constrained by a

single sequential chain of dependences, because the analysis of the quadruple i + 1 can start only

when the datum generated by the analysis of the quadruple i is available (Figure 2.6).

The computation performed to analyze quadruples is computationally intensive (i.e., it con-

sumes 97% of the total execution time) and randomized (i.e., nondeterministic). This randomiza-

tion is responsible for the generation of slightly different positions of the body parts for the same
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quadruple over multiple and independent runs. These randomized body positions are the data that

need to be transferred from the analysis of quadruple i (producer) to i + 1 (consumer) to satisfy

the sequential chain of dependences. We take advantage of the fact that any of these randomized

body positions are acceptable to satisfy the dependence.

State Dependence. The dependence chain described earlier between quadruples in bodytrack

shown in Figure 2.6 is an example of state dependence. State dependences are the actual depen-

dences related to a piece of computational state used in the code pattern shown in Figure 2.7. A

code region (e.g., a basic block, a loop, or an entire function) computes an output O from a given

input I, consulting some local state S. As part of computing O, the code also updates S which then

feeds forward to the next invocation of the code. Hence, there is a dependence between invocation

i’s write of S and invocation i+ 1’s read of S, which serializes invocations of the code.

Opportunity. This limiting dependence chain between quadruples can be broken by injecting an

alternative producer for the forwarded datum. The intuition is that where a human is at quadruple

i is likely to be independent of where he/she was in the quadruple i − k with high k. This can

be exploited as follows: rather than blocking the analysis of i until the analysis of all previous

quadruples ends, we can overlap it with them. To do so we have to solve the problem of predicting

the incoming data that the analysis of i would have received if the code had run sequentially. To

Figure 2.7: Code pattern that includes a state dependence.
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solve this problem we perform extra computation before analyzing the quadruple i. This extra

computation is an alternative producer of the datum required by the quadruple i and, therefore, it

needs to consume (only) a few previous quadruples of the ith one. We call the alternative producer

auxiliary code.

Short Memory Property. The property under which the auxiliary code can safely substitute

the original producer of the related datum is that the last few inputs (how many is determined by

STATS) are enough for this goal. In other words, an update related to a state dependence only

depends on a few previous updates, not all of them (like in regular actual dependences). We call

this the Short Memory Property. This property is checked at run time to preserve the original output

quality by comparing the datum generated by the auxiliary code with the ones generated by the

original producer. In more detail, when all quadruples before i are analyzed by the original code,

an actual datum that the auxiliary code produces is now available. These two data are compared

to check whether the analysis of the quadruple i (and therefore the next ones) matches the original

semantic. If not, then we can either generate another datum from the non-deterministic original

producer and repeat the checks or we abort the analysis of i (and the subsequent ones) restarting

it using the correct datum. Our hypothesis (confirmed by STATS) is that often the auxiliary code

generates an acceptable datum, therefore, liberating additional TLP.

To take advantage of state dependences and their short memory property, STATS introduces

a new programming language abstraction that developers use to encode information about state

dependences.



33

2.3 PSEs Analysis is the Key for Programming Language Abstractions Support

Using some programming language abstractions in a large codebase can be challenging and error-

prone due to the lack of tools to assist programmers [9]. Here we show three use cases that explore

five different abstractions and describing how they support and challenge programmers. The pro-

gramming language abstractions we target are: the STATS abstraction, several TLP-generating

OpenMP abstractions, and the C++ smart pointer abstraction. We show how an analysis of PSEs

behavior that we call PSEC is the common information necessary to build tools that help program-

mers use these abstractions. Finally, we show that prior work is insufficient as they use either static

analysis only [10]–[13] or limited dynamic strategies [14]–[17] that limit them to a few simple

abstractions.

2.3.1 Challenges in Adopting Abstractions

Declaring State Dependences with STATS. STATS requires a programmer to follow a given

code structure, which makes the compiler aware of a program’s state dependence. To do so, a

programmer needs to classify the PSEs accessed by the code region where STATS operates into

three classes: 1) Input class (PSEs that are only read), 2) Output class (PSEs that are written

first), 3) State class (PSEs that are read first and then written). Understanding which PSE goes

into which class often requires a programmer to understand the behavior of the entire program.

Misclassifications lead to performance degradation or an incorrect program.

Program Parallelization/Synchronization. OpenMP has high-level abstractions to parallelize

loops (#pragma omp parallel for), synchronize parallel accesses (#pragma omp critical/ordered),

and asynchronously execute units of computation (#pragma omp task). Using these pragmas to

their full potential quickly becomes complex as they often require both the specification of their
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attributes and extra code to prepare the target code region for efficient parallel execution. For

example, #pragma omp parallel for requires programmers to understand which PSE variable needs

to be privatized per thread (using the private attribute), which can be shared (shared attribute), and

which code statement uses PSEs involved in true data dependences that should be in a #pragma

omp critical/ordered section. Also, programmers need to understand how a private PSE variable

interacts with the code outside the target loop. Variables that are written before the loop and read

inside need to be declared as first private, while variables written inside the loop and read after

need to be last private. Furthermore, programmers might have to write additional preparation code

to, for example, clone PSEs that are more complex than variables (e.g., arrays, objects). This

requires knowledge of where and how these PSEs are allocated (e.g., their size, type, alignment).

Similarly, #pragma omp task requires an understanding of which PSEs are consumed/produced

by the task through the depend(in/out) attribute. Failing to correctly classify PSEs or their code

statements results in invalid or inefficient code.

Managing Dynamic Memory. C++ programmers used to manually manage the dynamic mem-

ory of a program. To help with this task, modern C++ standards (as of C++11) have added the

smart pointer abstraction. Smart pointers manage dynamic memory using reference counting,

which tracks the number of pointers to a dynamic PSE object and deletes it when the count drops

to zero. Unfortunately, using smart pointers can lead to memory leaks when there are cycles in the

reference counting graph of PSEs. Programmers have limited tools support to detect when cycles

occur and no support to identify and break them. This is particularly challenging when reference

cycles cross many functions and source code files, making manual detection difficult.



35

2.3.2 Benefits of PSEC

PSEC conveniently summarizes the knowledge of how the program state is affected by a code

region that abstractions of §2.3.1 require. We now give an intuition about how to collect and apply

PSEC to use the STATS abstractions (further detail are described in §4). Consider the loop in

Figure 2.8 to be the code region where a programmer wants to apply the STATS abstraction. PSEC

would classify the PSEs affected by the loop’s body as follows: the memory locations of array

inputs and variable N are always only read, the memory locations of array outputs are always

only written once, and variable state is always read and then written. With this information,

CARMOT automatically generates the Input, Output, and State classes necessary to implement the

code structure needed by the STATS abstraction as Figure 2.9 shows.

1i n t N = { . . . } ;

2i n t state = { . . . } ;

3i n t outputs [N ] ;

4i n t * function ( i n t inputs [ ] , i n t N ) {

5f o r ( i n t i = 0 ; i < N ; ++i ) {

6state = stateDependenceUpdate (inputs [i ] , state ) ;

7outputs [i ] = getOutput (state ) ;

8}

9re turn outputs ;

10}

Figure 2.8: A generic state dependence code structure. PSEC is performed on the loop body code
region where the STATS abstraction will be applied.
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1c l a s s Input { i n t inputs [N ] ; i n t N ; } ;

2c l a s s Output { i n t outputs [N ] ; } ;

3c l a s s State { i n t state ; } ;

Figure 2.9: Resulting classes necessary to utilize the STATS abstraction, generated from PSEC-
extracted information.

2.3.3 Overhead of PSEC

On top of tracking memory accesses (i.e., reads and writes) like other memory-tracking tools

do [18], [19], PSEC needs to track accesses to function variables for a target code region to obtain

complete information of the program state. We measured the increase of accesses and observed

8× more accesses on average that need to be tracked for PSEC. Other tools do not have to track

function variables, because their only goal is to validate memory accesses. Hence, these tools

are able to invoke many general-purpose compiler optimizations, which are not compatible with

PSEC (e.g., the mem2reg compiler transformation disrupts the mapping between variables in the

source code and in the intermediate representation of the compiler, as we show in §A). This is why

our approach requires a more involved compiler-based solution including several PSEC-specific

compiler and runtime optimizations.

2.3.4 Limitations of Current Dynamic Analyses

As §2.3.1 shows, PSEs are explicitly used in many modern programming language abstractions.

Despite their important role, we are the first one to consider PSEs as first class citizens. Dynamic

analyses of prior works [14], [15], [17] are instead based on dependences or memory footprint

of instructions. This limits prior work to imprecise and overly-conservative information that can
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3

4

0 void func (int a[]){
1   for (int i = 0; i < N; ++i){
2     int j = {...};
3     {...} = a[i];
4     a[j] = {...};
5   }
6 }

WAR
Loop CarriedRAW

Loop Carried

 0 void func (int a[]){
 1   // Generate OMP_NUM_THREADS copies
 2   int **aCloned = {...};
 3   #pragma omp parallel for
 4   for (int i = 0; i < N; ++i){
 5     int j = {...};
 6     if ((i == 1) || (j == 1)){
 7       #pragma omp critical
 8       {
 9       {...} = a[i];
10       a[j] = {...};
11       }
12     } else {
13       int threadID =
14         omp_get_thread_num();
15       {...} = aCloned[threadID][i];
16       aCloned[threadID][j] = {...};
17     }     
18   }
19 }

Memory Footprint:
3: a[0],a[1],...,a[N-1]
4: a[0],a[1],...,a[N-2]

Dependence Graph:

 0 void func (int a[]){
 1   #pragma omp parallel for
 2   for (int i = 0; i < N; ++i){
 3     int j = {...};
 4     #pragma omp critical
 5     {
 6     {...} = a[i];
 7     a[j] = {...};
 8     }
 9   }
10 }

with PSEC:with Dependence Graph
and Memory Footprint info:

WAW
Loop Carried

Hot code is 
sequential

Hot code is
parallel

Figure 2.10: State of the art dynamic analyses based on dependence graph and/or memory footprint
of instructions miss important parallelization opportunities compared to PSEC.

defeat the purpose of using an abstraction altogether. Figure 2.10 shows an example of the fun-

damental limitations of such dynamic analyses. In this example i spans from 0 to N-1, while j

assumes the values {1,0,0,2,3,...,N-2}. The corresponding dependence graph and memory foot-

print for the relevant instructions (i.e., 3 and 4) are reported in Figure 2.10. If programmers want

to parallelize the for-loop in the example following the information provided by the dependence

graph and memory footprint of the program, they need to be conservative and assume that any

element of the memory object a can be involved in the loop-carried RAW dependence. This results

in placing the most computationally intensive part of the loop body in a critical section, which runs

sequentially and defeats the purpose of parallelizing the loop in the first place. This fundamental

limitation becomes even more severe as the size of a[N] grows. PSEC instead reports to the pro-

grammer that only a small portion of a (a[1] in our example) is involved in the loop-carried RAW

dependence. Hence, the programmer can considerably shrink the critical section and clone the rest

of a to remove the loop-carried WAR and WAW dependences, regaining parallelism.
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CHAPTER 3

UNCONVENTIONAL PARALLELIZATION OF NONDETERMINISTIC

APPLICATIONS

We now describe the execution model that STATS follows, the programming language abstraction

offered by the STATS interface that allows developers to describe state dependences, and how

STATS works as a system (§3.1). Then, we evaluate STATS on six nondeterministic benchmarks

in §3.2. Finally, we perform an in-depth analysis of the overhead introduced by the execution

model of STATS in §3.3 and evaluate its impact on the benchmarks in §3.4.

3.1 The STATS Solution

The STATS tool-chain increases the TLP (and thus performance) of nondeterministic C++ pro-

grams that exhibit the pattern of a state dependence as shown in Figure 2.7. It does so relying on

additional algorithm-specific information and training inputs from the developer. These inputs are

only used to explore the design space described by state dependences and find a configuration of

the program with the best profile (e.g., highest performance). Our runtime preserves the output

quality regardless of the representativeness of training inputs, but the more representative of actual

workloads they are, the more performant the STATS’s output program will be in production. The

rest of this section describes the execution model generated by STATS and its compilation flow.

3.1.1 Execution Model

STATS extracts additional TLP by grouping inputs of the code pattern shown in Figure 2.7 in

ordered blocks and by overlapping their computations. This additional TLP can be exploited only
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(a) Execution serialization due to a state dependence

(b) Additional TLP generated by auxiliary code

Figure 3.1: Alternative execution model obtained by using auxiliary code to satisfy a state depen-
dence.

when the auxiliary code can satisfy the related state dependence. In other words, TLP can be

generated only when the auxiliary code generates a datum that matches one of the many possible

outputs (due to the non-determinism) that can be generated by the original producer.

For example, consider the original execution shown in Figure 3.1a. Here, all inputs are sequen-

tially processed. STATS, in this example, generates the execution model shown in Figure 3.1b.

Inputs are grouped in pairs (e.g., I0, I1 and I2, I3) and each group is processed in parallel (STATS
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Figure 3.2: STATS includes three compilers, a runtime, an autotuner, and a profiler to optimize
a nondeterministic C++ program for which the developer has identified state dependences via the
STATS Interface.

automatically decides what is the most convenient group cardinality). The first invocation of the

first group starts with the initial state S0 to process its first input (e.g., I0). While the first invocation

of each subsequent group starts with the state generated by its auxiliary code (e.g., S2’), which we

call speculative, because it is based on the assumption it will match the one that will be generated

by the original producer (e.g., S2). The auxiliary code generates its speculative state (e.g., S2’)

starting from the initial state S0 by using a few (decided by STATS) previous inputs (e.g., I1 in

our example). When the last invocation of the previous group of inputs ends (the second invoca-

tion in the example shown in Figure 3.1b), the runtime compares its final state (e.g., S2) with the

speculative state used by the first invocation of the subsequent input group (e.g., S2’). If these

states match (like in the example shown in Figure 3.1b), then the computation of the subsequent

group stops being speculative and its outputs can be used. If these states do not match, then the

execution of the previous group of inputs goes back a few inputs (STATS decides how many inputs

to go back) and repeats the computation. This new computation might lead to a different final state

(e.g., a new S2) because of the non-determinism of the target code (i.e., computeOutput() of

Figure 2.7). If the new final state matches the speculative state (e.g., S2’), then the computation of

the subsequent group stops being speculative and its outputs can be used. Otherwise, either the ex-
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ecution of the previous group of inputs goes back a few inputs one more time and checks again the

final state (STATS decides how many times the execution of the previous group can be repeated)

or the computation of all subsequent groups of inputs aborts. If the computation aborts, then all

the outputs generated by processing subsequent inputs (e.g., input I2 and after) are squashed, the

execution restarts from the first not-speculative state generated by the previous group of inputs

(e.g., S2), and no other speculation is performed until all the current inputs are processed.

3.1.2 Software Architecture

STATS enforces the execution model described in §3.1.1 via its architecture shown in Figure 3.2.

Developers provide descriptions of state dependences, as well as algorithm-specific tradeoffs needed

to generate auxiliary code, through the STATS interface implemented as C++ extensions.

The front-end compiler translates extended C++ codebases to standard C++ source, encoding

STATS-specific information in APIs calls understood by the other STATS compilers. The middle-

end compiler translates the output of the front-end to our intermediate representation (IR), which

represents the design space explicitly, which we call state space.

The description of the state space is used by the autotuner, which explores it by choosing the

next configuration to test. A configuration describes which state dependences to consider to satisfy

with auxiliary code and its parameters. Parameters include the inputs to each auxiliary code, how

to set the auxiliary-code tradeoffs, how many times the original producer of a state dependence can

re-execute, and how far back the original execution needs to go.

The back-end compiler translates our IR to the binary that corresponds to a configuration cho-

sen by the autotuner. The back-end also embeds the STATS runtime into the binary after having

specialized it for each state dependence that will be satisfied by auxiliary code. The runtime de-

termines whether to accept the speculative state and enforces the execution model described in
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1void estimateLocations ( ) {
2vector<i n t> frameIds (numFrames ) ;
3vector<Particle> model (numParticles ) ;
4vector<BodyPart> positions ;
5f o r ( auto frameId : frameIds ) {
6Frame f = getFrame (frameId ) ;
7model = updateModel (numAnnealingLayers ,
8model , f ) ;
9positions = getPositions (model ) ;
10}
11}

Figure 3.3: Original code of bodytrack.

§3.1.1.

The profiler runs the binary generated by the back-end using the provided training inputs,

measuring its energy consumption and performance. It provides such information to the autotuner.

The autotuner then decides whether or not to test other configurations. When enough information

has been obtained, the autotuner generates the most performant binary. Finally, the autotuner

stores the results of its exploration in the description of the state space, which allows them to be

reused should the specific optimization objective change (e.g., changing the optimization goal from

performance to energy).

3.1.3 The STATS Interface

The STATS Interface is a programming language abstraction that extends the C++ language and

enables developers to describe state dependences and algorithm-specific tradeoffs.

State Dependence Interface (SDI). Identifying state dependences requires algorithmic knowl-

edge that is beyond the purview of automatic tools. Hence, developers provide STATS with a set
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of state dependences. It may turn out that auxiliary code cannot satisfy some of them; STATS

automatically detects and discards such cases.

The SDI allows developers to encode instances of the pattern in Figure 2.7, thereby asserting

that the inter-invocation dependence on State is a state dependence. The STATS autotuner will

decide whether or not such state dependence can be satisfied with auxiliary code. The SDI en-

coding replaces the corresponding pattern instance in the program. The API for the SDI is shown

in Figure 3.5. Developers need to create classes corresponding to Input, State, and Output,

then instantiate a state dependence object parameterized with these classes. The start()method

of a state dependence object begins the execution model described in §3.1.1 in parallel with the in-

voking thread. The join() method waits until all inputs provided to the state dependence object

are correctly processed.

Making state dependence patterns explicit has two main advantages. First, the STATS compil-

ers immediately identify that the inter-invocation dependence on State is actually a state depen-

dence. Second, it allows the compilers to enforce a rigid dependence structure, which they then

exploit. Specifically, they need to enforce that computing Output depends only on Input and

State, and that the only inter-invocation dependence in this code is that on State. Most im-

portantly, STATS explicitly manages which values of State each invocation sees, which makes

it possible to execute multiple instances of computeOutput() (that contains the computation

related to the state dependence) in parallel. This involves privatizing State for each thread by

cloning it, the code for which is provided by developers by overriding State’s assignment method

(operator=()). With the SDI encoding, the STATS runtime thus clones State whenever it is

necessary.

Finally, developers need to provide the state comparison method (doesSpecStateMatchAny()).

This function compares the speculative state coming from the auxiliary code with a set of origi-
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1c l a s s Input { i n t frameId ; } ;
2c l a s s Output { vector<BodyPart> positions ; } ;
3c l a s s State {
4vector<Particle> model ;
5State& operator =(State&) ;
6bool doesSpecStateMatchAny (set<State*>) ;
7} ;
8Output* computeOutput (Input *i , State *s ) {
9Frame f = getFrame (i−>frameId ) ;
10s−>model = updateModel (TO_numAnnealingLayers ,
11s−>model , f ) ;
12Output *o = new Output ( ) ;
13o−>positions = getPositions (s−>model ) ;
14re turn o ;
15}
16void estimateLocations ( ) {
17vector<Input*> i (numFrames ) ;
18vector<Particle> model (numParticles ) ;
19State s ; s .model = model ;
20StateDependence<Input , State , Output>
21stateDep(&i,&s ,computeOutput ) ;
22stateDep .start ( ) ; stateDep .join ( ) ;
23}

Figure 3.4: Use of SDI in bodytrack.

nal states and returns whether the speculative state should be considered equivalent to an original

state. This API allows developers to decide how strict the matching between speculative and orig-

inal states needs to be. We describe how the state comparison method is used in §3.1.4.

Figure 3.4 shows how a state dependence in bodytrack is encoded using the SDI. Figure 3.3

shows the original version of the benchmark.

Tradeoff Interface (TI). TI is used to describe tradeoffs specific to an algorithm, which are

used to balance quality and performance in auxiliary code. Identifying such tradeoffs requires

knowledge beyond the reach of automatic tools.
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A tradeoff is a piece of program text (constant, data type, function) whose value is chosen from

a range supplied by developers. Tradeoff values are sorted by their index (e.g., first value, second

value). A tradeoff example from bodytrack is the number of annealing layers to use when

computing an estimation of the human body position. The higher the tradeoff value, the better the

estimation, but at the cost of a longer computation time. Tradeoffs (and the ranges of values that

they can assume) are specific to particular algorithms.

Figure 3.6 shows this tradeoff described using the TI. A tradeoff provides three methods:

getMaxIndex() returns the number of possible values; getValue(), given a valid index

i, returns the i-th possible value; and, finally, the method getDefaultIndex() returns the in-

dex to use when the tradeoff is used outside auxiliary code. To obtain the original version of the

program (our baseline), we set all tradeoffs to their default value and satisfy all state dependences

conventionally (i.e., no auxiliary code).

The target of a state dependence requires State to compute its output (c.f. Figure 2.7). The

auxiliary code computes at run time an alternative (State’) of State for that purpose. Tradeoffs

are used to strike the right balance between the quality of State’ and its computational cost. The

better State’ is, the more likely it will match State.

The state space. The state space is defined by all tradeoffs, by how often a state dependence is

satisfied with auxiliary code, by the number of previous inputs an auxiliary code will consider, by

the maximum number of times the STATS runtime can execute an original producer of a given state

dependence, and by the number of threads to dedicate to the TLP already available in the original

program. We found it natural to express all of these using TI and SDI.

Each of these aspects represent one dimension of the state space. A program configuration,

therefore, corresponds to picking one value for each of these dimensions. STATS explores this
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1template<c l a s s Input , c l a s s State , c l a s s Output>
2c l a s s StateDependence {
3StateDependence (
4vector<Input*> *inputs ,
5State *initialState ,
6function<Output* (Input* , State*)>
7computeOutput
8) ;
9void start ( void ) ;
10void join ( void ) ;
11} ;

Figure 3.5: The State Dependence Interface makes the pattern of Figure 2.7 explicit to the compiler.

1c l a s s AnnealingLayers_options :Tradeoff_options{
2int64_t getMaxIndex ( ) { re turn 1 0 ; }
3auto getValue (int64_t i ) { re turn i+1; }
4int64_t getDefaultIndex ( ) { re turn 4 ; }
5} ;
6t r a d e o f f TO_numAnnealingLayers {
7{AnnealingLayers_options} ;
8} ;

Figure 3.6: Use of TI in bodytrack.

space to find the most performant configuration, using the developer-provided training inputs.

3.1.4 Compilers and Runtime

STATS includes three compilers called the front-end, the middle-end, and the back-end compilers.

Generating Standard C++ Code. The front-end compiler translates C++ with the SDI and TI

extensions to standard C++ code which includes a description of the tradeoffs. Figure 3.7 shows

the code generated from Figures 3.4 and 3.6, which gets #included by all source files. Each
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tradeoff is described with an entry in the array (TO), which includes the name of the C++ func-

tions generated from the relevant TI (e.g., T_42_size), and the name of the function used as a

placeholder for a tradeoff value (e.g., T_42). 1

Generating IR with Auxiliary Code. The middle-end compiler translates the C++ code gener-

ated by the front-end to LLVM IR extended with extra metadata, which encodes the information

in the extra header file generated by the front-end. This solution is inspired by the DotNET com-

pilation framework, which encodes source level information in metadata tables included in CIL

bytecode files [20]. This is implemented as a new compilation pass in the clang compiler.

After translating C++ code to the IR, and before producing its output, the middle-end com-

piler generates auxiliary code. For each state dependence d, the middle-end compiler clones d’s

computeOutput() (c.f., Figure 3.4) and links it to d’s metadata entry. The compiler also clones

the included tradeoffs (to distinguish them from the original ones) by creating new entries (one per

cloned tradeoff) in the metadata. Cloning tradeoffs allows STATS to control the quality of the

auxiliary code’s results independently from the rest of the code.

Finally, the middle-end sets the tradeoffs that are outside auxiliary code to their default value,

by scanning the tradeoff descriptions in the metadata, then deletes their metadata entries. The

resulting IR is the middle-end’s output, which includes only tradeoffs that are part of auxiliary

code.

Generating a Binary. The back-end compiler takes as input the IR generated by the middle-

end and a configuration (from the autotuner) in the state space. This configuration lists the state

dependences to be satisfied using auxiliary code and how to set their tradeoffs. The back-end

compiler uses the following algorithm for each state dependence. First, it reads the metadata

1These names are generated to avoid conflicts with the rest of the code.
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1#pragma once
2int64_t T_42 (int64_t p ) { re turn p ;}
3# d e f i n e TO numAnneal ingLayers T 42 ( 4 2 )
4char *TO [ ] = { ” T 4 2 g e t V a l u e T 4 2 s i z e
5T 4 2 g e t D e f a u l t I n d e x T 42 ” }
6auto T_42_getValue (int64_t i ) { re turn i+1; }
7int64_t T_42_size ( ) { re turn 10 ;}
8int64_t T_42_getDefaultIndex ( ) { re turn 8 ;}

Figure 3.7: C++ code generated by the front-end compiler from Figures 3.4 and 3.6.

to find the auxiliary code specific to the current state dependence as well as its related runtime

(described next), then links them. Second, it sets the tradeoffs left in the IR based on their index in

the input state space configuration.

Setting a Tradeoff. Setting a tradeoff t requires two compile-time steps: fetching the value v

identified by an index i and setting references of t to v.

We rely on LLVM’s dynamic compiler for the former. We generate machine code from the IR

code of the function getValue() related to t, then invoke it with input i. Finally, we store v and

its type for the next step.

A tradeoff reference (e.g., TO_numAnnealingLayers, line 10 of Figure 3.4) is set to

a value v depending on the tradeoff type of v. If v is a constant (e.g., number of layers in

bodytrack), the tradeoff reference is a call to a placeholder (e.g., T_42()); setting this tradeoff

replaces that call with the constant v. If v is a type (e.g., float), setting a tradeoff changes the

type of the related variable accordingly. When needed, extra casts are added according to the vari-

able’s uses. Finally, if v refers to a function (e.g., a specific implementation of sqrt), a tradeoff

reference is a call to a placeholder function; setting this tradeoff replaces its callee with v.
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Runtime. The execution of code that leverages state dependences relies on the STATS runtime.

Its main goal is to implement efficiently the execution model described in §3.1.1. To do so, it

includes low-level implementations of thread synchronization primitives. It also includes an effi-

cient thread pool implementation (shared with all state dependences) to minimize thread creation

overhead.

Design Choices. Next we describe the main compiler-related design choices we made.

We divided the translation from the extended C++ language to the IR in two compilers (front-

end and middle-end) for engineering reasons. We preferred to avoid adding complexity to the

already-complex C++ parser in clang. Note also that C++ is a moving target (C++11, 14, 17);

modifying the mainline parser would also introduce maintenance costs. Our solution does not

modify the clang C++ parser and avoids these extra costs. The middle-end compiler uses the

unmodified parser. Finally, the front-end compiler needs to only partially parse C++ programs,

which made it possible to use a simple implementation based on Racket [21].

We decoupled the generation of the IR code that describes the state space (middle-end) from

instantiation of a given configuration (back-end) to reduce the overall compilation time. As it

evaluates the state space, the autotuner must instantiate the same IR to multiple configurations,

which makes it necessary for instantiation to be efficient. We achieve this by leaving only simple

code changes to the back-end.

The middle-end performs deep cloning of the function computeOutput() of a state depen-

dence. It balances the amount of extra code generated (lower is better) with the number of degrees

of freedom (i.e., number of tradeoffs cloned) available in auxiliary code (higher is better). In more

detail, it clones functions reachable by computeOutput() only if they or some of their callees

include a tradeoff (found using a bottom-up analysis of the call graph). The middle-end stops
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cloning when it reaches a maximum number of instructions per computeOutput().

3.1.5 Autotuner

The goal of our autotuner is to find a performant (or energy efficient) configuration for the developer-

provided training inputs. The state space is composed, on average, of 1.3 million points in our

benchmarks, which makes exhaustive exploration impossible. Therefore, we use OpenTuner 0.7 [22]

to explore this space using a set of statistical analyses already available in this framework. We de-

scribe each tradeoff in OpenTuner extending its class “IntegerParamsTuner” as the values of a

tradeoff can always be enumerated.

3.2 Evaluating STATS-Generated TLP

Our evaluation tests the hypothesis behind our work: state dependences can be satisfied with

carefully-generated auxiliary code creating additional TLP. Next we show that this additional TLP

generates significant performance and energy efficiency improvements. We compare to related

approaches; thanks to the generation of auxiliary code, STATS is the only approach that gains

performance while preserving output quality for complex benchmarks. Also, we relate the ben-

efits obtained by STATS with the number of tradeoffs encoded by a developer. We show that

most benefits are already obtained with only two tradeoffs, which suggests developers gain most

of the benefits with a minimum effort. Finally, we show that only a small fraction of performance

improvements is lost if the training inputs are not representative of the ones used in production.

3.2.1 Experimental Setup

Platform. Our evaluation is done on a dual socket Dell PowerEdge R730 server with two Intel

Xeon E5-2695 v3 Haswell processors running at 2.3GHz and capable of 9.60GT/s on the QPI
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interface. Each processor has 14 cores with 2-way hyper-threading, 35MB of last-level cache and

has a peak power consumption of 120W. The cores are supported by 256GB of main memory

in 16 dual rank RDIMMs at 2133MHz. The OS is Red Hat Enterprise Linux Server 6.7 (kernel

2.6.32-573.18.1), with no CPU frequency governors enabled (all cores run at maximum frequency).

Hyper-Threading is turned off for all experiments unless explicitly specified. Moreover, Turbo

Boost is disabled. We evaluate the energy consumption using a Watts Up Pro energy monitor

measuring the (120 V / 60 Hz) AC-side total system power consumption at 1-second intervals.

STATS is built on top of LLVM 3.9.1 [23], Racket 6.8 [21], and OpenTuner 0.7 [22].

Statistics and Convergence. Each data point we show is an average of repeated runs. We run

the relevant configuration as many times as necessary to achieve a tight confidence interval where

95% of the measurements are within 5% of the mean.

3.2.2 Benchmarks

We considered the POSIX multi-threaded versions of the PARSEC version 3.0 benchmarks as well

as their sequential version. The only benchmarks we could not consider are vips and dedup

because they did not compile using the vanilla clang compiler. Moreover, the binary generated

by clang for ferret produced incorrect outputs. We considered only the remaining benchmarks

that exhibit nondeterminism: bodytrack, canneal, fluidanimate, swaptions, and two

variants of streamcluster (clustering, called streamcluster, and classification, which

we called streamclassifier). In the case of bodytrack we substituted the single (fixed)

initial body position provided by the benchmark suite with a set of random (but still plausible)

initial body positions, because of the sensitivity to the initial body position of particle filter-based

tracking approaches (such as bodytrack). This limitation of particle filter-based tracking is well
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known in the literature [24]–[33]. We chose an approach similar to the “big data initialization”

method of [24], which uses a set of initial positions to start the tracking.

Moreover, to test STATS in a large codebase, we considered OpenCV [8] for detecting faces in

a video stream (facedet). Out of these benchmarks, we could not find a state dependence that

STATS can target only in canneal and, as our technique does not apply, we do not consider it in

the rest of this section. In more detail, STATS needs to know the number of inputs that the code

pattern of Figure 2.7 has to process at run time just before the first invocation of this code pattern.

This information is unfortunately unavailable in the canneal benchmark: the number of inputs

depends on the evolution of the computation state.

Inputs. We used the native inputs provided by the PARSEC suite for our evaluation. In some

cases native inputs are too small to properly test performance scalability on today’s platforms.

This has been already observed by prior work [34]; we thus extended the native inputs in the same

fashion. swaptions, on the other hand, has native inputs large enough to show performance bot-

tlenecks only after 128 cores. Therefore, we decreased the swaptions inputs (34 swaptions rather

than 128) to allow bottlenecks in the program to manifest that would otherwise have remained

hidden. For streamclassifier, we used the inputs from [35]. For facedet, we used a 40

seconds video of a person moving in front of a camera. Finally, we used a fraction of the evaluation

inputs to compile our benchmarks.

Output Quality. We used well-known domain-specific output quality metrics to measure output

variability. These metrics (next described) were computed against an oracle. The oracle was

computed using a benchmark version generated by setting its tradeoffs to maximize output quality.

The generated output is significantly more accurate than the output of the (significantly faster)

unmodified benchmark versions.
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bodytrack’s metric is the relative mean square error of the body parts vectors [36]. fluidanimate’s

metric is the average Euclidean distance between the position of the particles. streamcluster’s

metric is the difference of the Davies-Bouldin indices of the clusterings [37]. streamclassifier’s

metric is the difference in B3 metrics [36]. swaptions uses the average relative difference be-

tween the prices generated [38]. facedet uses the average Euclidean distance between the faces

detected.

Nondeterminism. While the actual programs from which the PARSEC benchmarks are drawn

are nondeterministic, some of them have been made deterministic to facilitate experiments. 2 This

was accomplished via the use of pseudo random value generators (PRVG) with constant and pre-

defined seeds. Therefore, the outputs of such generators are deterministic and constant across runs

with the same inputs. To properly study the effect of nondeterminism in these programs, we re-

stored the use of PRVGs with random seeds as it is done in a real scenario. We also adapted the

benchmarks to use the STATS interface.

State Dependences, Tradeoffs, and State Comparison Methods. We now describe the state

dependences we found, the tradeoffs we encoded in auxiliary code, and the state comparison

functions we implemented for every benchmark. The tradeoffs described next do not include

the number of original threads and the number of threads to use for state dependences, which all

benchmarks naturally have.

bodytrack accesses a model of the location of human body parts in a frame, updates this

model with the results for the current frame, and passes it to the computation for the next frame.

Frame i thus depends on the model update of frame i−1, which serializes the execution. The state

is the model of the human body in the 3D space, which includes the position of the body parts. The

2This is common practice, for result reproducibility reasons.
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Figure 3.8: For most benchmarks, STATS generates a significant amount of extra parallelism that
saturates the hardware resources of our platform. “Original” is the out-of-the-box benchmark that
has been parallelized by traditional means. “Seq. STATS” (“Par. STATS”) is the binary generated
by STATS starting from the sequential (multi-threaded) version of a benchmark. The bar graphs
show maximum speedup.

state dependence is on the updates of this model. Tradeoffs are the number of simulated annealing

layers, the data type (and therefore precision) of one variable used for this simulation, and the

number of particles. The state comparison function computes the distances of the speculative state

with the given set of original states, and the distances among all the original states. The distance
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Figure 3.9: Geometric mean of speedups shown in Figure 3.8.

measure we use is the sum of the absolute differences of every body part position between two

states. If the distance of the speculative state S’ with an original state S is less or equal the

distance of another original state and S, then we consider the speculative state as valid and commit

the results of the auxiliary code computation. In other words, if the body positions encoded in S’

are between (in the 3D space) two original states, then we accept and commit S’.

fluidanimate simulates a fluid in time frames. The state is the condition of the fluid

during the simulation (i.e., the position and velocity of the particles that compose the fluid). The

state dependence is on the updates of the fluid condition between frames. Tradeoffs are the version

of sqrt (different accuracies for different versions), the data type for three variables used for the

simulation, and the x, y, and z dimensions of the per-thread prism where the simulation happens.

The state comparison function behaves like the bodytrack one, but the distance measure is the

average Euclidean distance among the position of the particles.

facedet updates the position of the detected faces at each frame. To do so, it takes advantage

of the position of the faces found in the previous frame by applying a randomized particle filter.

This create a dependence where the state is the position of the human face on a frame. Tradeoffs are

the number of particles and the number of times Gaussian noise is added to the particles. The state
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comparison function operates as described in the previous benchmarks, but the distance measure

is the average Euclidean distance of the four points of the box that contains the person’s face.

streamcluster and streamclassifier consider adding the candidate centroids one

by one depending on the status of the current solution. They update the current solution if the cur-

rent centroid is added; these updates serialize the execution. The state dependence is on updating

the status of the current solution. Tradeoffs are the data type of three variables used to estimate the

quality of the current solution, and both the maximum and minimum number of clusters.

swaptions executes Monte Carlo simulations for each swaption. The simulation of a swap-

tion is performed sequentially. The state dependence is on updating the price of a swaption during

the simulation. Tradeoffs are the data type of two values used during the Monte Carlo simulation.

These last three benchmarks do not require a state comparison function because, by construc-

tion of the state dependence, the speculative state could have already been generated by an execu-

tion of the original program.

3.2.3 Taking Advantage of State Dependences

Exploiting Multiple Cores. Satisfying state dependences with auxiliary code liberates impor-

tant additional TLP. Figure 3.8 compares the scalability and peak speedup of three approaches to

parallelizing the benchmarks. The first, “Original”, is the out-of-the-box benchmark that has been

parallelized by traditional means. The second, “Seq. STATS”, uses only the TLP obtained by

satisfying state dependences with auxiliary code. The third, “Par. STATS”, combines these two

sources of TLP by performing a state space search for a number of cores, the default mode of

operation for STATS. On the left is the speedup graph, while on the right, the adjoining bar graph

compares the maximum speedups of the three approaches. All speedup values were computed us-

ing the single-threaded version of the out-of-the-box benchmark as baseline. Figure 3.8 shows that
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Figure 3.10: The performance obtained by STATS using a single socket with Hyper-Threading is
constrained by hardware resources and not by low TLP.

taking advantage of state dependences doubles the performance of the considered benchmarks (the

geometric mean speedup increases from 7.75× to 20.01×) on a 28 core platform. This empirically

supports our hypothesis: state dependences can be satisfied with auxiliary code.

Figure 3.8 shows that both sources of TLP (“Original” and “Seq. STATS”) are important

to fulfill the parallelism requirements and that they need to be properly combined considering,

therefore, the state space. Our work is the first to do so.

swaptions and bodytrack exhibit interesting behavior. In the former, at low core counts,

Seq. STATS underperforms the original code. At 10 cores, the original achieves a respectable

8.7× speedup, while Seq. STATS achieves only 6.8×. Par. STATS, on the other hand, does not

suffer from this drawback and produced a version of swaptions that outperforms the other two.

This indicates that considering both sources of TLP is necessary. In bodytrack, on the other

hand, the TLP generated by satisfying state dependences with auxiliary code generates higher

performance than the original TLP, because the bodytrack requires more frequent inter-thread

synchronizations creating a bottleneck that swaptions does not have. While this was the case

for our platform, we expect STATS to combine both TLPs when more cores are available.

The original parallelism available in facedet is used to aggressively vectorize the code (per-
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formed for the baseline as well). When possible, vectorization is preferred compared to TLP,

because it is more energy efficient. A significant amount of TLP is extracted from facedet by

STATS thanks to its state dependence. Combining the aggressive vectorization performed in the

original code and the significant TLP extracted by STATS led to a highly performant code.

STATS obtains speedups higher than the number of cores for streamclassifier (Fig-

ure 3.8b) from 2 to 22 cores as well as for streamcluster (Figure 3.8c) for 6, 8, and 12 cores,

because of the following two effects. First, the threads generated by STATS take better advantage

of the multiple L1s of the multiple cores; instead, the original multi-threaded code distributes the

computation differently leading to a worse L1 hit rate. Second, the state dependences of these

benchmarks are in a loop that ends when the current clustering solution is above a threshold. Satis-

fying these state dependences with auxiliary code leads both benchmarks to consider the potential

centroids that compose a solution in a different order. This led the program to converge to the final

solution more quickly.

Finally, fluidanimate (Figure 3.8d) shows little/no improvement with STATS. The auxil-

iary code for this benchmark almost always aborted at profiling time leading the STATS autotuner

to prefer the original TLP rather than the one generated by state dependences. This happens be-

cause fluidanimate has low output variability and is the only benchmark we considered where

the state that the auxiliary code needs to generate requires all previous inputs (the result of a sim-

ulation of a fluid at time t requires the simulation of all previous time steps).

Exploiting Intel Hyper-Threading (HT). To study the impact of HT on STATS binaries, we

constrained their execution to stay within a single socket of our platform. Figure 3.10 shows the

extra performance obtained by STATS using HT.

We consider the additional speedup obtained by STATS using HT to be a success. The speedup
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Figure 3.11: The binaries generated by STATS use considerably less energy compared to the orig-
inal benchmarks.

(geometric mean) increased from 12.18× to 16.13×. Due to sharing computational and storage re-

sources, Intel suggests that a successful use of HT should generate extra performance of 30% [39],

[40]. STATS obtained a 32% performance improvement. Hence, the performance obtained by

STATS is likely constrained by hardware resources and not by low TLP.

The Multi-Socket Effect. fluidanimate, swaptions, and streamcluster exhibited

near-linear speedup on a single socket. STATS continues to improve performance on two sockets,

but sub-linearly. An Intel VTune analysis indicated that this is due to the NUMA memory system—

a common problem whose known solutions [41]–[45] apply to STATS, but go beyond the scope of

this work.

In more detail, when an application uses a single socket, the system tends to allocate memory

pages served by the memory controllers within the chip, exhibiting low memory latency. However,

when the application is spread over two sockets, memory references often have to cross from

one socket to another to get to the relevant memory controller. This increases the latency for

memory accesses and obstructs further performance improvements. Nonetheless, STATS continues

to deliver increasing performance.
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Saving Energy. So far we have used STATS only to decrease the execution time. STATS can

also be used to decrease the energy consumption. In this case, the STATS autotuner minimizes

energy rather than time leading to a different binary. To compare the energy reduction in these two

operating modes, we used two sockets of our platform.

Figure 3.11 compares the system-wide energy consumption obtained in these two modes rela-

tive to the energy consumed by the peak-performing original version. When targeting time, STATS

saves 61.98% of the baseline energy as a direct result of finishing the execution earlier. Moreover,

STATS saves even more energy (71.35%) in energy mode by avoiding using extra cores if the

additional performance obtained by them is not significant.

Improving Output Quality. For nondeterministic applications where speed of computation or

energy is of utmost importance, the developer might decide to use STATS as described so far.

However, for applications where quality matters most, STATS can also be used to improve the

output. By making the computation several times faster than the original, STATS allows the appli-

cation to spend the saved time to iterate more over the same dataset, thereby increasing the final

output’s quality. Figure 3.12 shows the quality improvements from running the STATS versions

for the same amount of time as the original versions. Three benchmarks show quality increases

from 6.84× to 33.27×.

3.2.4 STATS and its Related Work

We ask how well prior work is able to capture and take advantage of state dependences. To this end,

we implemented related approaches able to target the considered benchmarks on our infrastructure

and configured them to target the state dependences we identified. Both prior work and STATS can

generate TLP starting from both sequential and multi-threaded versions of a program. We applied
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Figure 3.12: STATS can increase the original output quality by spending the saved time to iterate
more over the same dataset.

them to both versions, exploring their configurations (e.g., dependences to break, how to break

them) and kept the highest speedups obtained without exceeding the original output variability

(Figure 2.4). Figure 3.13 shows the results that we obtained.

Prior approaches were able to take advantage of the state dependence only in swaptions.

Its producer and consumer are single instructions and the state (a register) is implicitly cloned by

running them on different cores. Every other state dependence has larger producers and consumers

and their states must be explicitly cloned. They also require auxiliary code to preserve output

quality. No prior work either explicitly clones the state of actual producer-consumer dependences

or produces auxiliary code. Hence, only STATS is able to take advantage of non-trivial state

dependences (Figure 3.13).

The “ALTER like” approach [46] breaks dependences to execute loop iterations out-of-order

with optional stale reads. It also exploits reduction variables whose values at the end of the broken-

dependence computation are guaranteed to be the same as those produced by a serial execution.

In our case, these variables represent the state of the parallel computation when a dependence is

broken. The reduction variables can be updated only using a limited number of operators and the

update instruction must be of the form: variable = variable operator value. swaptions is
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the only benchmark we considered where “ALTER like” was applicable. All state dependences

of the other benchmarks have more complicated states (i.e., complex data structures and objects

with methods) and update operations on the state variables for the “ALTER like” approach to be

applicable.

Both “QuickStep like” [16] and “HELIX-UP like” [47] broke several state dependences. They

improved performance only for swaptions; other benchmarks require both state cloning and

auxiliary code (not generated by either technique) to preserve output quality.

“Fast Track” [48] applied code transformations that broke state dependences speculating no

changes in the final state. Its runtime evaluates this speculation comparing the so-generated final

state with the (single) unspeculative state loosing, therefore, the opportunity created by the non-

determinism of the original code that could have created (multiple) different unspeculative states.

For these reasons, “Fast Track” always aborted its speculations in our experiments.
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Figure 3.14: Developers gain most of the STATS benefits with a minimum effort (by encoding
only two tradeoffs). This figure shows the average performance (geometric mean) relative to the
best STATS speedup, by number of tradeoffs encoded.

3.2.5 Developer Effort

Identifying and encoding tradeoffs requires developer effort, but we consider the amount of work

reasonable for two reasons. First, the number of lines of code (LOC) edited when encoding a

tradeoff is reasonably low. Table 3.1 shows, for each benchmark, the LOC in the original program

and the LOC modified and added for each tradeoff.

Second, our approach yields benefits even when we encode only a subset of the tradeoffs we

identified, which suggests that our approach is “pay as you go”. Figure 3.14 shows the geometric

mean of speedups as additional tradeoffs are encoded. The first point after 0 is the mean speedup

across all benchmarks after encoding one tradeoff for each of them, the second, two, and so on. We

picked the orderings of tradeoffs starting with the ones for which we expected the highest payoff;

just as a developer using STATS would. The orderings in Figure 3.14 correspond to the ones in

Table 3.1. On average, encoding a single tradeoff yields around 55% of the speedup of encoding

all, and encoding two yields around 95%.

For all benchmarks considered, the first two tradeoffs control the amount of STATS-generated

parallelism and original parallelism already encoded in the benchmark. These tradeoffs yield the
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Figure 3.15: STATS loses only a small amount of performance when not representative inputs are
used.

most benefits are the most obvious ones to target. In other words, it is unlikely that a reasonable

developer would encode the third (or next ones) tradeoffs before the first two.

3.2.6 Non-Representative Inputs

STATS relies on training inputs at compile time. The representativeness of these inputs, however,

affects only performance; correctness is guaranteed by the STATS runtime.

When its training inputs are not representative, STATS loses only a small fraction of the per-

formance obtained when representative inputs are used. To estimate the loss in performance from

non-representative training inputs, we generated non-representative training data for each bench-

mark. Specifically, the subject does not move across quadruples for bodytrack, points overlap

in the multidimensional space for both streamcluster and streamclassifier, unrealis-

tic swaption parameters like market strikes and maturity dates for swaptions, the detected face

in facedet does not move. We used these as training inputs and tested the resulting binaries

using the same evaluation inputs used in the previous experiments. Figure 3.15 shows that STATS

loses only a moderate amount of performance when using the least-representative training inputs

we could find.
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Figure 3.16: Average performance (geometric mean) of the final binary identified by the STATS
autotuner after exploring a number of configurations.

3.2.7 Autotuning in STATS

The autotuner consistently and rapidly converges to the best program. Figure 3.16 shows that

evaluating 88 configurations (less than 1%) is sufficient to find the best binary (in less than 20

minutes on our platform), which is used in Figure 3.8 for 28 cores. 2,000 additional evaluations

(and 15 hours of additional time in our platform) did not improve it. The autotuner uses nonde-

terminism for better exploration; different searches for the same program may find different best

configurations. Figure 3.16 shows that the variance in best speedups disappears after exploring 46

configurations.

3.2.8 When STATS Should Be Used

Invocation i of computeOutput() of Figure 2.7 depends on the previous invocation i− 1. This

generates a chain of dependences from the first invocation to the last one. We observed that some

nondeterministic computations have the following property: an invocation of computeOutput()

requires only a few previous invocations to generate a correct output. In other words, the compu-
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tation converges to a correct state after processing a window of inputs that starts in the middle of

this dependence chain. The auxiliary code is responsible for converging to a correct state.

The computation performed by the bodytrack benchmark, for example, has this property.

The position of a human body at quadruple i can be computed by detecting where the body was in

the last few quadruples (rather than all previous ones). We found that some computations, however,

do not have the property required by STATS. For example, the main state dependence we found in

fluidanimate does not have this property — the simulation of a fluid at instant i requires the

simulation of it in all previous instants. This is perhaps not surprising given the properties of the

Navier-Stokes equations underlying fluidanimate’s model [49].

We included fluidanimate to test the limits of STATS. We wanted to see what happens

when a developer uses the SDI interface to describe a state dependence that does not have the

property STATS needs. Results show that the STATS autotuner empirically finds that every time the

main state dependence of fluidanimate was satisfied with auxiliary code, the STATS runtime

aborted the speculative execution. Hence, the STATS autotuner chose a configuration where such

dependence is always satisfied with the original code (rather than with the auxiliary code).

More broadly, we believe time-step simulations such as fluidanimate are not a good

fit for STATS. A better fit for STATS are applications that analyze a long stream of data (e.g.,

bodytrack, facedet, streamcluster) where the information about inputs that is automat-

ically computed (e.g., 3D location of bodies, 2D location of faces, centroids of multi-dimensional

points) has the “short memory” dependence property described above.

3.3 STATS Sources of Overhead

Parallel binaries generated by STATS include an additional source of TLP that has the potential

to scale with the amount of input that needs to be processed. To this end, STATS introduces
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additional computation and inter-core communication to enforce the execution model described

in §3.1.1. This additional computation and communication generates overhead in the program’s

execution that blocks STATS to completely fulfill its potential. To understand how much of this

overhead can be eliminated by engineering efforts and how much it requires a deeper evolution, it

is important to understand and study the components of this overhead and their relative importance.

This section describes such components and §3.4 empirically evaluates them.

3.3.1 Unbalanced Computation

The thread that runs the longest is the one that defines the performance of a parallel program.

Therefore, the performance lost because of unbalanced execution is the amount of time spent

when all threads but one is running. This loss needs to be erased to scale the performance of a

parallel program linearly with the number of cores. Namely, the computation needs to be perfectly

balanced, so that at any point in time every core is executing some computation.

Parallel binaries generated by the STATS compiler can show unbalanced computation at run-

time. This is shown in Figure 3.17, and it is created by having an unbalanced division of the

computation between threads. For example, imbalance can be created if different threads in the

STATS execution model shown in Figure 3.1 process different numbers of inputs. Another poten-

tial source of imbalance for the STATS execution model is generated by having different computa-

tion latencies for different inputs distributed between threads. Finally, imbalance can be generated
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if different threads start to execute their chunk of computation at different times due to thread

synchronization overhead.

3.3.2 Extra Computation

To implement the execution model described in §3.1.1, the binary generated by the STATS back-

end compiler performs extra work at run-time that was not part of the original program. What

follows is a description of the components of this extra computation.

Generating Speculative States. The STATS execution model (Figure 3.1) processes, in parallel,

a sequence of inputs by splitting it into chunks. A thread generated by STATS that processes

a chunk needs to start from a computational state. Such computational state is computed by an

alternative producer exploiting the short memory property of the related state dependence. In other

words, the goal of an alternative producer is to predict the state that will be generated at the end of

the computation of the previous chunk.

Alternative producers enable the extraction of additional TLP from the original code. To do

so, they perform extra computation that was not included in the original program. An example

of execution of an alternative producer is highlighted in Figure 3.18. In this example, the STATS

thread running on core 3 can start processing chunk 1 only after its alternative producer has gen-

erated its initial speculative state. To do so, this alternative producer processes a few inputs before

the first one of chunk 1, which are the last inputs of chunk 0. The STATS thread that processes

chunk 0 does not need an alternative producer because this is the first chunk of inputs and, there-

fore, it starts from the initial state defined by the original code. All other STATS threads process at

run-time a few inputs before the beginning of the chunk assigned to them (like for the one running

on core 3 of Figure 3.18). The computation performed by all alternative producers is overhead
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Figure 3.18: STATS parallelized programs perform extra work because of the execution model that
STATS enforces.

tightly coupled with the STATS execution model and, as such, hard to reduce. While this source

of extra work is hard to remove, §3.4 includes our empirical evaluation that suggests this is not the

dominant overhead.

Generating Multiple Original States. STATS generates multiple original states at the end of

each chunk of inputs to explore the space of acceptable states. For example, Figure 3.18 shows

that the computation of the last few inputs of chunk 0 is repeated three times, one on core 0, one on

core 1, and the last one on core 2. This extra computation generates three states that differ because

of the nondeterminism of the original code executed.

Having multiple states at the end of an input chunk allows the STATS runtime to decide whether

or not the speculative state generated by the alternative producer of the next chunk can be accepted

(and therefore the chunk that starts from it can commit). For example, the alternative producer

running on core 3 in Figure 3.18 generates the speculative state that will be used to start the com-

putation of chunk 1. Before starting the computation of chunk 1, this speculative state is copied

and sent to the STATS runtime, which will compare it against the multiple original states computed

on cores 0, 1, and 2.
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Figure 3.19: STATS enforces an execution model that requires copies of the computational state to
execute the computation in parallel.

The multiple original states are generated in parallel (e.g., they are generated in parallel be-

tween cores 0, 1, and 2 in the example shown in Figure 3.18). However, this computation requires

replicating the original computation for a few inputs, multiple times (twice in the example of Fig-

ure 3.18). Generating multiple original states at the end of each chunk of inputs can be an important

source of overhead for STATS and, therefore, it can limit the overall performance obtained.

State Comparisons. Once the multiple original states are computed as described in the previous

paragraph, the STATS runtime compares them with the speculative state generated by the alterna-

tive producer of the subsequent chunk of inputs. For example, when the thread running on core 0

in Figure 3.18 has finished processing its chunk (i.e., chunk 0), it compares the multiple original

states of that computational point with the speculative state generated by the alternative producer

that has run on core 3. This comparison is needed to allow the STATS runtime to decide whether

the subsequent chunk (e.g., chunk 1 of Figure 3.18) can commit. These state comparisons are ex-

tra computation that was not included in the original program and, as such, can reduce the overall

performance improvements obtained.
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Setup. STATS needs to allocate and initialize supporting data structures to enforce the execution

model described in §3.1.1. These extra data structures (input lists, states, outputs, synchroniza-

tion mechanisms such as mutexes and conditional variables) are allocated and initialized at the

beginning of the STATS runtime (as Figure 3.18 shows), before STATS threads start their com-

putation. Moreover, they are freed when all STATS threads have ended their computation. These

extra operations is what we consider the STATS setup overhead.

State Copying. STATS splits the original sequential computation in different chunks and it pro-

cesses them in parallel. Hence, the STATS execution model needs multiple copies of the computa-

tional state, in contrast to the original program where only a single computational state is needed.

The multiple states are created on demand by copying another one. For example, Figure 3.19

shows that the first copy of the state is done at STATS setup time, when the system prepares the

initial state that will then be passed to the STATS threads. Another copy of the state (speculative

state in this case) is done by a STATS thread (chunk 1 in Figure 3.19) to its previous STATS thread

(chunk 0) that has committed, so that it can later check the quality of the speculative state. To

check the quality of the given speculative state, chunk 0 needs to compute multiple original states,

and does this in parallel. So, other state copies are necessary. All these state copies can limit the

overall performance improvements obtained.

3.3.3 Threads Synchronization

Synchronizing threads can require the program to go to the kernel (e.g., to wakeup another thread),

which takes several hundreds of clock cycles. On top of that, threads usually need to wait at the

synchronization point for data or signals. The combination of the extra work (going to the kernel)

and waiting time, is the synchronization overhead.
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Wait for speculative state Wait for commit/abort signal

Figure 3.20: Threads created by STATS need to synchronize among each others to send or receive
data or signals.

STATS generates a new source of TLP that follows a fork-join model as Figure 3.20 shows.

These threads need to synchronize with each other to comply with the execution model described

in §3.1.1. Spawning all the STATS threads at initialization introduces synchronization overhead as

all the threads wait to receive their initial state. Another source of overhead is created by having

a thread that has already committed its execution (like chunk 0 in Figure 3.20) waiting for the

speculative state that the thread processing the subsequent chunk of computation (chunk 1) used

as initial state. This is necessary because chunk 0 is in charge of checking whether or not there

is a match between the speculative state and its original states. Finally, once a speculative thread

(chunk 1 in the example) finishes to process all its inputs, it has to wait for a commit/abort signal

that comes from the previous committed thread (chunk 0) before it can end the execution and join

the parent thread.

3.3.4 Sequential Code

Speedup benefits coming from a parallelization scheme can only come from the program’s region

that is parallelized. Everything outside that region creates overhead that prevents a given paral-

lelization scheme to reach ideal performance improvements.

STATS creates additional TLP only for the code region of the program affected by a state
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core 0

core 1

time

Code before STATS STATS setup chunk 0 Code after STATS

chunk 1

Figure 3.21: Sequential code outside the code region of STATS does not benefit from the additional
TLP that STATS generates.

dependence. Everything that is outside this region of interest does not benefit the additional TLP

generated by STATS, hence we consider it as overhead. Figure 3.21 shows the computation outside

the STATS region of interest with the boxes Code before STATS and Code after STATS.

3.3.5 Mispeculation and Unreachability

Mispeculation. The STATS autotuner decides the number of parallel chunks to generate based

on the balance observed between the amount of parallelism extracted and the amount of mispecu-

lation generated. The more parallel chunks, the more speculations; the more speculations that are,

the more misspeculations there are. In other words, STATS could generate more parallel chunks

(and therefore performance) if all speculations commit. We classify as mispeculation the speedup

lost due to having a lower number of parallel chunks (chosen by the autotuner) because some

speculations abort.

Unreachability. Linear speedup is often not reached even if the parallelization does not add com-

putation or communication to the execution as well as all speculations commit. This can happen

because there are not enough parallel chunks to fully utilize all cores even when all speculations

commit. We classify the speedup lost due to this aspect as unreachable.
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3.4 Evaluating the Impact of STATS-Generated Overhead

Here we evaluate the potential performance roadblocks for parallel binaries generated by STATS.

To this end, we run multiple experiments on an Intel-based platform. This section describes

the changes to the experimental setup we used compared to our previous evaluation of STATS-

generated TLP in §3.2.1.

3.4.1 Experimental Setup

Platform. We used the same machine described in §3.2.1, with a few upgrades. The OS is Red

Hat Enterprise Linux Server 7.2 (kernel 3.10.0-693.21.1), still with no CPU frequency governors

enabled (all cores run at maximum frequency). Hyper-Threading and Turbo Boost is turned off for

all experiments. STATS is now built on top of LLVM 7.0.0 [23], Racket 6.8 [21], and OpenTuner

0.8 [22].

3.4.2 Statistics

Convergence. As in §3.2.1, each data point we show is an average of repeated runs, and config-

urations are executed as many times as necessary to achieve a tight confidence interval where 95%

of the measurements are within 5% of the median.

Autotuning Time and Configurations Explored. Each benchmark has a unique design space.

This impacts the time the autotuner needs to find a good configuration and the number of config-

urations explored. To address this issue, we customized the autotuning time on a per benchmark

basis, which ranged from 2 to 72 hours. Within this autotuning time window, the number of con-

figurations analyzed varied from 89 to 342.
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Benchmark #Threads #States State size [Bytes]
swaptions 36 36 24
streamclassifier 28 28 104
streamcluster 280 280 104
bodytrack 74 12 500000
facetrack 14 14 8000
facedet-and-track 70 70 8000

Table 3.2: Total number of threads, computational states, and state size of the “Par. STATS”
version of the benchmarks shown in Figure 3.22b.

States and Threads Created. The STATS execution model creates additional computational

states and threads that were not present in the original benchmarks. These extra resources are

needed to create additional TLP, generate the speculative state and extra original states, and pro-

duce the auxiliary code. Table 3.2 shows the total number of threads, computational states, and

their size in bytes that STATS creates for each benchmark when using 28 cores. Notice that the

number of threads created is greater than the number of cores. This increases the core utilization of

STATS parallelized benchmarks compared to the original ones. The only exception is facetrack

where STATS creates only 14 parallel chunks of computation to avoid mispeculation.

3.4.3 Benchmarks

We considered the same POSIX multi-threaded versions of the PARSEC (version 3.0) benchmarks

and their sequential versions described in §3.2.1 with a few exceptions. In this case we con-

sidered five out of the six benchmarks that have been evaluated in §3.2.1. We did not consider

fluidanimate, because the STATS parallelization had no significant impact in the program’s

performance. We substituted facedetwith facetrack, which performs the same task of track-

ing a person’s face using a newer version of OpenCV (3.2.0). We considered a new benchmark

called facedet-and-track, which uses a particle filter to track a person’s face only when the
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OpenCV face detection API fails to do so.

Inputs. To run the benchmarks, we used the same inputs described in §3.2.1 except for the addi-

tional facetrack and facedet-and-track benchmarks. For facetrack, we used a video

of a person moving in front of a camera, which includes 600 frames. For facedet-and-track,

we used a longer video (1,050 frames) to compensate for the faster execution of the OpenCV face

detection API with respect to the particle filter. To find the best configuration for a benchmark we

used training inputs, which are different from the native inputs previously described.

Output Quality. We relied on the same well-known output quality metrics we describe in §3.2.1.

For the output quality of facetrack and facedet-and-track we used the average Eu-

clidean distance between the boxes containing the detected faces.

3.4.4 Impact of STATS-Generated Overhead on Benchmarks

Our evaluation examines the impact of the overhead described in §3.3 on the parallel execution of

nondeterministic programs compiled with STATS. We analyze the performance of these programs

in §3.4.5. We evaluate the overhead of combining the TLP that the benchmarks had originally

with the TLP generated by STATS in §3.4.6. Then, we further analyze the overhead introduced by

STATS by focusing on the performance scalability roadblocks that such overhead generates. We

also investigate the total amount of additional work that STATS introduces in terms of number of

instructions in §3.4.7. Moreover, we describe the impact of the STATS parallelization in terms

of data locality and branch prediction in §3.4.8. Finally, we analyze the impact of STATS on the

inherent output variability of the considered nondeterministic programs in §3.4.9.
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Figure 3.22: For most benchmarks, STATS generates a significant amount of extra parallelism.
“Original” is the out-of-the-box benchmark that has been parallelized by traditional means. “Seq.
STATS” (“Par. STATS”) is the binary generated by STATS starting from the sequential (multi-
threaded) version of a benchmark.

3.4.5 Performance Obtained by TLP Sources

The TLP that is expressed explicitly by developers via parallel programming APIs is not enough

to fully utilize all cores included in our platform. Figure 3.22 shows the performance obtained by

a parallel binary compared to the sequential execution of that program. The black bars correspond

to the parallel binary generated by only using the original TLP. The performance obtained by this

TLP source is only 3.7× on 14 cores and 3.76× on 28 cores on average.

The TLP that is extracted by STATS scales more than the original TLP. The grey bars of Fig-
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Figure 3.23: Percentage of speedup lost by benchmarks that take advantage of both original TLP
and STATS TLP, on 28 cores. The number at the right of each bar is the amount of speedup lost
with respect to the ideal speedup. Every benchmark is limited by different sources of overhead.
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Figure 3.24: Percentage of speedup lost due to the “Extra computation” fraction of Figure 3.23.
The number at the right of each bar is the amount of speedup lost only because of “Extra com-
putation”. The two main sources of overhead are related to the generation of the speculative state
and multiple original states. The overhead due to the STATS setup phase only accounts for a small
fraction of the speedup lost.
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ure 3.22 correspond to the parallel binary generated by STATS when no original TLP is used. In

other words, these binaries rely only on the TLP extracted from state dependences. The perfor-

mance obtained in this case is 8.45× on 14 cores and 11.65× on 28 cores.

Combining the original TLP with the STATS TLP generates important performance improve-

ments. The red bars of Figure 3.22 correspond to the parallel binary generated by STATS when

the TLP extracted from state dependences is combined with the original TLP. The performance

obtained in this situation is 10.61× on 14 cores and 14.77× on 28 cores. These results show that

STATS improves significantly the overall performance, but it is not able to reach speedups that

scale linearly with the number of cores. The rest of the section analyzes the reasons behind this

limitation.

3.4.6 Performance Effects of STATS Overhead

To understand what is limiting the STATS binaries to obtain speedups that scale linearly with the

number of cores, we evaluated the performance impact of each of the six categories of overhead

described in §3.3. Notice that these sources of overhead are related only to the STATS execution

model. These six overhead categories are evaluated as follows.

First we run the parallel binary generated by STATS, and we keep track of the time, in CPU

cycles, of each critical point of the STATS execution model. For example, we measure the CPU

cycles that passed since the beginning of the program’s execution and the time the main thread

starts the code region parallelized by STATS. Another example of execution point we keep track

of is when each STATS thread starts the execution of their chunk of inputs. Other examples are the

beginning and the end of (i) each alternative producer, (ii) each code block that computes original

states, (iii) the STATS setup block (all shown in Figure 3.18), (iv) each thread synchronization

code block (Figure 3.20), (v) each code block that clones computational states (Figure 3.19), and
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(vi) each code region parallelized by STATS. After obtaining these timestamps, we compute post-

mortem the critical path of the parallel execution similar to what proposed in [50]. Finally, to

evaluate the performance loss due to a given overhead, we compute the speedup obtainable if that

overhead were removed. To do this, we emulate the parallel execution removing only the part of

the overhead targeted that is in the critical path, similar to what proposed in [50].

We measure the performance loss of each source of overhead of the STATS execution model

following the approach described above. We performed this analysis in two situations. First we

consider the scenario that STATS has been designed for. We let STATS combining the original TLP

with the TLP extracted from state dependences. Then, we perform the same type of evaluation but

force STATS to rely only on the TLP that comes from state dependences. This last analysis is

needed to analyze the parallelism extracted by STATS at its limit.

Combining Original and STATS Parallelism. Figure 3.23 shows the performance loss for 28

cores when both original and STATS parallelism are used. It is interesting to notice that differ-

ent benchmarks have different principal sources of overhead. For example, STATS is not able

to achieve linear speedup with the number of cores for facedet-and-track mainly because

of the synchronization overhead, which is required to implement the STATS execution model.

facetrack is mainly limited by mispeculation because STATS creates only 7 parallel chunks to

avoid aborting the computation. bodytrack is evenly limited by unreachability, mispeculation,

and the overhead related to the STATS execution model (synchronization and extra computation).

streamclassifier is mainly limited by synchronization and the code outside the regions par-

allelized by STATS. streamcluster is also limited by the sequential code outside the STATS

parallel region, but also by the imbalance and synchronization between STATS threads. On the

other hand, swaptions parallelized by STATS reaches linear speedup on 28 cores.
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Figure 3.25: Percentage of speedup lost by benchmarks that take advantage of STATS TLP only,
on both 14 and 28 cores. The number at the right of each bar is the amount of speedup lost
with respect to the ideal speedup of 28× and 14× respectively. The fraction of speedup lost due
to STATS “Extra computation” dramatically increases when more TLP is generated from state
dependences.

Figure 3.24 shows the breakdown of the extra computation performed by the parallel binaries.

The two main sources of extra computation are related to (and required by) the speculation scheme

implemented by STATS: generating the speculative state and the multiple original states.



83

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
0.01x
0.01x
4.87x
1.35x
0.90x

Speculative state
Multiple original states

State comparison
State copying

Setup

(a) 14 cores

0 20 40 60 80 100
speedup lost [%]

swaptions
streamclassifier

streamcluster
bodytrack
facetrack

facedet-and-track

0.00x
0.05x
0.05x
13.94x
4.22x
2.63x

Speculative state
Multiple original states

State comparison
State copying

Setup

(b) 28 cores

Figure 3.26: Percentage of speedup lost due to the “Extra computation” fraction of Figure 3.25.
The number at the right of each bar is the amount of speedup lost only because of “Extra com-
putation”. As in Figure 3.24, the main overhead components are related to the STATS specula-
tion scheme (speculative state and multiple original states), while the speedup lost because of the
STATS setup is negligible.

Only TLP from State Dependences. Here we analyze the performance loss when the parallel

binaries do not include the original TLP of the benchmark to better understand the impact of the

sources of overhead described in §3.3 to the parallelism that STATS generates. To do this, we run

STATS forcing it to create 14 and 28 STATS-threads (i.e., parallel chunks of computation) without
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using the original TLP. We performed the performance loss analysis for both 14 and 28 cores to

highlight how each overhead source scales with the number of cores. Figure 3.25 shows these

results.

The difference between Figure 3.25 and Figure 3.23 highlights that extracting more TLP from

state dependences generates significantly more extra computation. The more TLP is extracted from

a state dependence, the more extra code is required to implement the STATS execution model. This

makes the extra computation overhead more dominant than when the STATS TLP is combined with

the original one, because when STATS can combine the two sources of TLP, it is not forced to break

state dependences too often.

To further understand the extra computation generated, we broke it down in the 5 components

described in §3.3.2. This analysis is shown in Figure 3.26. As for the case when both sources of

TLP are used (Figure 3.24), the two main sources of extra computation are related to the specu-

lation scheme implemented by STATS: generating the speculative state and the multiple original

states. The importance of these two sources of overhead suggests that the STATS execution model

should evolve to implement a more scalable speculation scheme that requires less extra computa-

tion.

3.4.7 Extra Computation

The previous empirical analysis suggests that the extra computation performed to implement the

STATS execution model is an important source of overhead. To understand whether this is due to

an abundant amount of extra work or because this extra work was performed in the critical path of

the parallel execution, we further analyze it. To this end, we computed the total amount of extra

work performed in terms of number of instructions executed at run time.

Figure 3.27 shows the amount of extra instructions executed to implement the STATS execution
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Figure 3.27: Extra amount of instructions executed by STATS parallelized benchmarks on 28 cores.
The benchmarks bodytrack and facedet-and-track, execute a considerable amount of
extra instructions than their original version.
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Figure 3.28: Extra instructions breakdown related to the “Extra computation” of Figure 3.27. In-
structions related to the generation of the “Speculative state” by the alternative producer, and “State
copying” dominate the other sources of extra instructions.

model using 28 cores. The benchmarks that execute a considerable amount of extra instructions

are bodytrack and facedet-and-track, and have respectively 107.4% and 43.8% extra

instructions that are due to the extra computation described in §3.3.2. This result combined with

the previous analyses suggest that the extra computation overhead is an important performance

roadblock for STATS, and that this extra computation is often performed in the critical path of the

parallel execution. Finally, streamclassifier and streamcluster execute fewer instruc-
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tions than the baseline, because the TLP extracted from state dependences leads the execution to

find their clustering solutions faster.

Most of the extra instructions added by STATS are executed to copy computational states and to

generate speculative states. Figure 3.28 shows the breakdown of these extra instructions. Combin-

ing these results with the loss in performance shown in Figure 3.26b, it is clear that instructions re-

lated to “State copying” are not in the critical path of the parallel execution, since the performance

lost because of that are negligible. In contrast, the number of committed instructions needed to

generate the speculative state (and to create multiple original states in the bodytrack case) have

an impact on performance as well. However, we believe that improving STATS by accelerating the

state copy operator is still valuable, because in the design space explored by the autotuner, there

might be configurations that would scale well, but they are not chosen because copying computa-

tional states has a negative impact on their performance. More efficient state copying would solve

this problem. Improving the state copying could be implemented by compiler optimizations that

exploit STATS specific knowledge to consider a transformation space of the state copy operator

larger than what general-purpose code transformations could reach. Another solution could be to

exploit hardware accelerations for this task.

3.4.8 Architecture Effects of STATS-Generated TLP

TLP can have a negative effect to some architecture-specific characteristics of the underlying plat-

form such as data locality and branch prediction. To evaluate these effects, we measured the total

number of cache misses (absolute and percentage compared to the total number of cache accesses)

for the L1D cache, L2 cache, and for the last level cache (LLC) of our platform. Furthermore, we

measured the total number of branch mispredictions (absolute and percentage). These values are

computed by adding all of the per-core counters of that hardware event. For example, the number
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of cache L1D misses is computed by counting all cache misses of all L1D of our 28 core platform.

Table 3.3 shows this analysis for the baseline code when no source of TLP is used (i.e., sequen-

tial execution), when only the original TLP is used (and 28 cores are considered), and when only

STATS TLP is used (again, on 28 cores).

facetrack and facedet-and-track lose some data locality when STATS is used, be-

cause the STATS execution model runs in parallel the computation of input chunks breaking

both the temporal and spatial locality between these chunks. Contrarily, streamcluster and

streamclassifier have fewer cache misses and branch mispredictions compared to their

out-of-the-box version because they execute less code. As described in §3.4.7, the STATS ver-

sion of these benchmarks converges more quickly to their solution. Finally, swaptions and

bodytrack maintain a similar misprediction rate between the original and the STATS version

of the benchmark. However, the number of absolute misses in bodytrack grows in the STATS

version because the number of instructions executed is greater than the original version.

3.4.9 Output Variability Due to Nondeterminism

STATS preserves the original semantics: each output generated by a STATS binary could have

been generated by the original program. However, the distribution of outputs generated by the

nondeterminism of the original program can be affected by the parallelization STATS performs.

We run the original program two hundreds times, and we compared all the outputs with an oracle

one (i.e., highest output quality). The result is a distribution of output qualities between runs shown

in Figure 3.29. This figure also shows the same analysis for the parallel binaries generated by

STATS. This comparison allows us to understand the impact of the STATS transformation to the

output variance of the nondeterministic benchmarks considered. Counterintuitively, Figure 3.29

shows that STATS tends to improve the quality of the outputs.
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CHAPTER 4

PROGRAM STATE ELEMENT CHARACTERIZATION

We now describe Program State Element Characterization (PSEC) by outlining its components and

illustrating the process that translates PSEC into programming language abstraction recommenda-

tions (§4.1). Then, we discuss CARMOT, our compiler-runtime, co-designed tool that implements

PSEC and aids developers in using the programming language abstractions that we currently tar-

get: the STATS abtraction, some of the abstractions offered by OpenMP, and the C++ smart pointer

abstraction (§4.2). Finally, we evaluate the overhead of CARMOT and its PSEC, and show the

benefits of the optimizations we developed, which make PSEC feasible (§4.3).

4.1 Performing PSEC

Generating the programming language abstractions we discussed in §2.3.1 (i.e., the STATS ab-

straction, the OpenMP pragmas, and the C++ smart pointers abstraction) requires three essential

pieces of information about PSEs: classification (e.g., only read PSEs), contextualization (when

and where PSEs are used in the program), and reachability (PSEs that reference other PSEs). We

now describe how PSEC provides this information and how it is used to automatically generate

these abstractions.

4.1.1 Components of PSEC

PSEC has three components (Table 4.1): Sets to classify PSEs, Use-callstacks to contextualize

computation, Reachability Graph to represent reachability relationships between PSEs.

Sets. In §2.1 we defined Program State Elements as the set of memory locations (stack and heap)



91

and variables (local and global) of a program at the source code level. Also, we defined a Source

Code Region of Interest (ROI) as a single-entry, single-exit code region [51]. Examples of an ROI

are a single statement, an if-then-else code block, a loop, or a function. PSEC is related to an ROI

and contains information about how PSEs are read and/or written by that ROI.

PSEC classifies the ROI’s access to PSEs into four Sets. Each set indicates how an ROI in

the source code interacts with (i.e., reads/writes) PSEs. The sets that comprise a PSEC for a

dynamically invoked ROI Z are:

Input set: PSEs read by a dynamic invocation of Z before being written by any invocation of Z.

This set represents the input of Z as these data are generated by the code outside Z and consumed

by Z.

Output set: PSEs written in a dynamic invocation of Z and read outside Z. This set represents

the output of Z as this data is generated by Z and consumed by the code outside Z.

Cloneable set: PSEs written by more than one invocation of Z where no subsequent invocation

reads them before overwriting them. This set represents data locations reused by invocations of Z

without triggering RAW data dependences.

Transfer set: PSEs written by an invocation of Z and then read by a subsequent invocation of Z

before any potential overwrites. This set represents the data generated by an invocation of Z and

consumed by a subsequent invocation of Z, triggering a RAW data dependence.

Three pieces of information are necessary to classify PSEs in the correct set of a PSEC. First,

we need to know where PSEs are allocated in the source code. Second, we need the context of such

allocations. As context we use the callstacks that lead to the code statements that performed such
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allocations. The context of allocations is necessary, because the same static code statement that

generates PSEs can be used in different parts of the program, and the programmer must be able

to distinguish them. For example, custom allocators are widely used in large codebases. Without

knowing the callstack all allocations would look like they are coming from the allocation statement

in the custom allocator, which is not useful information. Third, we need to record reads and writes

the ROI performs on all PSEs to characterize them correctly. We call these accesses uses of PSEs.

Use-Callstacks. The program statements in an ROI (i.e., the uses of PSEs) can be executed

multiple times from different parts of a program. To take this into account, we record the callstack

of each statement invocation. We refer to these statements and their recorded callstacks as Use-

callstacks of a PSEC. Knowing Use-callstacks enables us to disambiguate a static statement when

invoked from different parts of the program, which can lead to a PSE being classified in different

Sets of a PSEC. This is useful, for example, to report precisely which statement must be in a critical

section.

Reachability Graph. PSEs can reference other PSEs in different points of a program. PSEC

collects reference information through its uses of PSEs. Specifically, recording pointer escapes

of PSEs. Escapes are recorded in the PSEC Reachability Graph where nodes are PSEs allocated

within the PSEC’s ROI and edges are references that point to other PSEs. We use this information

to keep track of how PSEs reference each other to, for example, identify reference cycles.

4.1.2 From PSEC to Abstractions

Programmers declare the abstraction to apply to a given ROI to CARMOT. Then, CARMOT uses

an ROI’s PSEC to automatically generate new source code with the requested abstraction in it and

customizes it with the correct attributes (Table 4.1 illustrates which parts of PSEC are necessary to
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Abstraction PSEC
Sets (I,O,C,T) Use-callstacks Reachability Graph

OMP parallel for
(and critical/ordered) 3 3 7

OMP task 3 7 7

Smart Pointers 3 7 3

STATS 3 7 7

Table 4.1: Different abstractions need different parts of PSEC.

generate each abstraction). Next we describe the generation of abstractions from PSEC.

Declaring State Dependences with STATS. The STATS abstraction Input-Output-State can be

mapped directly from the Sets of an ROI’s PSEC. PSEs classified in the Input, Output, or Transfer

sets are respectively mapped to the Input, Output, State classes of the STATS abstraction. The

STATS abstraction requires the target ROI to be explicitly moved into a separate function; hence,

PSEs in the Cloneable set are declared locally in that function. This localization enables the STATS

compiler to spawn independent parallel threads to execute the related ROI.

Program Parallelization/Synchronization. To generate a #pragma omp parallel for with the

correct attributes, CARMOT uses the Sets of the PSEC as follows. For every PSE e in the Clone-

able set, CARMOT extracts the callstack for the element’s allocation. These PSEs and their call-

stacks tell us what needs to be cloned to remove WAR and WAW data dependences between invo-

cations of the related ROI (e.g., the body of a loop). If e is a variable, then CARMOT privatizes

it in the generated pragma. Variables that are also in the Output set are declared as lastprivate,

since they can be read after the ROI. Similarly, variables that are also in the Input set are declared

as firstprivate, since they were first read inside the ROI. If e is a memory location, then CAR-

MOT advises programmers to clone the PSE (CARMOT’s output provides the allocation site and



94

its callstack to help programmers understanding how to perform the cloning) and use the OpenMP

API omp get thread num() to access the correct clone of that allocation in the ROI. PSEs that

belong only to the Input set are declared as shared in the pragma because they are only read.

Finally, for each PSE e in the Transfer set CARMOT retrieves its Use-callstacks. If e is a vari-

able, then CARMOT checks each use of e to understand if the computation performed on e is

reducible (i.e., the statement uses one of the OpenMP-supported reduction operators such as +). If

the computation is reducible, then CARMOT includes e and the supported operation in the reduc-

tion(operator:variable) attribute. Otherwise, all statements that access e are wrapped in a #pragma

omp critical or #pragma omp ordered section. Note that CARMOT leaves the decision as to which

abstraction to use, either critical or ordered, to programmers as they know whether it is necessary

to preserve the loop iteration order. CARMOT generates dependences for #pragma omp task as

follows. The Input and Output sets of a computational spoor are mapped to the depend attribute of

#pragma omp task. All PSEs e in the Input set are declared as depend(in:e). Similarly, all PSEs e

in the Output set are declared as depend(out:e).

Managing Dynamic Memory. Cycles between PSEs allocated in an ROI are detected using the

PSEC Reachability Graph, which tracks references between PSEs. CARMOT reports detected

reference cycles to programmers and can suggest which reference should become a weak pointer1

to break a detected reference cycle. It does so by identifying the node in that cycle that has the

oldest access time. This enables programmers to gradually port ROIs within a large codebase to

use smart pointers without introducing cycles.

1A weak pointer does not increment an allocation reference counter.
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Figure 4.1: PSEC follows a Finite State Automaton (FSA).

4.2 CARMOT

Here we describe how CARMOT performs PSEC, its compiler, Pintool, runtime, and PSEC-

specific optimizations.

4.2.1 PSEC with CARMOT

CARMOT performs PSEC of an ROI independently of other ROIs. When a PSE (e.g., variable)

is accessed within an ROI, CARMOT classifies it into the Sets of that ROI’s PSEC following the

Finite State Automaton (FSA) shown in Figure 4.1. Each PSE has an instance of this FSA. PSEs

start in the ε state. A PSE is added to the PSEC of an ROI Z upon its first access within Z.

Subsequent accesses of a PSE in Z might change its FSA’s state for Z. At the end of a program’s

execution, the final FSA state of a PSE for Z reflects the set (or sets) that the PSE belongs to with

respect to ROI Z. In more detail, if the terminal FSA state includes an I, O, C, and/or T, then the

related PSE belongs to the Input, Output, Cloneable, and/or Transfer set respectively. Note that a
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0  int work(int a, int b){
1      int i, x, y;
2      y = 42;
3      for (i = 0; i < 10; ++i){
4          #pragma carmot roi{
5              x = i/(a + b);
6              y /= a*x + b;
7          }
8      }
9      return y;
10 }

Figure 4.2: CARMOT automatically builds the PSEC containing the information to parallelize this
for-loop.

PSE can never be both in the Cloneable and Transfer sets (C ∩ T = ∅).

Let us consider the loop in Figure 4.2 and the PSE variable y. In the first dynamic invocation of

ROI Z, PSE y is first read and then written in line 6, hence y transitions from ε to I (Rf ) and then

to IO (Wn). In the subsequent dynamic invocation of Z a read of y happens (Rf ), which causes a

trasition to TIO. TIO is a sink state, so when the program finishes, CARMOT classifies y in the

Transfer, Input, and Output sets.

The FSA operates only on reads and writes that happen within ROIs. This design decision

enables CARMOT to avoid profiling code outside ROIs, but it also makes the assumption that

PSEs written in an ROI will be read outside the ROI, so they will be part of the Output set. This

assumption is conservative and does not affect the correctness of the PSEC.

4.2.2 Advantages of CARMOT’s Dynamic Approach

CARMOT performs PSEC by profiling a specific run of the target program. We envision CARMOT

users will perform PSEC on a program multiple times to cover many program inputs and combine

the generated PSEC. Combining PSECs can be done through set union. For example, if PSE e is

classified in the Input and Output sets in the first run, and in the Cloneable and Output sets in the
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second run, the PSEC across runs classifies e in the Cloneable, Input, and Output sets. The only

exception to this union rule is when e is in the Cloneable set for one run and in the Transfer set

for another run. In this case, the conservative answer is to classify e in the Transfer set. Currently,

and only for engineering reasons, CARMOT’s users need to manually apply these rules to merge

multiple PSEC to gain a more comprehensive understanding of the target program.

CARMOT’s dynamic approach goes beyond what can be determined with static code analyses

and provides programmers recommendations and support for programming language abstractions

at the source code level for a specific program execution. The advantage of providing recommen-

dations, as opposed to making automatic semantic changes to the code, is that it makes CARMOT

more accessible to programmers. These recommendations allow for a better understanding of

code behaviour and provide a starting point to tune abstractions to the programmer’s needs. The

disadvantage is that verifying the correctness of such recommendations for all prossible program

executions has to be done manually. However, we argue that such a process is more suitable for

humans rather than tools. Programmers can leverage domain specific knowledge about a program

to make a decision, while an automatic, semantic-changing tool has to make conservative assump-

tions when trying to build an abstraction that is sound for all possible program executions. This

conservativeness hides the true behavior of the execution of a program, which prevents program-

mers from reasoning about their programs and the abstractions they want to use.

4.2.3 CARMOT as a System

CARMOT implements the compilation flow in Figure 4.3. CARMOT’s compiler (§4.2.4) generates

a binary from C/C++ source files including code instrumentation. Complementarily, CARMOT

loads its Pintool (§4.2.5) into memory to cover code that lacks available source. CARMOT’s

runtime (§4.2.6) is embedded within the generated binary as a static library. The runtime processes
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Figure 4.3: CARMOT produces the mapping between source/IR code and runs an instrumented
binary to build the PSEC, which is then used to generate the target abstraction information for the
programmer at the source code level.

the reads and writes provided both by the instrumentation generated by CARMOT’s compiler and

by its Pintool. This generates the PSEC of each ROI specified by CARMOT’s pragma included in

the program’s source code (Figure 4.2). The PSEC is then translated into programming language

abstraction recommendations for the abstraction chosen by the CARMOT user.

4.2.4 Compiler

CARMOT’s compiler uses clang with debugging symbols enabled, but without optimizations,

to translate a C/C++ program to LLVM’s IR and guarantee a reversible mapping between source

code and IR. The advantage of performing PSEC at the IR level rather than at the binary level

is two-fold. First, we can easily implement precise and effective specialized code analyses and

optimizations. Second, the amount of instrumentation is considerably reduced compared to bi-

nary instrumentation, where spilling of variables onto memory already occurred, generating extra

memory loads and stores. The disadvantage of performing PSEC on unoptimized IR is the high

overhead of the profiling phase, making PSEC infeasible for a large codebase. For this reason,

CARMOT uses the following PSEC-specific code analyses and optimizations.

1) Subsequent accesses. The FSA of Figure 4.1 shows that transitions of PSEs to a different

state happen only upon the first read or write (Rf , Wf ) of a new dynamic invocation of an ROI.



99

The only exception is a subsequent write (Wn) in the same ROI dynamic invocation when the PSE

is in the I state. Following this observation, this optimization aims to instrument only the first read

and write of a PSE and avoid instrumenting subsequent accesses that are proved to always access

the same PSE.

We developed a new intra-procedural data-flow analysis to identify where a PSE must have

been accessed already since the beginning of an ROI. For this data-flow analysis, predecessors

and successors of basic blocks that are outside or leave an ROI are not followed during the data-

flow value propagation as only instructions within an ROI need to be considered. We do so by

considering the entry point of an ROI as the entry point for our analysis. Elements in the GEN ,

IN , and OUT sets are the variables and memory locations (i.e., PSEs) of the target program.

Given an instruction i that is either a load or a store, the sets for the data-flow analysis are defined

as follows. The GEN set of i is the PSE a that a load is guaranteed to access or a store must write

to (GEN [i] = {a}). The IN set of i is first initialized to be the union of all PSEs, and then refined

to be IN [i] =
⋂

∀p∈preds(i) OUT [p], where p are the predecessors of i. The OUT set of i is initially

empty, and then refined to be OUT [i] = IN [i] ∪ GEN [i]. This data-flow analysis runs until a

fixed point is reached for each ROI. Elements in the IN set of an instruction i are the PSEs that

must have been accessed between the entry of the ROI and i. Hence, CARMOT reduces profiling

overhead by avoiding instrumenting instructions i where the PSE accessed by i belongs to IN [i].

2) PSEs aggregation. Normally, uses of PSEs are instrumented singularly. However, contiguous

PSEs that can be indexed (e.g., arrays), for which the same operation is performed at every ROI’s

dynamic invocation (e.g., they are always only read or only written) are instrumented altogether at

once. Currently we limit this optimization on ROIs that wrap the body of a loop for which the loop

governing induction variable indexes the contiguous PSEs.
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3) Fixed setting of FSA state for PSEs. The FSA in Figure 4.1 shows that PSEs that are always

only read will always be classified as Input in the PSEC. Hence, PSEs that can be verified to be

only read at compile time can be instrumented only once and still be correctly classified in the

Input set. Although an ROI is a general code region, we currently enable this optimization only for

ROIs that wrap the body of a loop. We determine whether a PSE is only read by verifying that the

corresponding load instruction is loop invariant. Similarly, the FSA classifies PSEs that are always

only written as Output or Cloneable. At compile time, we determine whether a PSE is only written

using the PDG. If the store instruction that writes the PSE has no incoming memory dependence

edge where the source of the edge is an instruction in the ROI, we set the FSA state of that PSE

to be Output. Then, if the considered ROI wraps the body of a loop, we use the loop governing

induction variable to determine whether the store to the PSE is executed more than once. If so, we

set the FSA state of that PSE to also be Cloneable.

4) Selective mem2reg. The LLVM mem2reg optimization [6] promotes the uses of local vari-

ables of a function into virtual LLVM registers. This optimization is extremely beneficial for

performance and to enable further analysis and transformations, but it cannot be generally applied

when performing PSEC (§2.3.3). However, some allocations of PSEs that are local variables can

be promoted to registers without affecting the correctness of PSEC. For example, local variables

that are never used in any ROIs can be safely promoted to registers because they will not be part of

a PSEC, and instrumentation of such variables can be safely removed. Also, local variables with

a specific role in an ROI have to be promoted to registers to be identified (e.g., loop governing

induction variables). We built a wrapper around the LLVM mem2reg optimization that allows the

promotion of specific local variables to registers only when it is safe to do so.
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5) Call graph-based optimization. This optimization selects functions that can be optimized

with conventional transformations while preserving the aforementioned IR-to-source-code map-

ping needed for PSEC. This optimization is based on the observation that if a function f cannot

be in the callstack when any ROI starts, then f can be optimized with conventional optimizations

(such as -O3) without breaking the IR-to-source-code mapping, because any PSE allocated in the

stack by f will not be part of the PSEC of any ROI. This holds even if f is invoked within an ROI,

as its stack is freed before returning to its caller and therefore such stack PSEs cannot be involved

in any data dependences that cross the boundaries of an ROI. Therefore, only PSEs that are heap

allocated by f need to be tracked, which are preserved by the optimizations included in -O3 of

clang.

To perform this optimization, CARMOT identifies the functions that cannot be in the callstack

when any ROI starts by computing the complete callgraph of a program (i.e., a callgraph where

the lack of an edge (fi, fj) means fi cannot invoke fj). Unfortunately, the callgraph provided by

LLVM is not complete. To generate the complete callgraph, CARMOT computes the program

dependence graph (PDG) to automatically discover the possible callees to which a pointer could

refer. CARMOT uses the same memory alias analyses used by the previous optimization. Armed

with the complete callgraph, CARMOT identifies the set of functions that can be optimized. For

every ROI, CARMOT takes the function f where the ROI belongs to and traverses the edges of

the callgraph backwards from f and tags all functions reached, including f . All functions in

the program that are not tagged are optimized by CARMOT invoking the -O3 optimizations of

clang.

6) Reducing Pin instrumentation. CARMOT uses the call graph to also reduce Pin instrumenta-

tion by enabling the Pintool only when it cannot guarantee that a call will not jump to precompiled
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code.

7) Callstack clustering. CARMOT needs to record the callstack of every PSE allocation. In a

typical function, many PSEs are allocated. In a naive implementation, every time an allocation

of a PSE occurs, the callstack must be computed and assigned to that PSE. However, allocations

made within the same invocation of a function share the same callstack. To avoid recomputing the

callstack for each PSE allocation within a function, CARMOT computes the callstack only once at

the beginning of the function. The instrumentation that documents allocations can now collectively

share the computed callstack instead of producing redundant callstack records that are clones of

one another.

4.2.5 Pin Instrumentation

When the target program includes code outside the available sources (e.g., precompiled libraries),

it is impossible to track all PSEs information with a purely compiler-based approach. However, the

activity of PSEs outside the available sources must be tracked in order for the PSEC to be correct

and complete. To perform this tracking, CARMOT uses dynamic binary instrumentation through

a Pintool that builds upon the Pinatrace memory access tracing tool from Intel [52]. The key

challenge is to efficiently communicate between the Pintool and the compiler/runtime environment

of CARMOT. To overcome these challenges we use compiler injected calls to invoke our Pintool,

which tracks allocations and accesses of PSEs in precompiled code and communicates them to the

CARMOT runtime. This is a costly operation, but necessary to generate a correct PSEC.
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Figure 4.4: The runtime utilizes batching, shadow profiling, and pipeline parallelism to efficiently
perform PSEC.

4.2.6 Runtime

CARMOT’s runtime processes the uses of PSEs provided by either compiler-injected instrumenta-

tion or the Pintool. This information needs to be processed at run-time as the large amount of data

collected makes storage a bottleneck.

The primary structures the runtime builds are the Active State Member Table and the ROIs’

PSEC. This table captures metadata about active PSEs such as the callstack of their allocation and

size in bytes. The runtime generates a PSEC by enacting the FSA (§4.2.1) upon PSEs for each

ROI.

Figure 4.4 shows the components and the processing flow of the runtime. The Main Thread

runs the target program. The compiler-injected instrumentation and Pintool push requests into a

batch. Once a batch fills, it is pushed into an ordered queue of filled batches, and the instrumen-

tation calls begin filling a new batch. The Master/Shadow Thread schedules filled batches for

processing by Worker Threads. Each processed batch is then added to a second ordered queue for
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final processing. The results of processed batches are updates to the active state member table and

PSEC. The batches are processed following a parallel pipeline:

Processing batches. This stage processes the instrumentation calls to build the ROIs’ PSEC for

all PSEs. It does so by implementing the FSA in Figure 4.1 on active PSEs. Once the batch has

been processed, it is then queued to the next pipeline stage and the next batch can be processed.

Postprocessing batches. This stage adds contextual information to the ROIs’ PSEC and connects

metadata to PSEs. This includes the callstack, escaped pointers, source code information for PSEs

(file and line), and accesses.

4.3 Evaluation

We now show the effectiveness of CARMOT in generating correct programming language abstrac-

tion recommendations with acceptable overhead, compared to a naive approach that lacks PSEC-

specific optimizations. We use CARMOT on 15 benchmarks from the SPEC CPU 2017, NAS [53],

and PARSEC (version 3.0) [49] benchmark suites. We include every benchmark from all of these

suites that already use, or are well suited for, the abstractions that CARMOT currently supports.

When evaluating the performance benefits of CARMOT we used the “reference”, “class C”, and

“native” inputs, respectively. When evaluating the overhead of CARMOT we used the “test”,

“class A”, and “simsmall” inputs. The difference in inputs for performance and overhead results

reflects how we see CARMOT being used. We use the larger, production level inputs (“reference”,

“class C”, and “native”) to evaluate performance, because the results will be indicative of the ac-

tual speedup that programs developed with CARMOT can attain. However, we use the smaller

inputs (“test”, “class A”, and “simsmall”) to evaluate overhead. We believe that these results are

conservative and are also more representative of what users will experience when determining the

PSEC at development time.
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4.3.1 Experimental Setup

Our evaluation platform is a dual socket server with two Intel Xeon Silver 4116 CPU running at

2.1GHz. Each processor has 12 cores with 2-way hyper-threading and 16.5 MB of last level cache.

The cores are supported by 125 GiB of main memory at 2400 MHz. The OS is Red Hat Enterprise

Linux 8.2 (kernel 4.18.0-193.6.3). CARMOT is built on top of LLVM 9.0.0 [23], Pin 3.13 [54],

and NOELLE 9.3 [55]. The baseline for both performance and overhead evaluation we show is the

sequential version of each benchmark, compiled with clang -O3 -march=native.

4.3.2 STATS Use Case

Here we show that CARMOT can be used to build the Input, Output, and State classes required

by the STATS abstraction. In the benchmarks considered, we choose the ROI for PSEC to be the

code region of the STATS state dependence. CARMOT is able to accurately generate the Input,

Output, State classes required by the STATS abstraction, such that they match those we manually

implemented in §3. Furthermore, CARMOT was able to identify some misclassifications of PSEs

that we made when manually implementing the STATS abstraction for these benchmarks. While

these misclassifications have no impact on correctness, they lead to extra unnecessary copies of

variables. In this case, fixing the misclassification does not lead to a noticeable speedup. How-

ever, CARMOT’s ability to outperform the manual and labor-intensive classification lends to its

usefulness as a tool for abstractions that can be difficult for developers to use correctly.

Figure 4.5 shows CARMOT’s overhead for classifying PSEs into STATS’s Input, Output, and

State classes. We can see that the CARMOT overhead is one order of magnitude lower than a

naive approach, because the STATS abstraction does not require the tracking of all Use-callstacks,

a costly operation, and because the PSEC-specific optimizations of CARMOT further reduce the

overhead.



106

bodytrack

fluidanimate

stre
amcluster

stre
amclassifi

er

swaptions

geo. mean
0

100
200
300
400
500
600

Ov
er

he
ad

* *

512

83

Naive approach
CARMOT

Figure 4.5: The CARMOT overhead to generate the Input-Output-State abstraction of STATS is
one order of magnitude less than a naive approach.

4.3.3 OpenMP Use Case

Using PSEC, CARMOT is able to automatically generate #pragma omp parallel for, #pragma omp

critical, #pragma omp ordered, and #pragma omp task annotations, and can be used by developers

to verify the correctness and improve the performance of existing pragmas for a specific program

execution. Many of the benchmarks we consider for this use case already use OpenMP pragmas.

In this case, we choose as ROIs for PSEC the code regions of the already present OpenMP prag-

mas, and we verified that CARMOT’s recommendations matched the original pragmas and our

understanding of the parallelism in the benchmark. In cases where the benchmark is parallelized

using pthreads (e.g., swaptions from PARSEC 3), we use as ROI the entry point function of

such threads to build equivalent parallelism using CARMOT’s recommended OpenMP pragmas.

Furthermore, we use CARMOT to implement additional parallelization opportunities; for example,

we add some OpenMP task parallelism to mg from NAS.

Figure 4.6 shows the speedup benefits of automatic CARMOT-generated pragmas (either ver-

ified pragmas or brand new ones) versus the original (manually extracted by the benchmarks’ au-

thors) parallelism (either through omp pragmas or pthread) for each benchmark we consider. This
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Figure 4.6: CARMOT-generated OpenMP pragmas achieve the same speedup of the original pro-
gram parallelism manually implemented by a programmer. These experiments use the production-
size inputs.

data shows that with CARMOT-generated pragmas, we are almost always able to achieve speedups

that are as good as or better than pragmas implemented manually by a programmer. For bench-

marks like canneal and swaptions, where the only original source of parallelism comes from

pthreads, the new pragmas generated by CARMOT match the performance of the labor-intensive

pthreads parallelism. The only exceptions are ep and nab for which CARMOT was unable to

extract all parallelism potential. In both cases the main source of parallelism in these benchmarks

comes from general OpenMP #pragma omp parallel sections that include synchronization mech-

anisms such as #pragma omp barrier or #pragma omp master that are abstractions currently not

supported by CARMOT.

When designing new development tools, striking a balance between effectiveness and feasibil-

ity is paramount. The feasibility of CARMOT as a tool is measured by the computational overhead

required to perform PSEC. Figure 4.7 shows the computational overhead of CARMOT when au-

tomatically generating OpenMP pragmas information. We compare the CARMOT overhead with

a naive approach that does not employ any PSEC-specific optimization, but can still generate a
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Figure 4.7: The CARMOT overhead to generate OpenMP pragma information is two orders of
magnitude less than a naive approach.

correct PSEC. CARMOT outperforms the naive approach by lowering the overhead of performing

PSEC by two orders of magnitude. In some cases the execution of the naive approach required an

excessive amount of memory and did not complete, we mark the missing data with ∗.

To showcase the power of PSEC-specific optimizations, Figure 4.8 shows the impact of the

optimizations described in §4.2.4. For the benchmarks where the naive approach finished suc-

cessfully, we show in percentage the breakdown of the delta between the black and red bars

of Figure 4.7 for every CARMOT optimization. The reduction of Pin instrumentation and the

callgraph-based optimization, enabled by the complete callgraph of NOELLE, have the highest

impact. Optimizations from 1) to 4) of §4.2.4 collaboratively enable each other to remove redun-

dant instrumentation, for this reason we consider them together. Because they heavily rely on alias

analysis, they have the highest impact in the more regular benchmarks from NAS.

4.3.4 Smart Pointers Use Case

Here we show the versatility of CARMOT on a use case unrelated to parallelization: identifying

reference cycles in an ROI. In this use case we choose the ROI for PSEC to be the entire program

(i.e., the entire main() function), since we are interested in any possible reference cycle in the
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Figure 4.8: Overhead reduction of Figure 4.7 characterized per CARMOT optimization.

180 RESIDUE_T copyresidue(RESIDUE_T *res){
      {...}
190   if((nres=(RESIDUE_T*)malloc(sizeof(RESIDUE_T)))
      {...}
198   if((ap=(ATOM_T*)malloc(res->r_natoms*sizeof(ATOM_T))
      {...}
325 }

119 MOLECULE_T *newmolecule(void){
      {...}
123   if((mp=(MOLECULE_T*)malloc(sizeof(MOLECULE_T)))
      {...}
157 }

235 int addstrand(MOLECULE_T *mp, char sname[]){
      {...}
250   if((sp=(STRAND_T*)malloc(sizeof(STRAND_T))
      {...}
286 }

464 MOLECULE_T fgetpdb(FILE *fp, char *options){
      {...}
671   sp->s_residues=
672     (RESIDUE_T**)malloc(sp->s_res_size*
673       sizeof(RESIDUE_T));
      {...}
742 }

nabtypes.h

typedef struct residue_t{
  struct strand_t *r_strand;
  ATOM_T *r_atoms;
} RESIDUE_T;

typedef struct strand_t{
  struct molecule_t *r_molecule;
  RESIDUE_T *r_atoms;
} STRAND_T;

typedef struct molecule_t{
  STRAND_T *m_strands;
} MOLECULE_T;

typedef struct atom_t{
  struct residue_t *a_residue;
} ATOM_T;

reslib.c

molutil.c

molio.c

Figure 4.9: CARMOT-identified reference cycle across files, functions, and data structure in the
nab benchmark.

program.

Figure 4.9 shows an example of a reference cycle that CARMOT identified in the nab bench-

mark of the SPEC CPU 2017 suite. This cycle spans across several different files, functions, and

data structures and demonstrates the complexity of porting an existing application to use smart

pointers correctly. We measure the benefit that utilizing smart pointers for this reference cycle
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Figure 4.10: The CARMOT overhead for identifying reference cycles is two orders of magnitude
less than a naive approach.

would generate for the benchmark. After correcting a naiveness in the original nab code, which

over allocates memory, we measure the total bytes leaked by the application as 230,537 bytes.

The total bytes leaked by the application that would have been realized by correctly porting this

reference cycle to smart pointer is reduced to 127,633, a reduction of 44.6%.

Figure 4.10 shows the overhead of CARMOT when finding reference cycles. In this use case

CARMOT needs to track only allocations of PSEs and the Reachability Graph of such allocations.

For this reason, CARMOT’s overhead is two orders of magnitude smaller than a naive approach

that lacks PSEC-specific optimizations.
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CHAPTER 5

RELATED WORK

5.1 STATS

STATS is related to prior work that either extracts TLP from programs or uses search to optimize

program configurations (§5.1.1-5.1.2). Furthermore, because this dissertation characterizes the

effects of the STATS parallelization scheme, it is also related with studies that characterize parallel

workloads (§5.1.3).

5.1.1 Extracting TLP

Automatic TLP extraction from sequential programs has a rich history, in which we identify two

relevant categories.

TLP Extraction with Cost-Reduced Actual Dependences Earlier work addresses the cost of

actual dependences by accelerating data exchanges or by avoiding some altogether.

Multiple techniques [56]–[62] attempt to reduce the cost of actual dependences by making them

cheaper individually, while still preserving all of them. Such techniques include hardware support

to accelerate data exchanges between threads running on parallel cores. While these techniques

reduce the cost of data transfer, they still force synchronization between threads for all actual

dependences. Our approach, instead, avoids the producer-consumer synchronizations related to

state dependences altogether.

Some techniques break actual dependences [16], [46], [47], [63]–[65]. These approaches do

not generate auxiliary code, and they do not take advantage of developers’ algorithm-specific
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knowledge. This limits their applicability to simple dependences, and Figure 3.13 measures em-

pirically this limit for some of them. One of these approaches generates compensation code [65],

which is executed after the code involved in a dependence. While compensation code can avoid

high inaccuracies, it does not preserve output quality. Our approach generates auxiliary code,

which is executed before the code involved in a dependence, taking advantage of algorithm-specific

knowledge, which makes it more broadly applicable. STATS is the first system to do so.

Other approaches have been proposed that break dependences for a specific class of algo-

rithms [66]–[69] These approaches do not generate auxiliary code, because it is not required thanks

to the characteristics of the specific class of algorithms they target. However, our benchmarks re-

quire auxiliary code to preserve output quality.

Galois [70], [71] introduces TLP by optimistically assuming that ignoring an actual dependence

will not lead to an invalid execution, then dynamically checks whether that is the case, and aborts

the erroneous computation if not. This approach does not cover the state dependences we identified

in the PARSEC benchmarks, which are not related to the kind of data-parallelism Galois targets.

Fast Track [48] generates TLP by creating an unsafe optimization of a program, which runs

in parallel with the safely optimized code. The system checks whether the results of the unsafe

execution match the results of the safe one. This technique does not take advantage of the non-

determinism of a program. It does not compute multiple results to increase the probability of a

match.

TLP Extraction With Complete Dependence Preservation Approaches that preserve all de-

pendences can be considered along two axes: speculative/not, and manual/automatic.

Automatic Non-Speculative Approaches: The many approaches in this category [72]–[85]

all rely on accurate data dependence analyses to identify code regions that can run safely in par-
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allel. These systems preserve all the dependences they find. In contrast, our work relies on

algorithm-specific knowledge provided by developers to satisfy actual dependences with auxil-

iary code. Moreover, STATS automatically combines the TLP that arises from state dependences

with that already present in the program, leading to more TLP overall.

Automatic Speculation-Based Approaches: Several parallelizing compilers rely on thread-

level speculation techniques to reduce the cost of dependences that turn out to be false at run

time [86]–[96]. These approaches, while effective, only address the cost of apparent dependences—

not the cost of actual dependences, as we do in this work. Finally, some techniques speculate on

data values [97], [98]. However, they do not rely on algorithm-specific knowledge and are limited

to simple data dependences of scalar values. Notably, ASC [99] speculates the entire computa-

tional state of a program. ASC performs multiple speculations of the entire program state, which

result in multiple, parallel speculative executions of the program. The original program also ex-

ecutes at the same time, and performs checks of its own state against the predicted speculative

states. If a check succeeds, the original program execution fast-forwards to the already executed

speculative execution, which now stops being speculative. However, as of now this approach re-

quires a functional simulator (which simulates the execution of x86 instructions using a transition

function from one program state to the next) and has been successful only on a few, relatively

simple benchmarks. STATS, instead, only needs to speculate the portion of program state that is

related to a state dependence, and it does so by taking advantage of nonderminism and algorithm-

specific knowledge encoded by a developer. Because the problem that STATS solves is simpler

(compared to speculating the entire program state without any assistance), STATS is able to target

more complex (nondeterministic) programs and run directly on commodity processors.

Manual approaches: In many multi-threaded programs (including those of PARSEC), TLP

has been introduced manually using parallel programming APIs [100]–[102]. These programs
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preserve all Read-After-Write actual dependences (including state dependences), which constrains

TLP and overall program performance (as shown by the black lines of Figure 3.8). STATS goes

beyond this limit.

5.1.2 Autotuning/Search-based Optimization

Considerable effort has gone into the general area of auto-tuning. A number of systems focus

on tuning libraries in specific domains [103]–[109]. Others are designed as general auto-tuning

frameworks [22], [110]–[113]. The STATS autotuner is built on top of the most recent one, Open-

Tuner, and it is used for the specific task performed by STATS, i.e., combining the original TLP

with the one generated by targeting state dependences.

5.1.3 Parallel Workload Characterization

Most of the benchmarks [7] that we considered in §3 already include some TLP that was expressed

manually by developers using parallel programming APIs like POSIX threads, OpenMP [100],

and Intel TBB [101]. This TLP has been studied and characterized by prior work on multiple

platforms [7], [49], [114]–[117]. The STATS compiler adds the parallelism related to state depen-

dences to the original TLP. In this dissertation we characterized this additional parallelism both in

isolation with the original TLP and when both sources of TLP are combined.

5.2 CARMOT

While CARMOT is the only tool capable of computing a complete and correct PSEC, there are

other tools that enable programmers to better understand a program’s behavior and how to improve

it. Next, we compare CARMOT to these tools with respect to their ability to track PSEs, build

aspects of the PSEC, and report back information to the user at the source code level. We categorize



115

these tools in three sets: memory analysis tools, parallelism discovery tools, and reference cycle

discovery tools.

5.2.1 Memory Analysis

There exist many tools that investigate memory correctness such as memory leaks, double frees,

and buffer over/underflow [18], [19], [52], [118]–[126] or memory bottlenecks [127]–[130]. Some

of these tools report some source-code level information such as the callstack of the error site; how-

ever, none of them track any aspect of PSEC. The most notable tools that perform some tracking of

PSEs are: AddressSanitizer [18], Valgrind [19], and the Pintool Pinatrace [52]. However, none of

these tools track PSEs that are variables or are able to distinguish between different stack locations

or globals. AddressSanitizer and Valgrind can detect memory leaks due to reference cycles that

should have been garbage collected, but they cannot identify the actual cycles in the source code

responsible for the leak.

5.2.2 Parallelism Discovery

Tools that identify parallelism [13]–[17], [47], [131]–[146] analyze the memory utilization of a

program to identify potential parallelization opportunities using static [137], [146] and/or dynamic

analysis [47], [132], [133], and profiling techniques. Their objective is orthogonal to CARMOT

and its PSEC. Once potential parallel regions of a program are discovered, CARMOT can be

used on those regions to understand exactly how they can be parallelized using the supported

parallelism-related abstractions, verify the presence of actual parallelism, and improve it if possi-

ble.
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5.2.3 Reference Cycle Discovery

To the best of our knowledge, only two approaches are able to aid programmers in finding reference

counting cycles at the source code level: Xcode [147] and Distefano et al. [148]. Xcode works

only for swift and objective-c but does not currently handle C++ smart pointers. Distefano et al.

uses a static approach, which is limited by the accuracy of memory analysis that is known to be

challenging for unmanaged languages. Neither of them can detect cycles formed in precompiled

libraries.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Thread-Level Parallelism is the most important aspect of a program that defines its performance

in the multicore era. TLP is typically obtained by executing independent code blocks in parallel.

Dependences between instructions are the main obstacle that prevents the realization of TLP. So far,

prior work has either satisfied or broken actual dependences. If actual dependences are satisfied,

the program can only run sequentially and no TLP is generated. Conversely, if actual dependences

are broken, there is no guarantee that the original semantics of the program and its output quality

will be preserved. This dissertation proposes an alternative solution for nondeterministic programs:

satisfying a subset of actual dependences, which we call state dependences, with auxiliary code.

We implemented a system called STATS that takes advantage of state dependences. STATS is the

first step in exploiting state dependences, and it demonstrates that it is possible to achieve large

performance gains, energy savings, or output quality increases. STATS uses state dependences to

optimize a particular code pattern that is common within the benchmarks we considered. More

generally, we believe that actual dependences should be studied more carefully by our community

to find other subsets of dependences that might yield important benefits.

Furthermore, we identified and characterized the main factors that can potentially block the

performance obtained by STATS parallel binaries. Our analysis suggests that STATS can benefit

from additional engineering efforts to reduce some of these factors and that the STATS execution

model needs to evolve to remove the remaining performance roadblocks.

Finally, we realized that using the STATS programming language abstraction through the

STATS interface to encode a state dependence and its related algorithmic-specific information
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Figure 6.1: A new version of STATS (STATS 2.0) does not need to autotune on training inputs. It
can use program summarization to detect the behavior of a program and tune the parallel execution.

can be challenging for developers in large code-bases. For this reason we built CARMOT, a tool

that aids developers in using the STATS abstraction. We noticed that the information necessary to

build an instance of the STATS abstraction is the same for several other abstractions such as many

OpenMP pragmas and C++ smart pointers. This same fundamental knowledge is the PSEC of the

ROI where the abstraction is applied to. We hope that CARMOT and its PSEC will help program-

mers to better understand their programs and to properly use the abstractions that are becoming

increasingly prevalent and necessary in modern applications.

6.1 Opportunities for Future Research

6.1.1 An Improved Version of STATS with Program Summarization

The STATS autotuning phase can take a long time (e.g., for bodytrack, the STATS autotuning step

takes about 3 days to find the best configuration). Also, as a program executes its behavior can

change over time, because programs, including nondeterministic programs, have phases. An au-

totuning approach cannot capture these phases, because it treats a program as a black box, where

the input is a configuration of the STATS-generated binary and the output is the chosen perfor-

mance metric result (e.g., execution time). The configuration chosen by the autotuner is fixed for

the whole program execution, which is sub-optimal because it cannot adapt to different program
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Figure 6.2: In a new STATS execution model a fast, summarized version of the original program
is executed before the parallel, non-summarized version of the same program.

phases. Furthermore, the need for representative training inputs for autotuning is limiting, because

they are not always available.

A solution to these issues is what we call Program Summarization. Every program, including

nondeterministic programs, naturally trades off the accuracy of the computed output with the speed

of the execution. Examples of these tradeoffs are: data type tradeoffs (e.g., a computation with

float values rather than double is considerably faster, but less accurate), function tradeoffs (e.g.,

if a program needs to compute the square root of a number, there are many different functions

available, some of them are slow but accurate, others are less accurate but faster), value tradeoffs

(e.g., a loop in a program can execute multiple iterations until a convergence condition is satisfied,

relaxing the convergence condition reduces the number of iterations, hence returning faster but

less accurate results). Because of its Tradeoff Interface, STATS already has a mechanism to let the

developer identify and tune these tradeoffs in a program. The objective of program summarization

is to automatically tune these tradeoffs to maximize speed of execution at the expenses of output

accuracy. The result is a much faster and approximate (hence “summarized”) program.

A new version of STATS (shown in Figure 6.1) could automatically generate the summarized

version of a program and embed it in the binary. Then, a new STATS execution model could exe-
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cute the summarized version of the original program just before executing the STATS parallelized

version of that program (Figure 6.2). The summarized version of the program would be used to

detect program phases, which will then be used to tune the STATS parallel execution with a more

dynamic runtime that can adapt to these phases. This removes the need for autotuning and training

inputs, because we can directly use the “production input” (i.e., the input that the program will

execute with) with the summarized program to quickly understand how the program behaves, and

then use that knowledge to tune its STATS parallel execution that will be executed immediately

after.

The challenge of program summarization lies in finding the sweet spot between a fast (summa-

rized) program and a program that still preserves the main characteristics of the original program

(e.g., its phases).

6.1.2 Improvements and Increased Abstraction Support for CARMOT

Although CARMOT can perform PSEC with reasonable overhead, we believe that there is still

room for improvement. Specifically, CARMOT’s runtime would benefit from a faster access to the

PSEs that are being characterized into one of the four sets of PSEC (i.e., Input, Output, Cloneable,

Transfer). A technique called Shadow Memory allows to do so by just computing an offset from

the original PSE. Shadow Memory mirrors the original memory of a program (which contains its

PSEs) at an offset that is not used by the program itself, but can be used by CARMOT’s runtime.

CARMOT could use Shadow Memory to quickly encode the set information for every PSE at byte

granularity.

Another area of improvement for CARMOT would be increased support for more programming

language abstractions such as C++ perfect forwarding, the OpenMP target pragma that enables

interactions with accelerators (e.g., GPUs), and automatic detection of WARD regions [149]. We



121

believe that PSEC contains most of the information needed to support these abstraction, but we do

not exclude the possibility that additional knowledge might need to be added to PSEC in order to

provide full support for these abstractions.
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APPENDIX A

THE LLVM COMPILER OPTIMIZATION MEM2REG INTRODUCES AMBIGUITIES

BETWEEN SOURCE CODE AND IR

The LLVM compiler optimization mem2reg promotes local variables of a function to virtual

registers of the LLVM’s IR. In more detail, the clang front-end maps each local variable of a

function to a stack location in the IR. Therefore, each access to such source-code variable involves

a load (when it is read) and a store (when it is written). The middle-end mem2reg pass maps

(when possible) stack locations to a set of virtual registers in IR to avoid loads and stores related

to it. This transformation not only optimizes the code, but it also unlocks many other analyses and

transformations. In other words, without mem2reg little can be optimized in the middle-end.

Unfortunately, using mem2reg in the whole program makes PSEC impossible. This is because

of two reasons: 1) mem2reg introduces ambiguities about which variable in the source code

corresponds to a given virtual register, 2) it hides read operations of local variables because source

code operations such as varX=varY; do not exist in SSA form. The source code in Listing A.1

and its corresponding LLVM IR in Listing A.2 showcase these issues. The IR in Listing A.2 has

been generated by only applying the mem2reg optimization to the source code in Listing A.1.

Problem 1) can be observed by looking at the printf() statement. In the source code of

Listing A.1 it is clear that variable a is being read and printed to standard output. However, the

corresponding instruction in the IR of Listing A.2 reads and prints the phi-node %.0. The only

way to infer which variable in the source code %.0 corresponds to is by looking at the LLVM

intrinsic llvm.dbg.value(). The semantics of llvm.dbg.value() predicates that the

first argument is the new value assigned to the second argument, which in this case represents a
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1i n t main ( i n t argc , char *argv [ ] ) {
2i n t a = 4 2 ;
3i n t b = 4 3 ;
4i f (a > argc ) {
5a = 4 4 ;
6}
7b = a ;
8printf ( ”%d\n ” , a ) ;
9re turn 0 ;
10}

Figure A.1: The semantics of operations at lines 7 and 8 must be preserved to compute a correct
PSEC.

source code variable (wrapped as metadata). In our example the new value %.0 is assigned to

both !273 (metadata for variable a) and !274 (metadata for variable b) and then used in the

printf() instruction. This creates an ambiguity about which variable (a or b) is actually being

read and printed, which results in an incorrect PSEC.

Problem 2) manifests itself in the b=a; statement of Listing A.1. From the source code it is

clear that variable a is read and variable b is written. In the corresponding IR of Listing A.2 the

fact that a is read disappears because operations such as varX=varY; are not represented in SSA

form. This also leads to an incorrect PSEC.
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1define i32 @main (i32 , i8**) {
2call void @llvm .dbg .value (i32 %0, ! 2 7 0 )
3call void @llvm .dbg .value (i8** %1, ! 2 7 2 )
4call void @llvm .dbg .value (i32 42 , ! 2 7 3 )
5call void @llvm .dbg .value (i32 43 , ! 2 7 4 )
6%3 = icmp sgt i32 42 , %0
7br i1 %3, label %4, label %5
8

94 : ; preds = %2
10call void @llvm .dbg .value (i32 44 , ! 2 7 3 )
11br label %5
12

135 : ; preds = %4, %2
14%.0 = phi i32 [ 44 , %4 ] , [ 42 , %2 ]
15call void @llvm .dbg .value (i32 %.0 , ! 2 7 3 )
16call void @llvm .dbg .value (i32 %.0 , ! 2 7 4 )
17%6 = call i32 @printf ( . . . , i32 %.0)
18ret i32 0
19}
20

21!270 = !DILocalVariable (name : ” a r g c ” , . . . )
22!272 = !DILocalVariable (name : ” a rgv ” , . . . )
23!273 = !DILocalVariable (name : ” a ” , . . . )
24!274 = !DILocalVariable (name : ” b ” , . . . )

Figure A.2: Promoting local variables to virtual registers in SSA form introduces ambiguities that
result in an incorrect PSEC.
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