

Computer Science Department

Technical Report
Number: NU-CS-2023-18

December, 2023

New Directions for Learning Mixture Models

Aidao Chen

Abstract

Mixture models are a powerful way to model data coming from a heterogeneous population.
Over the years, various mixture models and learning techniques have been proposed.
In this dissertation, we explore new directions in the realm of learning mixture models. We study
various mixture models and present results and insights which were unknown previously.
In the first part of the thesis, we study the problem of learning a mixture of linear classifiers,
which is an important, yet poorly understood problem. In a natural model, we present the first
polynomial time algorithm that recovers the parameters when the direction vectors of linear
classifiers are linearly independent. We also show a quasi-polynomial time algorithm under
provably minimal assumptions.
In the second part of the thesis, we consider the problem of learning a mixture of two subspaces
over GF(2). This problem is computationally challenging in the worst case, as it captures the
notorious problem of “Learning Parity with Noise” in the degenerate setting. We show that one
can design a polynomial time learning algorithm in the non-degenerate setting.

NORTHWESTERN UNIVERSITY

New Directions for Learning Mixture Models

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Aidao Chen

EVANSTON, ILLINOIS

December 2023

2

© Copyright by Aidao Chen 2023

All Rights Reserved

3

Abstract

New Directions for Learning Mixture Models

Aidao Chen

Mixture models are a powerful way to model data coming from a heterogeneous popula-

tion. Over the years, various mixture models and learning techniques have been proposed.

In this dissertation, we explore new directions in the realm of learning mixture models.

We study various mixture models and present results and insights which were unknown

previously.

In the first part of the thesis, we study the problem of learning a mixture of linear

classifiers, which is an important, yet poorly understood problem. In a natural model,

we present the first polynomial time algorithm that recovers the parameters when the

direction vectors of linear classifiers are linearly independent. We also show a quasi-

polynomial time algorithm under provably minimal assumptions.

In the second part of the thesis, we consider the problem of learning a mixture of two

subspaces A0, A1 over Fn
2 . This problem is computationally challenging in the worst case,

as it captures the notorious problem of “ Learning Parity with Noise” in the degener-

ate setting when A1 ⊆ A0 and dim(A1) = dim(A0) − 1. We show that one can design

4

a polynomial time learning algorithm when either of the two obstacles (A1 ⊆ A0 and

dim(A1) = dim(A0)− 1) are absent.

5

Acknowledgements

I owe appreciation to a lot of people for their generous help along my PhD journey.

First and foremost, I would like to thank my advisors Anindya De and Aravindan Vi-

jayaraghavan, for their invaluable support and guidance throughout my PhD. I always

told my friends that it is very challenging to find anyone better than them. I consider

myself incredibly fortunate and deeply grateful to have the distinct honor of receiving

guidance and advice from them. From an academic standpoint, I have had the privilege

of learning an abundance of intriguing technical insights and problem-solving techniques

from my esteemed advisors, in addition to refining my ability to write and communicate

scientific work tailored to diverse audiences. The comprehensive knowledge and experi-

ence imparted by my mentors have proved invaluable to my academic and professional

development, and I am honored to have been exposed to their exceptional guidance and

expertise. From a personal perspective, it is truly remarkable to have witnessed such

extraordinary care, patience, and consideration from individuals as distinguished and oc-

cupied as Anindya and Aravindan. Their exemplary conduct has served as a beacon of

inspiration and guidance to me and countless other students, and I am grateful for the

remarkable example they have set for us all.

I am immensely grateful to the distinguished members of my thesis committee – Aditya

Bhaskara, Anindya De, Konstantin Makarychev, and Aravindan Vijayaraghavan – for

their unwavering and selfless support throughout my PhD journey. Their sage counsel,

6

insightful feedback, and constructive suggestions have been invaluable in refining the

quality of my thesis and deepening my understanding of this research direction. I am

honored and privileged to have been mentored by such distinguished individuals, whose

expertise and guidance have been pivotal to my intellectual and academic growth.

I also would like to express my sincere gratitude to all of my letter writers, including

Huxley Bennett, Aditya Bhaskara, Anindya De, Stefano Ermon, Haibin Kan, Feifei Li,

Konstantin Makarychev, Weiwei Sun, Aravindan Vijayaraghavan, and Wei Zhang. Their

support has been invaluable in creating a truly fantastic environment for my studies and

research. I am deeply grateful for their time, effort, and encouragement.

Being a part of the Northwestern CS Theory Group has been an absolutely wonderful

experience. I am immensely grateful to the faculties - Anindya De, Jason Hartline, Samir

Khuller, Konstantin Makarychev, and Aravindan Vijayaraghavan - for their outstanding

commitment to the field and for providing an exceptional learning environment. Their

expertise and guidance have been invaluable in shaping my academic journey. I also

extend my heartfelt thanks to my colleagues, who have made my time here so memorable.

Special shoutouts to Saba Ahmadi, Huck Bennett, Xue Chen, Dunwei Cheng, Charles

Cui, Jinshuo Dong, Abhratanu Dutta, Yiding Feng, Aleck Johnsen, Nirmit Joshi, Sanchit

Kalhan, Yiduo Ke, Yingkai Li, Sheng Long, Michail Mamakos, Aidan Perreault, Shravas

Rao, Leif Rasmussen, Aravind Reddy, Anant Shah, Liren Shan, Vaidehi Srinivas, Pattara

Sukprasert, Sam Taggart, Alex Tang, Matthew VonAllmen, Yifan Wu, Sheng Yang and

Chenhao Zhang. The Theory Group is truly a wonderful place because of the collective

efforts of all its members, and I feel privileged to have been a part of it. I would like

to extend my appreciation to my friends: Weixin Jiang, Xiaohu Lei, Yilun Lin, Yin Xia,

7

Haoming Xing, and Zheng Yuan. Life would certainly be less vibrant and exciting without

your presence in it.

In addition, I thank my parents and my brother for their unconditional support.

Last but not least, I am grateful for Yuanyuan’s unwavering support and constant

companionship throughout my PhD journey. Thank Yuanyuan for being there for me

every step of the way.

8

Dedication

To Yuanyuan.

9

Table of Contents

Abstract 3

Acknowledgements 5

Dedication 8

Table of Contents 9

Chapter 1. Introduction 11

1.1. Mixture of Linear Classifiers 13

1.2. Mixture of Two Subspaces over F2 15

1.3. Robust Subspace Recovery 16

1.4. Organization of the Thesis 17

1.5. Bibliographic Notes 18

Chapter 2. Learning a Mixture of Linear Classifiers 19

2.1. Introduction 19

2.2. Preliminaries and Notation 29

2.3. Extracting the Low-rank Tensor 31

2.4. Estimation Algorithm for the Parameters of the Mixture of Linear Classifiers 40

Chapter 3. Learning a Mixture of Two Subspaces over F2 54

3.1. Introduction 54

10

3.2. Preliminaries 62

3.3. Testing Comparability of the Subspaces 67

3.4. Learning Mixtures of Incomparable Subspaces 72

3.5. Mixtures of Two Subspaces with Significant Dimension Difference 78

3.6. Reduction from Learning Parity with Noise 85

Chapter 4. Robust Subspace Recovery in a Smoothed Analysis Setting 88

4.1. Introduction 88

4.2. Preliminaries 91

4.3. Robust Subspace Recovery 93

References 104

Appendix A. Boost the Success Probability 111

Appendix B. Hypothesis Test 114

Appendix C. Generalized Chernoff Bound 118

11

CHAPTER 1

Introduction

In the world of machine learning, mixture models have been fundamental tools for

the analysis of heterogeneous populations. In particular, the population is assumed to

consist of k subgroups (assumed to be homogeneous) and the data in each subgroup fol-

lows a parametric model. Given data from the overall population, the typical challenge

involves determining the parameters of each component, as well as their respective pro-

portions within the population. Through the years, these powerful probabilistic models

have revolutionized the approach to recognize the patterns within seemingly chaotic data.

This thesis serves as a stepping stone towards the future of mixture models, providing

results and insights that were unexplored previously. In this chapter, we will give a brief

overview of the results which will be discussed in more detail later.

The first part of this thesis studies the problem of learning a mixture of linear clas-

sifiers. Over the years, there has been significant research in statistics and computer

science aimed at developing efficient polynomial time algorithms for learning many types

of mixture models [Feldman et al., 2006, Kalai et al., 2010, Moitra and Valiant, 2010,

Belkin and Sinha, 2010, Awasthi et al., 2010, Rabani et al., 2014, Li et al., 2015, Liu

and Moitra, 2018, Chen and Moitra, 2019]. Much of this work has focused on the unsu-

pervised setting, where the data is unlabeled. However, there has been growing interest

in recent years in studying mixture models in the supervised setting, where the data is

labeled [Viele and Tong, 2002, Chaganty and Liang, 2013, Sun et al., 2014, Gandikota

12

et al., 2020, Diakonikolas and Kane, 2020, Chen et al., 2020]. This direction involves

incorporating labeled information into the learning process. Although this line of work is

still in its early stages, it shows promise for enhancing the usefulness of mixture models

in a variety of applications. Among models in supervised learning, linear classifiers are

one of the most fundamental and well-studied models. We study the problem of learning

a mixture of linear classifiers. We will describe a natural model for studying this problem

later. Basic statistical and algorithmic questions about this natural model remained open

before our work. As an example, the identifiability of this model was unresolved until this

work.

The second part of this thesis studies the problem of learning a mixture of two sub-

spaces over Fn
2 . A common assumption in high-dimensional data analysis is to assume

that the given data belongs to a collection of lower dimensional subspaces. In a line of

work in machine learning, computer vision and computational geometry [Vidal, 2003, El-

hamifar and Vidal, 2013, Soltanolkotabi et al., 2014, Park et al., 2014], this intuition is

formalized through the problem of learning a mixture of subspaces, or subspace clustering.

Given a set of points in n dimensions that belong to a union of k (k ≥ 2) subspaces, the

goal is to recover the individual subspaces. When the points belong to Rn, Vidal [2003]

shows that for any mixture of k subspaces, under some mild general-position assumption

of the points in the subspaces, there exists an algorithm that recovers the k individual

subspaces. However, the guarantee is specific to the real domain. Therefore, a natural

question is whether such algorithmic guarantee can extend to other domains such as F2.

The study of mixture models can also help the study of other related fields. In our

algorithm for the previous problem, we use the idea: use tensor power to blow up the

13

dimensional difference between two subspaces. This idea serves as a cornerstone for us

to tackle the problem of robust subspace recovery. The third part of this thesis studies

the problem of robust subspace recovery in a smoothed analysis setting. Robust sub-

space recovery is a basic problem in unsupervised learning where we are given m points

x1, . . . , xm ∈ Rn, an α ∈ (0, 1) fraction of which lies on (or close to) a d-dimensional

subspace T . When can we find the subspace T , and hence the “inliers”, that belong to

this subspace? [Hardt and Moitra, 2013] gave the first algorithm for this problem that

is both computationally efficient and robust. Their algorithm successfully estimates the

subspace T when α > d/n, assuming a certain non-degeneracy condition about both the

inliers and outliers. Borrowing an idea from Chapter 3, we give a simple algorithm that

for any constants ℓ ∈ N, δ > 0 runs in poly(mnℓ) time and in a smoothed analysis setting,

provably recovers the subspace T with high probability, when α ≥ (1 + δ)(d/n)ℓ. Note

that this is significantly smaller than the bound of (d/n) from Hardt and Moitra [2013]

when ℓ > 1.

1.1. Mixture of Linear Classifiers

We will describe a natural model for a mixture of linear classifiers. k is the num-

ber of linear classifiers. There are k (unknown) strictly positive probability weights

w1, w2, . . . , wk ∈ R that sum up to 1. There are k (unknown) unit vectors v1, v2, . . . , vk ∈

Rn representing coefficients of each linear classifier. A sample is drawn as the following:

the sample oracle samples i ∈ [k] with respect to the probability weights w1, w2, . . . , wk,

then we receive (x,1⟨vi,x⟩≥0) where x is sampled from the standard Gaussian N (0, In).

14

The i is unknown to us. The goal is to recover the unknown parameters w1, w2, . . . , wk

and v1, v2, . . . , vk approximately.

We would like to point out that our model and the broader topic of learning mixtures

of (supervised) linear models have been extensively studied in the literature [Chaganty

and Liang, 2013, Gandikota et al., 2020, Chen et al., 2020], including in the context of

neural networks [Jacobs et al., 1991, Jordan and Jacobs, 1994, Bishop, 1998]. Despite this

interest, several fundamental statistical and algorithmic questions about this model have

remained unresolved. For instance, prior to our work, the identifiability of this model,

even for k = 3, had not been resolved to the best of our knowledge.

Our first result is a polynomial-time algorithm that learns the parameters under the

assumption that the unit vectors v1, v2, . . . , vk are linearly independent.

Furthermore, we give two algorithms that recover the parameters under a less stringent

assumption: the vectors v1, v2, . . . , vk are not parallel to each other. In order to explain

our findings, we define ∆ := minj ̸=j′ min (∥vj − vj′∥, ∥vj + vj′∥). Both algorithms depend

polynomially on the ambient dimension n. The first algorithm (Theorem 2.2) achieves a

quasipolynomial dependence on the number of vectors k with an exponential dependence

on 1/∆. The second algorithm (Theorem 2.3) achieves a polynomial dependence on 1/∆,

but has an exponential dependence on k. Our results imply that as long as ∆ > 0, the

model is identifiable. It is worth noting that if ∆ = 0 (e.g., when k = 2), the model

is no longer identifiable. Therefore, a dependence on 1/∆ is qualitatively necessary for

identifiability and, as a result, for algorithmic implications such as ours.

15

1.2. Mixture of Two Subspaces over F2

Given samples from a (weighted) mixture of samples drawn uniformly from k subspaces

of Fn
2 , the goal is to recover each individual subspace. The simplest setting of k = 2

already captures the notoriously hard problem Learning Parity with Noise (LPN) as a

special case. The best-known algorithm for LPN takes exp(O(n/ log n)) time. One can

encode LPN by an instance of a mixture of two subspaces A0, A1 where A1 ⊆ A0 and

dim(A1) = dim(A0) − 1 (see Proposition 3.24 and Proposition 3.23). We show that

one can design a polynomial time algorithm when either of the two obstacles (A1 ⊆ A0

and dim(A1) = dim(A0) − 1) are absent. First, we show that there is a polynomial

time algorithm that outputs the subspaces A0, A1 when A0 ⊈ A1 and A1 ⊈ A0. The key

idea for this algorithm is adaptive dimension reduction: a careful procedure for dimension

reduction that reduces the subspace learning problem to O(1) dimension. When n = O(1),

this problem becomes easy, as a brute force algorithm will only take O(1) time. Second,

we show that there is a polynomial time algorithm that outputs the subspaces A0, A1 when

dim(A1) ≤ 0.99dim(A0). For illustration purposes, let us assume the mixing weights are

0.5 and 0.5 for now. Borrowing an idea from Hardt and Moitra [2013], we show that there

is a polynomial time algorithm which solves this problem when dim(A1)/dim(A0) ≤ 0.49.

When dim(A1)/dim(A0) > 0.5, we will adopt a dimension gap amplification strategy.

Specifically, we introduce a non-linear map ϕ : Fd0
2 → Fd0

′

2 where d0
′ =

∑ℓ
j=0

(
d0
j

)
for an

appropriately chosen ℓ. The function ϕ serves a purpose akin to that of a kernel function

within the context of Support Vector Machines. For some carefully chosen ℓ, we will

have dim(span(ϕ(A1)))/dim(span(ϕ(A0))) < 1/2. We can then apply the large-gap-case

strategy to recover both subspaces.

16

1.3. Robust Subspace Recovery

Here, we will provide a concise overview of our results concerning robust subspace

recovery in a smoothed analysis setting. We introduce the following smoothed analysis

framework for studying robust subspace recovery (we refer the reader to Section 4.3.1 for

the formal definition of the framework).

In what follows, α, ε0, ρ ∈ (0, 1) are parameters.

(1) An adversary chooses a hidden subspace T of dimension d in Rn, and then chooses

αm points from T and (1− α)m points from Rn. We denote these points inliers

and outliers respectively. Then the adversary mixes them in arbitrary order.

Denote these points a1, a2, . . . , am. Let A = (a1, a2, . . . , am).

(2) Each inlier is ρ-perturbed with respect to T . (Formally, this means considering

an orthonormal basis BT for T and adding BTv, where v ∼ N (0, ρ2/d)d.) Each

outlier is ρ-perturbed with respect to Rn. Let G denote the perturbations, and

let us write Ã = A+G.

(3) With the constraint ∥E∥F ≤ ε0, the adversary adds noise E ∈ Rn×m to Ã,

yielding Ã′ = Ã+ E.

(4) We are given Ã′.

The goal of the subspace recovery problem is to return a subspace T ′ close to T .

We give a simple algorithm that for any constants ℓ ≥ 1, δ > 0 runs in poly(mnℓ)

time and in this smoothed analysis setting, provably recovers the subspace T with high

probability, when α ≥ (1 + δ)(d/n)ℓ.

The algorithm for robust subspace recovery at a high level follows the same approach

as Hardt and Moitra [2013]. Their main insight was that if we sample a set of size slightly

17

less than n from the input, and if the fraction of inliers is > (1 + δ)d/n, then there is a

good probability of obtaining > d inliers, and thus there exist points that are in the linear

span of the others. Further, since we sampled fewer than n points and the outliers are

also in general position, one can conclude that the only points that are in the linear span

of the other points are the inliers.

Our algorithm for handling smaller α is simple and is also tolerant to an inverse

polynomial amount of adversarial noise in the points. Borrowing an idea from learning a

mixture of two subspaces over F2 (Section 3.5), we can use a similar way to look for linear

dependencies, but with tensored vectors!

Let us illustrate in the case ℓ = 2. Suppose that the fraction of inliers is > (1 +

δ)
(
d+1
2

)
/
(
n+1
2

)
. Suppose we take a sample of size slightly less than

(
n+1
2

)
points from

the input, and consider the flattened vectors x ⊗ x of these points. As long as we have

more than
(
d+1
2

)
inliers, we expect to find linear dependencies among the tensored inlier

vectors. However, we need to account for the adversarial error in the points (this error

could depend on the random perturbations as well). For each point, we will look for

“bounded” linear combinations that are close to the given point. We can show that such

dependencies cannot involve the outliers. This in turn allows us to recover the subspaces.

1.4. Organization of the Thesis

In Chapter 2, we introduce the problem of learning a mixture of linear classifiers over

Gaussian marginals; and discuss the technique and results for this problem. In Chapter 3,

we study the problem of learning a mixture of two subspaces over Fn
2 . In Chapter 4, we

shift our attention to a closely related problem: robust subspace recovery.

18

1.5. Bibliographic Notes

The content of this thesis is mainly based on three research papers with co-authors Bhaskara

et al. [2019], Chen et al. [2021, 2022].

19

CHAPTER 2

Learning a Mixture of Linear Classifiers

2.1. Introduction

Mixture models are a widely used method for modeling data that originate from

a heterogeneous population. This approach involves assuming that the population is

comprised of k subgroups. It is assumed that the data within each subgroup follows a

specific parametric model.

The main task of learning mixture models is to determine the parameters of each

of the components, as well as their relative proportions within the overall population,

using available data. This process can provide insight into the underlying structure of

the population and help people better understand the factors that contribute to observed

patterns in the data.

Mixture models are used to represent data across a wide range of domains. The

examples include Gaussian mixture models, mixtures of product distributions, mixtures

of ranking models and mixtures of subcubes for discrete data. Over the years, there has

been significant research in statistics and computer science aimed at developing efficient

polynomial time algorithms for learning many types of mixture models [Feldman et al.,

2006, Kalai et al., 2010, Moitra and Valiant, 2010, Belkin and Sinha, 2010, Awasthi et al.,

2010, Rabani et al., 2014, Li et al., 2015, Liu and Moitra, 2018, Chen and Moitra, 2019].

Much of this work has focused on the unsupervised setting, where the data is unlabeled.

20

However, there has been growing interest in recent years in studying mixture models

in the supervised setting, where the data is labeled [Viele and Tong, 2002, Chaganty

and Liang, 2013, Sun et al., 2014, Gandikota et al., 2020, Diakonikolas and Kane, 2020,

Chen et al., 2020]. This direction involves incorporating labeled information into the

learning process. Although this line of work is still in its early stages, it shows promise

for enhancing the usefulness of mixture models in a variety of applications.

Linear classifiers are the most basic and well-studied supervised learning models due

to their simplicity, effectiveness, and wide range of applications. These models use a linear

function to map the input features to the output, making them easy to understand and

computationally efficient. Despite their simplicity, linear classifiers have been shown to

work well for many real-world problems, including text classification, image recognition,

speech recognition and quantitative trading. Additionally, they are often robust to noisy

data and can still perform well even when there are some errors in the input data. The

strong theoretical foundation of linear classifiers has led to the development of a variety

of algorithms and techniques for training and optimizing these models, making them a

popular and effective choice for many supervised learning problems.

Therefore, it is both natural and crucial to investigate the problem of learning mixtures

of linear classifiers. Within this chapter, we will present various results related to learning

a mixture of linear classifiers.

We will describe a natural model for a mixture of linear classifiers. k is the num-

ber of linear classifiers. There are k (unknown) strictly positive probability weights

w1, w2, . . . , wk ∈ R that sum up to 1. There are k (unknown) unit vectors v1, v2, . . . , vk ∈

Rn representing coefficients of each linear classifier. A sample is drawn as the following:

21

the sample oracle sample i ∈ [k] with respect to the probability weights w1, w2, . . . , wk,

then we receive (x,1⟨vi,x⟩≥0) where x is sampled from the standard Gaussian N (0, In).

The i is unknown to us. The goal is to recover the unknown parameters w1, w2, . . . , wk

and v1, v2, . . . , vk approximately.

We would like to point out that our model [Sun et al., 2014] and the broader topic of

learning mixtures of (supervised) linear models have been extensively studied in the litera-

ture [Chaganty and Liang, 2013, Gandikota et al., 2020, Chen et al., 2020], including in the

context of neural networks [Jacobs et al., 1991, Jordan and Jacobs, 1994, Bishop, 1998].

Despite this interest, several fundamental statistical and algorithmic questions about this

model have remained unresolved. For instance, prior to our work, the identifiability of

this model, even for k = 3, had not been resolved to the best of our knowledge.

2.1.1. Our results

Our first result is a polynomial-time algorithm that learns the parameters under the

assumption that the unit vectors v1, v2, . . . , vk are linearly independent.

It is worth noting that the model is not identifiable if no separation condition is

assumed on the vectors v1, v2, . . . , vk ∈ Rn. This is due to the fact that the distribution

resulting from an equal weight mixture of two linear classifiers v1 = u and v2 = −u is the

same for every u ∈ Rn. Furthermore, when vi = vj, non-identifiability occurs since the

weights of the two components can be redistributed arbitrarily.

In this model, Sun et al. [2014] shows that: if the vectors v1, v2, . . . , vk are linearly

independent, there exists an efficient (polynomial time) algorithm that recovers the sub-

space spanned by v1, v2, . . . , vk. To the best of our knowledge, there is no parameter

22

recovery result before our result. Under the assumption that v1, v2, . . . , vk are linearly in-

dependent, we show that there exists an efficient algorithm that recovers the parameters

of this model. A formal statement is as follows.

Theorem 2.1. Let U ∈ Rn×k be the matrix whose jth column is vj. Suppose σmin(U) ≥

1/τ , where τ > 0. Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤

min{w1, . . . , wk}, there is an algorithm Estimate-Parameter that given samples from

the model has the following guarantees:

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(n, τ, 1/wmin).

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

where the min is over permutations π on [k].

Furthermore, we give two algorithms that recover the parameters under a less stringent

assumption: that is, assuming that the vectors v1, v2, . . . , vk are non-parallel.

In order to explain our findings, we define ∆ := minj ̸=j′ min ∥vj − vj′∥, ∥vj + vj′∥. At

a high level, we provide two algorithms to solve this problem. Both algorithms depend

polynomially on the ambient dimension n. The first algorithm (Theorem 2.2) achieves a

quasipolynomial dependence on the number of vectors k with an exponential dependence

on 1/∆. The second algorithm (Theorem 2.3) achieves a polynomial dependence on 1/∆,

but has an exponential dependence on k. Our results imply that as long as ∆ > 0, the

23

model is identifiable. It is worth noting that if ∆ = 0 (e.g., when k = 2), the model

is no longer identifiable. Therefore, a dependence on 1/∆ is qualitatively necessary for

identifiability and, as a result, for algorithmic implications such as ours.

Our next result achieves a running time (and sample complexity) guarantee of the

form nO(log k)/∆2
.

Theorem 2.2. Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤

min{w1, . . . , wk}, there is an algorithm that given samples from the model has the following

guarantees:

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(n(log k)/∆2

, ((log k)/∆2)(log k)/∆
2

, 1/wmin).

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is the minimum is over permutations π on [k].

The runtime guarantee stated above is quasi-polynomial, as long as the minimum

separation parameter ∆ = Ω(1). Additionally, the algorithm runs in polynomial time

when the number of mixture components k = O(1). The algorithm recovers all unknown

parameters up to an error of ε > 0, up to an ambiguity in the relabeling of the k mixture

components (this is captured by the permutation π).

Our next result gives a poly((n/∆)k) running time and sample complexity guarantee.

24

Theorem 2.3. Given parameters ε, δ > 0, k ∈ N and wmin > 0 satisfying wmin ≤

min{w1, . . . , wk}, there is an algorithm that given samples from the model has the following

guarantees:

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nk, kk,∆−k, 1/wmin)

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

where the min is over permutations π on [k].

The aforementioned theorem provides polynomial time guarantee as long as the value

of k remains a constant. The two algorithmic results mentioned above (Theorem 2.2 and

Theorem 2.3) both have a polynomial dependence on the ambient dimension n, but they

trade off different exponential dependencies on k and the separation ∆.

Specifically, when ∆ = ω(
√

log k/k), Theorem 2.2 provides a faster algorithm that

becomes quasi-polynomial time when ∆ = Ω(1). On the other hand, Theorem 2.3 gives

a faster algorithm when ∆ = o(
√

log k/k). Even when ∆ has an inverse polynomial

dependence on n, the algorithm remains polynomial time for k = O(1).

Identifiability. The algorithmic results presented above successfully achieve the

unique identification and recovery of individual parameters, as opposed to simply finding a

distribution that fits the data. In statistical terms, our algorithm recovers the underlying

model (sometimes referred to as parameter estimation), rather than just doing density

25

estimation. The identifiability of results is guaranteed as long as ∆ > 0. However, it

should be noted that the model is not identifiable when ∆ = 0. This is because the

distribution induced by an equal weight mixture of two linear classifiers, where v1 = u

and v2 = −u, is the same for every u ∈ Rn. Moreover, when vi = vj, non-identifiability

arises due to the arbitrary redistribution of the weights of the two components. Thus,

our results demonstrate identifiability with provable minimal assumptions.

Comparison to Prior work. Mixtures of supervised learning models, such as linear

classifiers and other linear models, have been extensively studied in machine learning

literature [Jacobs et al., 1991, Chaganty and Liang, 2013, Gandikota et al., 2020, Chen

et al., 2020]. This line of research has included the study of hierarchical mixtures of

experts [Jacobs et al., 1991, Jordan and Jacobs, 1994, Bishop, 1998]. A result closely

related to ours is that of Sun et al. [2014], whose model is the same as ours. Their

main result shows that if the vectors v1, . . . , vk are linearly independent, then there is

a polynomial time algorithm that recovers the k-dimensional subspace spanned by the

vectors v1, . . . , vk. However, their algorithm does not recover the parameters of the model.

To the best of our knowledge, there were no identifiability results for the model for general

k until our work.

Our algorithms successfully recover all unknown parameters of the mixture, thus im-

plying identifiability. The running time of the algorithms is either nO(log k)/∆2
or nO(k).

Furthermore, when the vectors v1, . . . , vk are linearly independent, as in [Sun et al., 2014],

our Theorem 2.1 algorithm successfully recovers all parameters in polynomial time.

Overview of techniques.

26

We now briefly describe the algorithmic ideas and techniques that we will need to

establish Theorem 2.2 and Theorem 2.3. Our algorithms are based on the method-of-

moments framework and use tensor decompositions to recover the parameters of the

model. Our algorithmic results all use the same algorithmic framework, that consists

of two main parts:

(i) Extracting the low-rank tensor: We first design a procedure that gives a good estimate

for any ℓ ∈ N,

(2.1) T =
k∑

j=1

wjv
⊗(2ℓ+1)
j ,

which is an order 2ℓ + 1 tensor with a rank-k decomposition with one rank-1 term for

each component.

(ii) Parameter recovery through tensor decomposition: We use an off-the-shelf algorithm

for low-rank tensor decomposition, and show that they recover the parameters successfully.

(i) Extracting the low-rank tensor. Unlike latent variable models like mixtures of

Gaussians [Moitra and Valiant, 2010, Janzamin et al., 2019], it is challenging to obtain a

low-rank tensor by simply estimating the moments, for a linear threshold function (linear

classifier). In order to estimate
∑k

j=1wjv
⊗(2ℓ+1)
j , we will instead use Hermite polynomials

and consider coefficients of linear threshold functions in the Hermite basis. For a unit

vector v ∈ Rn, define D(v) be the distribution corresponding to N (0, In) conditioned on

{x : 1⟨v,x⟩≥0}. The key observation is that:

Ex∼D(v)[He
(2ℓ+1)(x)] ∝ v⊗(2ℓ+1),

27

where He(2ℓ+1)(·) is the (2ℓ + 1)th order n-variable Hermite tensor (and the constant of

proportionality is non-zero). See Definition 2.9 for a formal definition. We remark that

Hermite polynomials have been used in a similar vein in the context of other learning

problems like depth-2 neural networks [Janzamin et al., 2015, Ge et al., 2018, Awasthi

et al., 2021].

Let D be the distribution of the positively-labeled samples. Note that D is just convex

combination of D(v1), . . . ,D(vk). Hence

Ex∼D[He
(2ℓ+1)(x)] ∝

k∑
j=1

wjv
⊗(2ℓ+1)
j .

The above relation naturally suggests the following meta-algorithm. We acquire a

few i.i.d. positive-labeled samples, the output will be the (rescaled) empirical mean of

(2ℓ + 1)th order Hermite tensor evaluation. This is described in the Algorithm 1. We

prove the following guarantee for estimating the tensor in Section 2.3.

Theorem 2.4. There is an algorithm Extracting the low-rank tensor that

for a given k, ℓ, error tolerance parameters ε, δ > 0 O(v1, · · · , vk, w1, · · · , wk), and access

to samples from the model has the following guarantees:

(1) The algorithm runs in sample complexity and time complexity log2(1/δ)/(ε2) ·

nO(ℓ)ℓO(ℓ).

(2) With probability 1− δ, the algorithm returns estimates T ∈ (Rn)⊗ℓ such that

∥T−

(
k∑

j=1

wjv
⊗(2ℓ+1)
j

)
∥F ≤ ε.

(ii) Recovering the parameters through tensor decompositions

28

Once we have access to the tensor in (2.1), we use an off-the-shelf algorithm for efficient

tensor decompositions (see Theorem 2.22). Polynomial algorithms exist for decomposing

a rank-k tensor of the form in (2.1) as long as the flattened vectors given by {v⊗ℓ
i : i ∈ [k]}

are linearly independent (in a robust sense). This is encapsulated in Theorem 2.28, which

establishes Theorem 2.1. To establish Theorem 2.2 and Theorem 2.3, we need to prove

that the (robust) linear independence condition holds for a sufficiently large value of ℓ.

To prove Theorem 2.2, we show that ℓ = O(log k/∆2) suffices for {v⊗ℓ
i : i ∈ [k]} to be

linearly independent.

The key observation is that for i ̸= j, ⟨v⊗ℓ
i , v⊗ℓ

j ⟩ = (⟨vi, vj⟩)ℓ decreases exponentially

as ℓ grow. In fact, if the pairwise inner product of v⊗ℓ
1 , . . . , v⊗ℓ

k is at most 1/(2k), we

can show that v⊗ℓ
1 , . . . , v⊗ℓ

k is robustly linear independent. This gives a running time of

nO(log k)/∆2
.

To prove Theorem 2.3, we use a different approach to prove that ℓ = k suffices for

v⊗ℓ
1 , . . . , v⊗ℓ

k to be linear independent in a robust sense. In particular, we use the notion of

Kruskal rank to quantify the degree of linear independence with tensoring. The Kruskal

rank (or Krank) of a matrix A is the largest k for which every set of k columns are

linearly independent. The Khatri-Rao product of U and V which are size m× r and n× r

respectively is an mn×r matrix U⊙V whose ith column is flattened ui⊗vi. Let A ∈ Rn×k

be the matrix whose jth column is vj. Observe that pairwise linear independence implies

Krank(A) ≥ 2. Let U ∈ Rnℓ×k be the matrix whose jth column is flattened v⊗ℓ
j . Observe

that U = A⊙k.

The idea is that Kruskal-rank increases with Khatri–Rao product. As a consequence,

Krank(U) ≥ k, i.e., v⊗k
1 , . . . , v⊗k

k are linear independent, thus establishing Theorem 2.3.

29

2.2. Preliminaries and Notation

We start by defining the Mixture-of-Linear-Classifier problem formally.

Definition 2.5. The Mixture-of-Linear-Classifier is instantiated by k unit vectors

v1, · · · , vk in Rn. In addition, we also have k corresponding weights w1, · · · , wk such that

w1 + · · ·+ wk = 1.

The vectors v1, · · · , vk in Rn as well as the weights w1, · · · , wk are unknown. For this

instance, the sampling oracle O(v1, · · · , vk, w1, · · · , wk) is defined as follows: sample x ∼

N (0, In), the standard spherical Gaussian in Rn. Sample z ∈ [k] where P[z = j] =

wj, ∀j ∈ [k]. O(v1, · · · , vk, w1, · · · , wk) outputs (x,1⟨x,vz⟩≥0) ∈ Rn × {0, 1}.

In the Mixture-of-Linear-Classifier problem, the algorithm is given access to the number

of component k, the sample oracle O(v1, · · · , vk, w1, · · · , wk), an error parameter ε and a

weight parameter wmin > 0 with the promise that wmin ≤ min{w1, · · · , wk}. The goal of

the algorithm is to output estimates {ŵj, v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over all permutations on [k].

Notation. We use ∇
t

(d) to denote the d-th order differential operator (with respect to t).

We next definite Hermite polynomials. We begin with univariate Hermite polynomials.

30

Definition 2.6. The dth univariate Hermite polynomial Hed(x) : R → R is the formal

polynomial

Hed(x) =

((
∂

∂t

)d

exp(xt− t2/2)

)∣∣∣∣∣
t=0

.

The following observation gives a recursive relation between Hed and Hed+1.

Observation 2.7. For d ∈ Z≥0,

d

dx

(
Hed(x)e

−x2/2
)
= −Hed+1(x)e

−x2/2

Proof. We use Rodrigues formula for the Hermite polynomial [see e.g., equation (10)

of Patarroyo, 2019], which is:

Hed(x) = (−1)de
x2

2

(
d

dx

)d (
e

−x2

2

)
.

Or equivalently,

Hed(x)e
−x2

2 = (−1)d
(

d

dx

)d (
e

−x2

2

)
.

The claim now follows easily. □

The next observation gives an explicit formula for univariate Hermite polynomials.

Observation 2.8. [see equation (3) of Patarroyo, 2019] For d ∈ Z≥0, we have

Hed(x) = d!

⌊ d
2
⌋∑

j=0

(−1)j

2j(d− 2j)!j!
xd−2j

Next, we define multivariable Hermite polynomials.

31

Definition 2.9. For n ∈ N,d ∈ Z≥0. We use He(d) to denote the n-variable Hermite

Tensor of order d. He(d) : Rn → (Rn)⊗d is defined as:

He(d)(x) =
(
∇
t

(d) exp(⟨x, t⟩ − ∥t∥2/2)
)∣∣∣

t=0
.

2.3. Extracting the Low-rank Tensor

In this section, the main goal is to prove Theorem 2.4. Theorem 2.4 gives an algorithm

which given samples from a mixture of k linear classifiers, estimates the order-ℓ parameter

moment. This result is an important piece in our parameter recovery algorithm. The

algorithm Extracting the low-rank tensor is described in Algorithm 1.

Theorem 2.10. There is an algorithm Extracting the low-rank tensor that

for a given k, ℓ, error tolerance parameters ε, δ > 0 O(v1, · · · , vk, w1, · · · , wk), and access

to samples from the model has the following guarantees:

(1) The algorithm runs in sample complexity and time complexity log2(1/δ)/(ε2) ·

nO(ℓ)ℓO(ℓ).

(2) With probability 1− δ, the algorithm returns estimates T ∈ (Rn)⊗ℓ such that

∥T−

(
k∑

j=1

wjv
⊗(2ℓ+1)
j

)
∥F ≤ ε.

The main idea behind the algorithm is to show that over the positive samples, the

expectation of the (2ℓ + 1)th-order Hermite Tensor is proportional to
∑

j∈[k] wjv
⊗(2ℓ+1)
j .

Based on this, our algorithm is to just output an empirical estimator for the average

(2ℓ + 1)th-order Hermite tensor. The rest of this section is dedicated to proving the

correctness of Algorithm 1 (Theorem 2.4). Towards this, we start with some definitions.

32

Algorithm 1: Extracting the low-rank tensor

Input:
k – number of components
O(v1, · · · , vk, w1, · · · , wk) – oracle for random samples from the mixture
ℓ – parameter for order of the tensor
ε – error parameter
Output:

T ∈ (Rn)⊗(2ℓ+1) – estimate of
∑k

j=1 wjv
⊗(2ℓ+1)
j

1 Set t = (ε−2)nO(ℓ)ℓO(ℓ);
2 Use O(v1, · · · , vk, w1, · · · , wk) to sample t independent vectors x1, . . . ,xt from D;

3 return T = 1/t
∑

j∈[t] 1/c(ℓ)He
(2ℓ+1)(xj), where c(ℓ) =

√
2/π(−1)ℓ(2ℓ− 1)!!;

Definition 2.11. Let v ∈ Rn, x ∼ N (0, In). Define D(v) as the conditional distri-

bution of x given ⟨v,x⟩ ≥ 0. Or equivalently, the probability density function of D(v) is

given by

(2π)−n/2e−∥z∥2/2 · 21⟨v,z⟩≥0.

Define D to be the distribution corresponding to positive samples from

O(v1, · · · , vk, w1, · · · , wk). Or equivalently, D =
∑

j∈[k]wjD(vj).

The following observation says that the ℓ-th order derivative (with respect to t) of

f(⟨v, t⟩) is proportional to v⊗ℓ. It can be easily derived from the chain rule.

Observation 2.12. Let f : R → R be infinitely differentiable, v ∈ Rn, ℓ ∈ N. Then,

∇
t

(ℓ)(f(⟨v, t⟩)) = f (ℓ)(⟨v, t⟩) · v⊗ℓ

Next, we define a function Ψ(t) (which is the mass that the Gaussian centered at t

puts on [0,∞)) and obtain an explicit formula for its derivatives of odd order.

33

Claim 2.13. Define Ψ : R → R to be

Ψ(t) =

∫
R
exp (−(x− t)2/2)1x≥0dx.

For all ℓ ∈ Z≥0, we have

Ψ(2ℓ+1)(0) = (−1)ℓ(2ℓ− 1)!!

Proof. To prove the above equality, we first swap the integration with differentiation

and relate the resulting expression to Hermite polynomials.

We know that

Ψ(t) =

∫ ∞

0

exp (−(x− t)2/2)dx =

∫ ∞

0

exp (tx− t2/2) exp (−x2/2)dx.

34

Hence, Ψ(2ℓ+1)(0) =

((
∂

∂t

)2ℓ+1

Ψ

)∣∣∣∣∣
t=0

=

(∫ ∞

0

(
∂

∂t

)2ℓ+1

exp (tx− t2/2) exp (−x2/2)dx

)∣∣∣∣∣
t=0

by Leibniz integral rule

=

∫ ∞

0

((
∂

∂t

)2ℓ+1

exp (tx− t2/2)

)∣∣∣∣∣
t=0

exp (−x2/2)dx

=

∫ ∞

0

He2ℓ+1(x) exp (−x2/2)dx

=

∫ ∞

0

d
(
−He2ℓ(x) exp (−x2/2)

)
see Observation 2.7

= He2ℓ(0) = (−1)ℓ(2ℓ− 1)!!

by Observation 2.8

□

The following lemma is crucial in establishing Theorem 2.4. The lemma proves that the

expectation of (2ℓ+1)th-order Hermite Tensor over D is proportional to
∑

j∈[k]wjv
⊗(2ℓ+1)
j .

Lemma 2.14. For ℓ ∈ Z≥0,

Ex∼D[1/c(ℓ)He
(2ℓ+1)(x)] =

∑
j∈[k]

wjv
⊗(2ℓ+1)
j ,

where c(ℓ) =
√
2/π(−1)ℓ(2ℓ− 1)!!.

35

Proof. The high-level idea is to reduce the problem to the case k = 1. In particular,

since D =
∑

j∈[k] wjD(vj), it suffices to show that: for all unit vector v ∈ Rn,

Ex∼D(v)[He
(2ℓ+1)(x)] =

√
2

π
(−1)ℓ(2ℓ− 1)!! · v⊗(2ℓ+1).

Towards this, recall that,

He(2ℓ+1)(x) =
(
∇
t

(2ℓ+1) exp(⟨x, t⟩ − ∥t∥2/2)
)∣∣∣

t=0
.

Then,

Ex∼D(v)[He
(2ℓ+1)(x)]

= 2(
1√
2π

)n
∫
Rn

He(2ℓ+1)(x)1⟨x,v⟩≥0 exp (−∥x∥2/2)dx using Definition 2.11

= 2(
1√
2π

)n
∫
Rn

(
∇
t

(2ℓ+1) exp(⟨x, t⟩ − ∥t∥2/2)
)∣∣∣

t=0
1⟨x,v⟩≥0 exp (−∥x∥2/2)dx

= 2(
1√
2π

)n
(
∇
t

(2ℓ+1)

∫
Rn

exp (−∥x− t∥2/2)1⟨x,v⟩≥0dx

)∣∣∣∣
t=0

by Leibniz integral rule

36

Let U be an orthonormal matrix such that the first row equals vT . Thus, we have

Ex∼D(v)[He
(2ℓ+1)(x)]

= 2(
1√
2π

)n
(
∇
t

(2ℓ+1)

∫
Rn

exp (−∥y − Ut∥2/2)1y1≥0dy

)∣∣∣∣
t=0

change of variables, y = Ux

=
2√
2π

(
∇
t

(2ℓ+1)

∫
R
exp (−(y1 − ⟨v, t⟩)2/2)1y1≥0dy1

)∣∣∣∣
t=0

=
2√
2π

(
∇
t

(2ℓ+1)Ψ(⟨v, t⟩)
)∣∣∣

t=0
by Claim 2.13

=
2√
2π

(
Ψ(2ℓ+1)(⟨v, t⟩) · v⊗(2ℓ+1)

)∣∣
t=0

by Observation 2.12

=

√
2

π
(−1)ℓ(2ℓ− 1)!!v⊗(2ℓ+1) by Claim 2.13

□

Our next goal is to bound the variance of our estimator in Algorithm 1. Towards this,

we start with the following simple claim.

Claim 2.15. Let f : Rn → R such that f(x) = f(−x),∀x ∈ Rn. Then,

Ex∼D[f(x)] = Ex∼N (0,In)[f(x)]

Proof. First, using the fact that the distribution 1/2(D(vj) + D(−vj)) is N (0, In)

and f is even, it follows that

Ex∼D(vj)[f(x)] = Ex∼N (0,In)[f(x)].

37

We now get the claim by noting that D is a convex combination of D(v1), . . . ,D(vk).

□

Next, we upper bound the variance of a polynomial under the distribution D.

Claim 2.16. Let s ∈ N. Let m1, . . . ,ms : Rn → R be monomials of degree at most t.

Let α = (α1, . . . , αs) ∈ Rs. Then,

Ex∼D[(α1m1(x) + . . .+ αsms(x))
2] ≤ s(2t− 1)!!∥α∥2.

Proof. The idea is to apply Claim 2.15. Claim 2.15 which lets us reduce the problem

of computing the variance under D to that under the standard Gaussian.

Ex∼D[(α1m1(x) + . . .+ αsms(x))
2]

≤ Ex∼D[s(
∑
j∈[s]

α2
jmj(x)

2)] by Cauchy–Schwarz inequality

= Ex∼N (0,In)[s(
∑
j∈[s]

α2
jmj(x)

2)] by Claim 2.15

≤ s(2t− 1)!!∥α∥2.

The last inequality follows from the fact that mj(x)
2 is a monomial of degree at most 2t

and thus its expectation under a Gaussian is at most (2t − 1)!!. It is well-known that

Ex∼N (0,1)[x
2d] = (2d− 1)!!, ∀d ∈ N. A standard induction will give us the above fact. □

The next proposition shows that Varx∼D[He
(2ℓ+1)
α (x)] is at most ℓO(ℓ) for any fixed

index α.

38

Proposition 2.17. For ℓ ∈ N with ℓ ≥ 2, fix α ∈ [n]2ℓ+1,

Var
x∼D

[
1

c(ℓ)
· He(2ℓ+1)

α (x)
]
≤ ℓc1ℓ,

where c(ℓ) =
√

2/π(−1)ℓ(2ℓ− 1)!! and c1 is an absolute constant.

Proof. We begin by noting that

Var
x∼D

[He(2ℓ+1)
α (x)] ≤ Ex∼D

[(
He(2ℓ+1)

α (x)
)2]

By definition, He(2ℓ+1)
α (x) can be expressed as

∏n
j=1 Hesj(xj) where:

(1) s1, . . . , sn ∈ Z≥0 depend on α.

(2)
∑n

j=1 sj = 2ℓ+ 1.

Hence He(2ℓ+1)
α (x) is a polynomial of degree at most 2ℓ + 1 and can be expanded as

β1m1(x) + . . .+ βzmz(x) where:

(1) m1, . . . ,mz are monomials,

(2) z ≤ (2ℓ+ 1)(2ℓ+1),

(3) for all j ∈ [z], |βj| ≤ (2ℓ+ 1)!.

The second item is true because Hes(·) has at most 2s + 1 terms (see Observation 2.8)

and He(2ℓ+1)
α (x) can be expressed as

∏n
j=1 Hesj(xj). The last item is true because every

coefficient of Hes is bounded by s! (see Observation 2.8) and
∏n

j=1 sj! ≤ (
∑n

j=1 sj)! =

(2ℓ+ 1)!.

Apply Claim 2.16, we have

Ex∼D[He
(2ℓ+1)
α (x)2] ≤ z(4ℓ+ 1)!!(z ((2ℓ+ 1)!)2) ≤ ℓc

′ℓ,

39

where c′ is an absolute constant. □

We are now ready to finish the proof of Theorem 2.4.

Proof of Theorem 2.4. Without loss of generality, we can assume δ = 0.1, since

we can always boost the success probability at a multiplicative cost of O(log(1/δ)2) via

Claim A.1. Define T ∗ =
∑k

j=1wjv
⊗(2ℓ+1)
j . We will show T is close to T ∗ with probability

at least 0.9, where T is the empirical mean of 1/c(ℓ)He(2ℓ+1)(x). By Lemma 2.14, T ∗ =

Ex∼D[1/c(ℓ)He
(2ℓ+1)(x)], hence T ∗ = E[T]. Fix α ∈ [n]2ℓ+1, from Proposition 2.17 we

know that

Var[Tα] =
1

t
Var
x∼D

[1/c(ℓ)He(2ℓ+1)
α (x)]

≤ ℓc1ℓ/t,

where c1 is an absolute constant. By Chebyshev’s inequality,

P[|Tα − T ∗
α| ≥

ε√
n2ℓ+1

] ≤ ℓc1ℓ/t
ε2

n2ℓ+1

=
ℓc1ℓn2ℓ+1

tε2

Then,

P[∨α∈[n]2ℓ+1{|Tα − T ∗
α| ≥

ε√
n2ℓ+1

}] ≤ ℓc1ℓn4ℓ+2

tε2

≤ 0.01 by the choice of t.

Hence,

P[∧α∈[n]2ℓ+1{|Tα − T ∗
α| <

ε√
n2ℓ+1

}] ≥ 0.99

40

As a result,

P[∥T− T ∗∥F ≤ ε] ≥ 0.99

□

2.4. Estimation Algorithm for the Parameters of the Mixture of Linear

Classifiers

In this section, we prove Theorem 2.1, Theorem 2.2 and Theorem 2.3. Theorem 2.2

shows that there is an algorithm learns a mixture of k linear classifiers in polynomial time,

provided that v1, v2, . . . , vk are linear independent. Recall that ∆ = minj ̸=j′ min{∥vj −

vj′∥, ∥vj + vj′∥}. Theorem 2.2 shows that there is an algorithm learns a mixture of k

linear classifiers in time poly(n(log k)/∆2
), where ∆ is the minimum “separation” between

each pair of linear classifiers. Meanwhile, Theorem 2.3 shows that there is an algorithm

that does the same thing in time that is roughly poly((n/∆)k). When ∆ = ω(
√
log k/k),

Theorem 2.2 gives a faster algorithm. Meanwhile, Theorem 2.3 gives a faster algorithm

when ∆ = o(
√
log k/k).

Theorem 2.18 (restatement of Theorem 2.1). Let U ∈ Rn×k be the matrix whose

jth column is vj. Suppose σmin(U) ≥ 1/τ , where τ > 0. Given parameters ε, δ > 0,

k ∈ N and wmin > 0 satisfying wmin ≤ min{w1, . . . , wk}, there is an algorithm Estimate-

Parameter that given samples from the model has the following guarantees:

41

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(n, τ, 1/wmin).

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

where the min is over permutations π on [k].

Theorem 2.19 (restatement of Theorem 2.2). Given parameters ε, δ > 0, k ∈ N and

wmin > 0 satisfying wmin ≤ min{w1, . . . , wk}, there is an algorithm that given samples

from the model has the following guarantees:

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(n(log k)/∆2

, ((log k)/∆2)(log k)/∆
2

, 1/wmin).

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is the minimum is over permutations π on [k].

Theorem 2.20 (restatement of Theorem 2.3). Given parameters ε, δ > 0, k ∈ N and

wmin > 0 satisfying wmin ≤ min{w1, . . . , wk}, there is an algorithm that given samples

from the model has the following guarantees:

42

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nk, kk,∆−k, 1/wmin)

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

where the min is over permutations π on [k].

The basic idea of the above theorems are the same. Roughly speaking, Theorem 2.22

(from Bhaskara et al. [2014a]) says we can decompose a noisy third-order low-rank tensor

efficiently under some mild non-degeneracy conditions. By Theorem 2.4, we can estimate

T ∗ =
∑

j∈[k] wjv
⊗(2ℓ+1)
j accurately. Note that T ∗ can be viewed as a third-order low-rank

tensor
∑

j∈[k](v
⊗ℓ
j) ⊗ (v⊗ℓ

j) ⊗ (wjvj). Our approach will be combining Theorem 2.4 and

Theorem 2.22.

In order to combine Theorem 2.4 and Theorem 2.22,
∑

j∈[k](v
⊗ℓ
j)⊗(v⊗ℓ

j)⊗(wjvj) needs

to satisfy the conditions of Theorem 2.22. The major challenge is to show that v⊗ℓ
1 , . . . , v⊗ℓ

k

are linear independent in a robust sense (that is measured in terms of the least singular

value of the nℓ×k matrix formed by the flattenings of these k tensored vectors as columns).

The assumption of Theorem 2.1 incorporates this condition as a fundamental requirement.

Theorem 2.2 and Theorem 2.3 use different approaches to establish this condition. On the

one hand, Claim 2.23 shows that ℓ = 10(log k)/∆2 suffices. This leads to Theorem 2.2.

On the other hand, Claim 2.26 shows that ℓ = k suffices (even when ∆ can be a small

inverse polynomial in n). This leads to Theorem 2.3.

43

We start by introducing the concept of Kruskal rank for convenience.

Definition 2.21 (Definition 1.2, Bhaskara et al. [2014a]). The Kruskal rank (or

Krank) of a matrix A is the largest k for which every set of k columns are linearly inde-

pendent. Also the τ -robust Krank is denoted by Krankτ (A), and is the largest k for which

every n× k sub-matrix A|S of A has σk(A|S) ≥ 1/τ .

The following theorem from Bhaskara et al. [2014a] is crucial; see also [Janzamin

et al., 2019, Goyal et al., 2014] for related tensor decomposition guarantees. Suppose

U ∈ Rm×R, V ∈ Rn×R,W ∈ Rp×R. The theorem says that: if U, V are well-conditioned

and columns of W are ”pairwise well-conditioned”, there is an algorithm that can recover

all the rank-one terms from T =
∑R

i=1 ui ⊗ vi ⊗ wi efficiently. Moreover, the algorithm

can also tolerate some inverse polynomial amount of noise.

Theorem 2.22 (Theorem 2.3, Bhaskara et al. [2014a]). Suppose U ∈ Rm×R, V ∈

Rn×R,W ∈ Rp×R. ui, vi, wi are the ith column of U, V,W , respectively. Suppose U, V,W

satisfy that:

(1) The condition numbers κ(U), κ(V) ≤ κ,

(2) The column vectors of W are not close to parallel: Krank1/δ(W) ≥ 2,

(3) The decompositions are bounded : for all i, ∥ui∥2, ∥vi∥2, ∥wi∥2 ≤ C.

Suppose we are given tensor T + E ∈ Rm×n×p with the entries of E being bounded by

ε · poly(1/κ, 1/m, 1/n, 1/p, δ, 1/C) and moreover T has a decomposition T =
∑R

i=1 ui ⊗

vi ⊗ wi. There is an algorithm with the following guarantee:

(1) The algorithm runs in time complexity poly(m,n, p).

44

(2) With probability 0.99, the algorithm returns each rank one term in the decompo-

sition of T (up to renaming), within an additive error of ε.

The next claim says the following. We can view
∑

j∈[k] wjv
⊗(2ℓ+1)
j as

∑
j∈[k](v

⊗ℓ
j) ⊗

(v⊗ℓ
j)⊗(wjvj). If ℓ = 10(log k)/∆2, the above tensor satisfy the condition of Theorem 2.22.

Claim 2.23. Define ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}. Suppose ∆ > 0. Define

ℓ = 10(log k)/∆2. Consider
∑

j∈[k]wjv
⊗(2ℓ+1)
j =

∑
j∈[k](v

⊗ℓ
j) ⊗ (v⊗ℓ

j) ⊗ (wjvj). Let U ∈

Rnℓ×k be the matrix whose jth column is flattened v⊗ℓ
j . Let W ∈ Rn×k be the matrix whose

jth column is wjvj. Then the following hold:

(1) The condition numbers κ(U) ≤ poly(k),

(2) For all i ̸= j, we have wivi, wjvj are not close to parallel: Krank2/(wmin∆)(W) ≥ 2,

(3) For all j, we have ∥v⊗k
j ∥F , ∥wjvj∥ ≤ 1.

Proof. Proof of part (1):

The main idea is the following. We have

⟨v⊗ℓ
i , v⊗ℓ

j ⟩ =

1 i = j

⟨vi, vj⟩ℓ i ̸= j

Since ⟨vi, vj⟩ℓ → 0 as ℓ → ∞, we have that UTU → I as ℓ → ∞. Hence we expect κ(U)

to be small if ℓ is sufficiently large.

Using the variational characterization for singular values:

σmin(U) = ∥α1v
⊗ℓ
1 + . . .+ αkv

⊗ℓ
k ∥F

for some unit vector (α1, . . . , αk).

45

Without loss of generality, we assume

(1) |α1| is the greatest one among {|α1|, . . . , |αk|},

(2) α1 ≥ 0.

From Cauchy–Schwarz, we have

∥α1v
⊗ℓ
1 + . . .+ αkv

⊗ℓ
k ∥F ≥ ⟨α1v

⊗ℓ
1 + . . .+ αkv

⊗ℓ
k , v⊗ℓ

1 ⟩

= α1 + α2⟨v⊗ℓ
2 , v⊗ℓ

1 ⟩+ . . .+ αk⟨v⊗ℓ
k , v⊗ℓ

1 ⟩

= α1

(
1 + α2/α1⟨v⊗ℓ

2 , v⊗ℓ
1 ⟩+ . . .+ αk/α1⟨v⊗ℓ

k , v⊗ℓ
1 ⟩
)

(2.2)

For any j ̸= 1,

|αj/α1⟨v⊗ℓ
j , v⊗ℓ

1 ⟩| ≤ |⟨v⊗ℓ
j , v⊗ℓ

1 ⟩| = |⟨vj, v1⟩|ℓ

≤ (1−∆2/2)ℓ since ∆ = min
j ̸=j′

min{∥vj − vj′∥, ∥vj + vj′∥}

≤ exp(−∆2ℓ/2) ≤ 1

2k
.

Applying the above inequality along with (2.2), we get

σmin(U) ≥ α1(1− (k − 1)/2k) ≥ α1

2
≥ 1

2
√
k

Meanwhile

∥U∥2 ≤ ∥U∥2F =
∑
j∈[k]

∥v⊗k
j ∥2F = k.

Therefore part (1) is true.

46

Proof of part (2): It follows by the definition ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}.

Proof of part (3): Recall that {vj} are unit vectors. □

Next, we introduce the concept of Khatri-Rao product for convenience.

Definition 2.24 (Definition 1.3, Bhaskara et al. [2014a]). The Khatri-Rao product of

U and V which are size m× r and n× r respectively is an mn× r matrix U ⊙ V whose

ith column is flattened ui ⊗ vi.

The next lemma is a robust analogue of the following fact: Krank(A⊙B) ≥ min{Krank(A)+

Krank(B)−1, R}, where A,B are matrix withR columns. Intuitively, it means that Krank

will increase with Khatri-Rao product. It will be used to prove Claim 2.26.

Lemma 2.25 (Lemma A.4, Bhaskara et al. [2014b]). A,B are matrix with R columns.

Say Krankτ1(A) ≥ kA,Krankτ2(B) ≥ kB, where kA, kB ∈ N. Let t = min{kA + kB − 1, R}.

Then Krank(τ1τ2
√
t)(A⊙B) ≥ t.

We will need the following claim, which shows that:
∑

j∈[k] wjv
⊗(2k+1)
j =

∑
j∈[k](v

⊗k
j)⊗

(v⊗k
j) ⊗ (wjvj) satisfies the condition of Theorem 2.22. This means we can recover the

rank-one terms from
∑

j∈[k] wjv
⊗(2k+1)
j .

Claim 2.26. Define ∆ = minj ̸=j′ min{∥vj−vj′∥, ∥vj+vj′∥}. Suppose ∆ > 0. Consider∑
j∈[k] wjv

⊗(2k+1)
j =

∑
j∈[k](v

⊗k
j)⊗ (v⊗k

j)⊗ (wjvj). Let U ∈ Rnk×k be the matrix whose jth

column is flattened v⊗k
j . Let W ∈ Rn×k be the matrix whose jth column is wjvj. Then

the following hold:

(1) The condition numbers κ(U) ≤ (1/∆)O(k)kO(k),

(2) For all i ̸= j, we have wivi, wjvj are not close to parallel: Krank2/(wmin∆)(W) ≥ 2,

47

(3) For all j, we have ∥v⊗k
j ∥F , ∥wjvj∥ ≤ 1.

Proof. Proof of part (1): The main idea is to apply Lemma 2.25. Let A ∈ Rn×k be

the matrix whose jth column is vj. Observe that U = A⊙k. Roughly speaking, note that

Krank(A) ≥ 2, we have Krank(A⊙(k−1)) ≥ k. A⊙(k−1) has full column rank, so as U .

Let A ∈ Rn×k be the matrix whose jth column is vj. Observe that U = A⊙k. We

know that Krank2/∆(A) ≥ 2 by the definition ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}.

Apply Lemma 2.25 inductively, we have

Krank((2/∆)k
√
k!·k)A

⊙k ≥ k.

In other word,

σmin(A
⊙k) ≥ (∆/2)k/

√
k! · k = ∆O(k)k−O(k).

Meanwhile

∥U∥2 ≤ ∥U∥2F =
∑
j∈[k]

∥v⊗k
j ∥2F = k.

Therefore part (1) is true.

Proof of part (2): It follows by the definition ∆ = minj ̸=j′ min{∥vj − vj′∥, ∥vj + vj′∥}.

Proof of part (3): Recall that {vj} are unit vectors. □

The next claim says that we can get an accurate estimate of v, w from an accurate

estimate of wv⊗(2ℓ+1). This is useful since we get k rank-one tensors of the form wv⊗(2ℓ+1)

after apply Theorem 2.22 (tensor decomposition) to
∑

j∈[k] wjv
⊗(2ℓ+1)
j . While it is easy

and standard, we include it here for the sake of completeness.

48

Claim 2.27. Let ℓ ∈ N, ε, w ∈ (0, 1]. Let v ∈ Rn be a unit vector. {eα : α ∈ [n]} is

the standard basis of Rn. Suppose T ∈ (Rn)⊗(2ℓ+1) satisfies that

∥wv⊗(2ℓ+1) − T∥F ≤ εw

4nℓ
.

Let ŵ ∈ R, v̂ ∈ Rn be such that ŵ = ∥T∥F , v̂α = ⟨T,eα⊗I⊗ℓ
n ⟩

ŵ
,∀α ∈ [n]. Then

|w − ŵ| ≤ ε(2.3)

∥v − v̂∥ ≤ ε

Proof. Define

δ =
εw

4nℓ
.

By triangle inequality, |∥wv⊗(2ℓ+1)∥F − ∥T∥F | ≤ δ ≤ ε. Note ∥wv⊗(2ℓ+1)∥F = w, hence

|w − ŵ| ≤ δ ≤ ε, i.e., (2.3) is true.

Fix α ∈ [n]. By Cauchy-Schwarz inequality,

|⟨wv⊗(2ℓ+1) − T, eα ⊗ I⊗ℓ
n ⟩| ≤ δ∥eα ⊗ I⊗ℓ

n ∥F = δnℓ/2.

As a consequence,

|wvα − ⟨T, eα ⊗ I⊗ℓ
n ⟩| ≤ δnℓ/2.

We know that |ŵvα − wvα| ≤ |ŵ − w| ≤ δ. Then,

|ŵvα − ⟨T, eα ⊗ I⊗ℓ
n ⟩| ≤ δ(nℓ/2 + 1) ≤ 2δnℓ/2.

49

Hence,

|vα − ⟨T, eα ⊗ I⊗ℓ
n ⟩

ŵ
| ≤ 2δnℓ/2

ŵ
≤ 4δnℓ/2

w
.

The last inequality is due to |w − ŵ| ≤ δ ≤ w/2.

Then we have

∥v − v̂∥ ≤ 4δ
√
nnℓ/2

w
≤ ε

□

Next, we will prove Theorem 2.28. The main steps of the algorithm are:

(1) Get a estimation of T ∗ =
∑

j∈[k] wjv
⊗(2ℓ+1)
j via Theorem 2.4.

(2) Use Theorem 2.22 (tensor decomposition) to recover all the rank-one terms.

(3) Use Claim 2.27 to recover the parameters from the rank-one terms.

Theorem 2.28. Let ℓ ∈ N. Let U ∈ Rnℓ×k be the matrix whose jth column is flattened

v⊗ℓ
j . Suppose σmin(U) ≥ 1/τ , where τ > 0. Given parameters ε, δ > 0, k ∈ N and wmin > 0

satisfying wmin ≤ min{w1, . . . , wk}, there is an algorithm Estimate-Parameter that

given samples from the model has the following guarantees:

(1) The algorithm runs in sample complexity and time complexity

log2(1/δ)ε−2poly(nℓ, ℓℓ, τ, 1/wmin).

50

(2) With probability 1−δ, the algorithm returns estimates {ŵj, v̂j : j ∈ [k]} such that

min
π∈Perm([k])

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε.

where the min is over permutation π on [k].

Algorithm 2: Estimate-Parameter

Input:
k – the number of component
ℓ – parameter for order of the tensor
τ – parameter for lower bound on least singular value of U
O(v1, · · · , vk, w1, · · · , wk) – the sample oracle
ε – error parameter
wmin – weight lower bound
δ – failure probability
Output:
{ŵj, v̂j : j ∈ [k]} – estimate of {wj, vj : j ∈ [k]}

1 Apply Theorem 2.4, get T that is εpoly(n−ℓ, 1/τ, wmin)-close to
∑k

j=1 wjv
⊗(2ℓ+1)
j

with probability at least 0.99;

2 View
∑

j∈[k] wjv
⊗(2ℓ+1)
j as

∑
j∈[k](v

⊗ℓ
j)⊗ (v⊗ℓ

j)⊗ (wjvj). By Theorem 2.22, with
probability at least 0.99, we can estimate each rank one term in the
decomposition of T ∗ (up to renaming), within additive error εwmin

8nℓ ;
3 By Claim 2.27, we can recover the parameters from the rank-one terms. This

leads to estimates {ŵj, v̂j : j ∈ [k]}.;
4 return {ŵj, v̂j : j ∈ [k]};

Proof. The algorithm Estimate-Parameter is described in Algorithm 2.

Without loss of generality, we can assume δ = 0.1. This is because we can always

boost the success probability of our algorithm at a multiplicative cost of O(log2(1/δ)) via

Claim A.1.

Let T ∗ =
∑

j∈[k] wjv
⊗(2ℓ+1)
j . By Theorem 2.4, there is an algorithm such that:

51

(1) It runs with sample complexity and time complexity

ε−2poly(nℓ, ℓℓ, τ, 1/wmin)

(2) With probability 0.99,

we can estimate T ∗ within an additive error of εpoly(n−ℓ, 1/τ, wmin).

View
∑

j∈[k] wjv
⊗(2ℓ+1)
j as

∑
j∈[k](v

⊗ℓ
j)⊗ (v⊗ℓ

j)⊗ (wjvj). We note that the following hold:

(1) The condition numbers κ(U) ≤ kτ ,

(2) For all i ̸= j, we have wivi, wjvj are not close to parallel: Krankτ/wmin
(W) ≥ 2,

(3) For all j, we have ∥v⊗k
j ∥F , ∥wjvj∥ ≤ 1.

Hence, T ∗ satisfies the condition of Theorem 2.22. By Theorem 2.22, with probability

at least 0.99, we can estimate each rank one term in the decomposition of T ∗ (up to

renaming), within additive error εwmin

8nℓ . By Claim 2.27, we can recover the parameters

from the rank-one terms. This leads to estimates {ŵj, v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over permutation π on [k]. □

We are now ready to finish the proof of Theorem 2.1, Theorem 2.2 and Theorem 2.3.

Proof of Theorem 2.1. Note that Theorem 2.1 is just a special case (ℓ = 1) of

Theorem 2.28. □

The proofs of Theorem 2.2 and Theorem 2.3 have the same structure as Theorem 2.28.

52

Proof of Theorem 2.2. Without loss of generality, we can assume δ = 0.1. This is

because we can always boost the success probability of our algorithm at a multiplicative

cost of O(log2(1/δ)) via Claim A.1. Define ℓ = 10(log k)/∆2.

Let T ∗ =
∑

j∈[k] wjv
⊗(2ℓ+1)
j . By Theorem 2.4, there is an algorithm such that

(1) It runs in sample complexity and time complexity

ε−2poly(nℓ, k, ℓℓ, 1/wmin, 1/∆)

= ε−2poly(n(log k)/∆2

, ((log k)/∆2)(log k)/∆
2

, 1/wmin)

(2) With probability 0.99,

we can estimate T ∗ within an additive error of εpoly(1/nℓ, 1/k, 1/wmin, 1/∆).

By Claim 2.23, T ∗ satisfies the condition of Theorem 2.22. By Theorem 2.22, with prob-

ability at least 0.99, we can estimate each rank one term in the decomposition of T ∗ (up

to renaming), within additive error εwmin

8nℓ . By Claim 2.27, we can recover the parameters

from the rank-one terms. This leads to estimates {ŵj, v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over permutation π on [k]. □

Proof of Theorem 2.3. Without loss of generality, we can assume δ = 0.1. This is

because we can always boost the success probability of our algorithm at a multiplicative

53

cost of O(log2(1/δ)) via Claim A.1. Let T ∗ =
∑

j∈[k] wjv
⊗(2k+1)
j . By Theorem 2.4, there

is an algorithm such that:

(1) It runs in sample complexity and time complexity ε−2poly(nk, kk,∆−k, 1/wmin).

(2) With probability 0.99,

we can estimate T ∗ within an additive error of εpoly(∆k, k−k, n−k, wmin).

By Claim 2.26, T ∗ satisfies the condition of Theorem 2.22. By Theorem 2.22, with prob-

ability at least 0.99, we can estimate each rank one term in the decomposition of T ∗ (up

to renaming), within additive error εwmin

8nk . By Claim 2.27, we can recover the parameters

from the rank-one terms. This leads to estimates {ŵj, v̂j : j ∈ [k]} such that

min
π

(
max{∥v̂j − vπ(j)∥ : j ∈ [k]}+max{

∣∣ŵj − wπ(j)

∣∣ : j ∈ [k]}
)
≤ ε,

where the min is over permutation π on [k]. □

54

CHAPTER 3

Learning a Mixture of Two Subspaces over F2

3.1. Introduction

A common assumption in high-dimensional data analysis is to assume that the given

data belongs to a collection of lower-dimensional subspaces. In a prominent line of work in

machine learning, computer vision, and computational geometry [Vidal, 2003, Elhamifar

and Vidal, 2013, Soltanolkotabi et al., 2014, Park et al., 2014], this intuition is formalized

through the problem of learning a mixture of subspaces, or subspace clustering. Given

a set of points in n dimensions that belong to a union of k (k ≥ 2) subspaces, the goal

is to find the individual subspaces that contain all the points. When the points belong

to Rn, a beautiful result by Vidal [2003] shows that for any mixture of k subspaces,

under some mild general-position assumption of the points in the subspaces, there exists

an algorithm that runs in time nO(k) and recovers the k individual subspaces. Recently,

subspace clustering has also been studied with outlier noise, in the special case when the

points in each cluster are drawn from a Gaussian supported on a subspace [Raghavendra

and Yau, 2020, Bakshi and Kothari, 2020]. However, these guarantees are specific to the

real domain. Therefore, a natural question is whether such algorithmic guarantees extend

to other domains such as F2.

Can we efficiently learn a mixture of subspaces over finite fields?

The algorithmic problem of recovering subspaces from samples has a distinct flavor over

55

finite fields, presenting significant computational challenges even in simple settings. In the

most basic scenario, we are provided with samples drawn from a mixture of k = 2 unknown

subspaces A0, A1 ⊆ Fn
2 of dimensions d0 and d1 (respectively), with unknown mixing

weights w0 and w1 in the interval [0, 1], which add up to 1. Each sample is independently

drawn according to the following procedure: with probability w0, the sample is drawn from

the uniform distribution UA0 over A0, and with probability w1, the sample is drawn from

the uniform distribution UA1 over A1. Our objective is to learn the individual subspaces

A0 and A1 from independent samples generated by this model. For a precise definition of

this model, we refer the reader to Definition 3.4.

The problem of learning mixtures of subspaces over F2 is a natural generalization of

the problem of learning mixtures of subcubes, which was previously studied in [Chen and

Moitra, 2019]. Specifically, subcubes can be thought of as (affine) subspaces where the

constraints are defined by standard basis vectors. Our work considers arbitrary subspaces

of Fn
2 , while excluding affine subspaces. Our work can also be framed within the frame-

work of learning from positive examples Denis et al. [2005], De et al. [2014], Canonne et al.

[2020], Ernst et al. [2015]. This framework investigates the learnability of supervised con-

cept classes (in this case subspaces), when the learning algorithm is provided only with

positive samples. More interestingly, the simple setting of k = 2 already captures the no-

torious problem of learning parities with noise (LPN) as a special case. One can encode

LPN as learning a mixture of two subspaces A0, A1 where the subspaces A1 ⊂ A0 ⊆ Fn
2

and dim(A1) = dim(A0)−1 (see Proposition 3.24 and Proposition 3.23). The best-known

algorithm for LPN runs in time exp
(
O(n/ log n)

)
[Blum et al., 2003]. Moreover, LPN

56

is also used as an average-case hardness assumption in learning theory and cryptogra-

phy [Pietrzak, 2012]. To avoid this computational barrier, we will assume that we are

not in the degenerate setting when one subspace contains the other. We call the two

subspaces A0 and A1 incomparable iff A0 ⊈ A1 and A1 ⊈ A0. This leads to the following

natural question about the computational complexity of the problem:

Question. Is LPN the only computational obstruction for learning a mixture of two

subspaces? Can one design faster algorithms when the subspaces A0, A1 are incomparable?

Our first result shows that one can indeed design a polynomial time algorithm when

the two subspaces are incomparable.

Theorem 3.1. Suppose A0, A1 are incomparable. There is an algorithm

Incomparable-Subspace-Recovery with the following guarantee: given oracle ac-

cess to O(A0, A1, w0, w1) (for unknown A0, A1, w0, w1), wmin > 0 (such that wmin ≤

min{w0, w1}) and confidence parameter δ > 0,

(1) Incomparable-Subspace-Recovery runs in sample and time complexity

poly(n/wmin) · log(1/δ).

(2) With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates

the weights w0, w1 up to any desired inverse polynomial accuracy.

Hence the above result gives a significantly faster polynomial time algorithm if we

are not in the degenerate comparable setting when one subspace contains the other. In

contrast, when A1 ⊂ A0 and dim(A1) = dim(A0) − 1 (or vice versa), the best-known

algorithm takes exp(O(n/ log n)) time. We remark that the algorithm succeeds in uniquely

57

identifying and recovering the individual subspaces, as opposed to just finding a mixture

of two subspaces that fits the data. In the parlance of statistics, our algorithm recovers

the underlying model (sometimes referred to as parameter estimation) as opposed to just

doing density estimation.

Next, observe that the (presumed) hardness of LPN only implies hardness of the

subspace recovery problem when (i) A1 ⊆ A0 and (ii) dim(A1) = dim(A0) − 1. This

naturally prompts the question whether subspace recovery remains hard if (say) A1 ⊆ A0

but dim(A1) ≪ dim(A0). In other words, we ask the following question:

Question. Can we design fast algorithms for subspace recovery when dim(A0) and dim(A1)

are substantially different? Note that we are not imposing any conditions on the compa-

rability of the hidden subspaces A0 and A1.

Our next result provides an affirmative answer to this question.

Theorem 3.2. Let wmin ≥ 1/100. Let d0 ≥ d1 and suppose α := d1/d0 < 1 − log d0√
d0

.

There is an algorithm Subspace-Recover-Large-Diff with the following guarantee:

given oracle access to O(A0, A1, w0, w1)(for unknown A0, A1, w0, w1), wmin > 0 (such that

wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

(1) Subspace-Recover-Large-Diff runs in sample and time complexity

log(1/δ)poly(n) · dO(1)/(1−α)
0 .

(2) With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates

the mixing weights up to any desired inverse polynomial accuracy.

58

Informally speaking, if the ratio of dimensions α is bounded away from 1, the running

time is polynomial. In general, the running time of the algorithm has a dependence of

O(1/(1− α)) in the exponent.

3.1.1. Overview of Techniques.

We now briefly describe the algorithmic ideas and techniques used to prove our results.

The algorithms that establish Theorem 3.1 and Theorem 3.2 use very different ideas. We

begin with an overview of Theorem 3.1.

Incomparable Setting (Theorem 3.1).

The main component of the polynomial time algorithm in the incomparable setting is a

careful procedure for dimension reduction that reduces the subspace clustering problem

to O(1) dimensions. We will construct a matrix M ∈ Fr×n
2 where r = O(1) (in the

actual proof, we set r = 10), and solve the clustering problem given samples of the form

y = Mx where x is drawn from the original mixture. Note that a subspace under any

linear map M also gives a subspace; hence the samples in Rr are drawn from a mixture of

subspaces MA0 and MA1. Any algorithm for learning a mixture of subspaces in r = O(1)

dimensions will allow us to cluster the points, and recover the individual subspaces A0, A1.

How do we choose the linear map M? A key property that we require of M is that

if A0 and A1 are incomparable, then MA0 and MA1 should also remain incomparable.

While it is not hard to see that such a M exists (even when r = O(1)), it is far from clear

how to find it given that we do not have A0 and A1 explicitly. A natural choice for M is a

random matrix, where every entry is chosen independently from F2. Random linear maps

are often used for dimension reduction in the real domain to approximately preserve inner

59

products and pairwise distances. However, a random map does not work in our setting,

particularly when the target dimension r ≪ d1. This is because with high probability the

subspaces collapse and MA0 = MA1 = Fr
2. Therefore, this naive approach of dimension

reduction is useless to recover the individual subspaces A0, A1.

Our approach instead proceeds in multiple rounds, where in each round, we reduce

the dimension by one while preserving the property that the projected subspaces remain

incomparable. More precisely, one can show that for a random linear map Mn−1 ∈

F(n−1)×n
2 , with constant probability, Mn−1A0 and Mn−1A1 are incomparable if A0, A1 are

originally incomparable. However, this does not suffice per se, since we want to apply this

for Ω(n) rounds (and thus, the probability of success becomes exponentially small). The

crucial component of our algorithm is a testing procedure that runs in polynomial time,

which given samples from a mixture of subspaces U, V , w.h.p. outputs whether U and V

are comparable or incomparable. With such a procedure, in every phase we can reduce the

dimension by 1, by sampling several random linear maps, running our testing procedure

on each of them, and picking one that preserves incomparability of the subspaces. The

guarantee of the testing procedure is given below.

Theorem 3.3. There is an algorithm

Test-Comparability with the following guarantee: Given oracle access to

O(U, V, wU , wV) (for unknown U, V, wU , wV), wmin > 0 (such that min{wU , wV } ≥ wmin)

and confidence parameter δ > 0,

(1) Test-comparability runs in sample and time complexity

1/wmin
2 · poly(n) log(1/δ).

60

(2) With probability 1−δ, the algorithm outputs True if U and V are comparable and

False otherwise.

The testing procedure uses the following main insight. Suppose for simplicity the span

span(U ∪ V) = Fn
2 . We prove that the subspaces U and V are incomparable if and only

if there exists a non-zero polynomial p of degree 2 that vanishes on A = U ∪ V . In fact,

it will suffice to choose A to be a randomly chosen set of polynomial size sampled from

the mixture of subspaces U and V . The set of feasible degree-2 polynomials can then be

obtained by setting up a system of linear equations where the unknowns correspond to

coefficients of p.

Let us define M ∈ FO(1)×n
2 as M = Mr · Mr+1 · . . . · Mn−1 – in other words, M

is the linear map obtained by composing the dimension reduction maps over the n − r

rounds. Once the dimension is reduced to r = O(1), we use a brute-force algorithm to

recoverMA0,MA1. Finally, once we knowMA0,MA1, we can draw uniform samples from

A0\{x ∈ A0 : Mx ∈ MA1} to recover A0; we can recover A1 similarly (see Lemma 3.18).

Significant dimension difference (Theorem 3.2).

When the dimension of the subspaces are substantially different, we use algebraic ideas

inspired by techniques in the real domain to recover the subspaces. The main algorithmic

idea is by adapting ideas from related problems of subspace recovery over the reals [Hardt

and Moitra, 2013, Bhaskara et al., 2019]. To explain the idea, consider the setting with

equal mixing weights of 1/2, d0 ≈ n, and suppose α = 1−Ω(1). If we consider a random

subsample of d0 points from the data set, we expect to have roughly d0/2 points from

subspace A0 and d0/2 points from subspace A1. Suppose α < 1/2 (referred to as the

“large gap case”)i.e., d1 < d0/2, then with high probability there is a linear dependence

61

in this sub-sample. Further, this linear dependence is (entirely) among points lying in

the subspace A1. This can be used to recover the subspace A1 (and consequently, the

subspace A0 as well).

To see why this idea does not work in general, consider the case when the weights

w0 = 0.9, w1 = 0.1 and d1 = 0.8d0. Then, to see a linear dependence among the points in

A1, we need to sample at least d1 points from A1. However, on average, this will mean

sampling around (w0/w1) · d1 = 9d1 many points from A0. As 9d1 is much larger than

the ambient dimension and thus, we will find many spurious linear dependencies – i.e.,

dependencies that do not come from points belonging to A1. Thus, this strategy will fail

to identify A1.

Instead, when α ≥ 1/2, we will adopt a dimension gap amplification strategy. In partic-

ular, we consider a non-linear map ϕ : Fd0
2 → Fd0

′

2 where d0
′ =
∑ℓ

j=0

(
d0
j

)
for an appropri-

ately chosen ℓ. Further, for a set B, let us define ϕ(B) as the set {ϕ(x) : x ∈ B}. Roughly

speaking, we want to choose an appropriate ℓ such that dim(span(ϕ(A1)))/dim(span(ϕ(A0))) <

1/2. For such an ℓ, we can now apply the strategy for the large gap case to recover A1

and A0. We note that the idea of such a dimension gap amplification was also applied

in the related subspace recovery problem over reals (see Chapter 4) – there, the goal

was to recover one subspace S of dimension d ≤ n containing o(d/n) fraction of the

points, while the rest of the points are drawn in general position from the whole of Rn.

While in spirit our idea is similar, it is challenging to get a handle on the dimensions

of span(ϕ(A1)) and span(ϕ(A0)). Fortunately for us, some powerful results from additive

combinatorics [Keevash and Sudakov, 2005, Ben-Eliezer et al., 2012] let us get precise

estimates for dim(span(ϕ(A0))) and dim(span(ϕ(A1))). Roughly speaking, we show that

62

for ℓ ≈ 1/(1 − α), dim(span(ϕ(A1)))/dim(span(ϕ(A0))) < 1/2, thus reducing to the large

gap case.

3.2. Preliminaries

We start by defining the subspace recovery problem formally.

Definition 3.4. The Subspace-Recovery problem is instantiated by two subspaces of

Fn
2 - A0 and A1 of dimensions d0 and d1 respectively. In addition, we also have weights

w0 and w1 such that w0 + w1 = 1.

The subspaces A0, A1, dimensions d0, d1 as well as the weights w0 and w1 are unknown.

For this instance, we define the sampling oracle O(A0, A1, w0, w1) is defined as follows:

sample b ∈ {0, 1} where P[b = 0] = w0 and P[b = 1] = w1. If b = 0, O(A0, A1, w0, w1)

outputs a uniformly random element from A0 and if b = 1, O(A0, A1, w0, w1) outputs a

uniformly random element from A1.

In the Subspace-Recovery problem, the algorithm is given access to the sampling oracle

O(A0, A1, w0, w1), an error parameter ε > 0 and a weight parameter wmin > 0 with the

promise that wmin ≤ min{w0, w1}. The goal of the algorithm is to output subspaces A0, A1

and estimates ŵ0, ŵ1 such that |w0 − ŵ0|+ |w1 − ŵ1| ≤ ε.

Without loss of generality, we will assume d0 ≥ d1 from now on.

Remark 3.5. Note that once A0, A1 is found, estimating w0, w1 is not hard, this is

because Px∼O(A0,A1,w0,w1)[x ∈ A0 \ A1] = w0
|A0\A1|
|A0| . Formally, there is an algorithm with

the following guarantee: given oracle access to O(A0, A1, w0, w1) (for unknown w0, w1),

A0, A1 and confidence parameter δ > 0,

(1) this algorithm runs in sample and time complexity poly(n) · 1/ε2 · log(1/δ)

63

(2) With probability 1− δ, the algorithm outputs ŵ0, ŵ1 such that |w0 − ŵ0|+ |w1 −

ŵ1| ≤ ε.

By this observation, we can focus on finding A0, A1 from now on.

We next define the concept of incomparable subspaces.

Definition 3.6. We define two subspaces A,B to be incomparable if and only if A ⊈ B

and B ⊈ A.

3.2.0.1. Some useful notation.

(1) For any f : Fn
2 → F2, we use zero(f) to denote the set {x : f(x) = 0}.

(2) For integers n, d ∈ N, we use RM(n, d) to denote the set of multilinear polynomials

of degree at most d over Fn
2 .

(3) For integers n, k ∈ N with n ≥ k, we use
(

n
≤k

)
to denote

∑k
i=0

(
n
i

)
.

(4) For a sample oracle O which return samples in Fn
2 , matrix D ∈ Fk×n

2 , we use DO

to denote a new sample oracle which each time returns Dx where x is sampled

from O.

(5) For an index set S, we use xS to denote the set {xi : i ∈ S}.

(6) For a set S of vectors, we use rank(S) to denote dim(span(S)).

3.2.0.2. Some useful facts regarding polynomials. We next list some useful facts

regarding polynomials over the field F2. While most of these are easy and standard, we

list them here for the sake of completeness.

64

Claim 3.7. Let p be a multilinear polynomial over Fn
2 . If the polynomial p is not

identically zero (as a formal expression) and its degree is at most c, then

P
x∼Fn

2

[p(x) ̸= 0] ≥ 1/2c.

Proof. The proof is by induction on degree. If c = 0, then p is identically 1 and thus

the claim follows trivially.

Now, as an inductive hypothesis, assume that the claim is true for all polynomials of

degree at most c − 1. Let p be a polynomial of degree c. Since p is not identically zero,

there exists i such that p can be expressed as

(3.1) p(x1, · · · , xn) = q(x1, . . . , xi−1, xi+1, . . . , xn) · xi + r(x1, . . . , xi−1, xi+1, . . . , xn),

where degree of q is at most c − 1 and q is not identically zero. The above formulation

uses the fact that polynomials over F2 are multilinear. Observe that any choice of x−i =

(x1, . . . ,xi−1,xi+1, . . . ,xn) such that q(x−i) ̸= 0,

(3.2) Pxi∼F2 [p(x1, . . . ,xi−1,xi,xi+1, . . . ,xn) ̸= 0] ≥ 1

2
.

Now, applying the induction hypothesis on the polynomial q(x1, . . . , xi−1, xi+1, . . . , xn),

we have that

Px∼Fn
2
[q(x1, . . . ,xi−1,xi+1, . . . ,xn) ̸= 0] ≥ 1

2c−1
.

Combining this with (3.1) and (3.2), we get the claim.

□

65

Claim 3.8. There is an efficient algorithm Size-system-polynomial which given

a set of points as input z1, . . . , zR ∈ Fn
2 , determines the size of the set T = |{p ∈ RM(n, 2) :

p(z1) = p(z2) = · · · = p(zr) = 0}|.

Proof. Observe that p can be expressed as linear system of equations (i) where the

unknowns are the coefficients of p and (ii) the equations are given by the constraints

{p(zi) = 0}1≤i≤R. Using Gaussian elimination, we can determine the rank r of this

system. Observe that the size of T is just 2r, thus proving the claim. □

3.2.0.3. Some useful facts regarding subspaces of Fn
2 . We now list some useful

facts about subspaces of Fn
2 .

Claim 3.9. Let k, d, n ∈ N such that k ≥ 100d. Let V ⊆ Fn
2 be a subspace of dimension

d. Let x1, · · · ,xk be k vectors sampled uniformly at random from V . Then,

Px1,··· ,xk
[∀S ⊆ [k] such that |S| ≥ 0.9k, we have span(xS) = V] ≥ 1− 20.4k.(3.3)

Proof. We know that there always exists a linear bijection between V and Fd
2. With-

out loss of generality, we assume n = d, V = Fd
2. Without loss of generality, assume 0.9k

is an integer. For a fixed S with |S| = 0.9k

P[span(xS) = Fd
2]

=
d−1∏
j=0

(
1− 2−0.9k+j

)
See [Ferreira et al., 2012, Equation (2)]

≥ 1−
d−1∑
j=0

2−0.9k+j ≥ 1− 2−0.9k+d ≥ 1− 2−0.89k.

66

The number of choice of S is at most
(

k
0.1k

)
≤ (10e)0.1k ≤ 20.48k. Then the proof is

completed by a union bound. □

The next claim says that a union of two proper subspaces of Fn
2 must differ substantially

from any subspace of Fn
2 .

Claim 3.10. Let S be a subspace of Fn
2 and of dimension d. Let U, V ⊊ S be two

proper subspaces. Then |S\(U ∪ V)| ≥ 2d−2.

Proof. Notice that the size of subspace in F2 is always a power of 2. There are two

cases:

Case 1: dim(U) = dim(V) = d− 1.

Observe that dim(U ∩ V) ≥ d− 2 and hence |U ∪ V | = |U |+ |V | − |U ∩ V | ≤ 3 · 2d−2.

Case 2: At least one of dim(U) or dim(V) ≤ d− 2.

In this case, |U ∪ V | ≤ |U |+ |V | ≤ 2d−1 + 2d−2 ≤ 3 · 2d−2. Thus, in either case, |U ∪ V | ≤

3 · 2d−2 which implies that |S\(U ∪ V)| ≥ 2d−2. □

Claim 3.11. Let b1, · · · , bt ∈ Fn
2 be linearly independent. Sample M ∈ Fm×n

2 uniformly

at random. Then Mb1, · · · ,Mbt are independent and identically distributed. In other

words, the joint distribution of Mb1, · · · ,Mbt is the uniform distribution over Fm×t
2 .

Proof. Let us first add vectors bt+1, . . . , bn such that {b1, . . . , bn} is a basis of Fn
2 . Let

B be the matrix whose ith column is bi. Now, observe that the map Ψ : Fm×n
2 → Fm×n

2

defined as Ψ : M 7→ M ·B is a bijection. Thus, if the random variable M is uniform over

Fm×n
2 , then so is M ·B. Consequently, the first t columns of M ·B, namely, Mb1, . . . ,Mbt

are independent and identically distributed.

67

□

The following theorem gives a hypothesis testing routine for mixtures of subspaces

over Fn
2 . The proof of this theorem is deferred to Appendix B.

Theorem 3.12. Let D be a distribution of a mixture of two incomparable subspaces

A,B ⊆ Fn
2 with mixing weights wA, wB ≥ w0. Let {Aj, Bj}Nj=1 be a collection of N sets of

hypothesis with the property that there exists i such that {Ai, Bi} = {A,B}. There is an

algorithm Choose-The-Right-Hypothesis which is given a confidence parameter δ,

w0, {Aj, Bj}Nj=1 and a sampler for D. Every subspace of {Aj, Bj}Nj=1 will be represented

by a basis of that subspace, and the algorithm will have access to the basis. This algorithm

has the following behavior,

(1) It runs in poly(N, 1/w0) log(1/δ) time.

(2) With the probability 1− δ outputs the index i such that {Ai, Bi} = {A,B}.

3.3. Testing Comparability of the Subspaces

In this section, the main goal is to prove Theorem 3.3 (restated below for the conve-

nience of the reader). We recall that Theorem 3.3 gives an efficient algorithm which given

samples from a mixture of two subspaces U, V , decides whether U and V are compara-

ble. This result in turn is an important piece in our subspace recovery algorithm in the

“incomparable” case.

Theorem 3.13 (restatement of Theorem 3.3). There is an algorithm

Test-Comparability with the following guarantee: Given oracle access to

O(U, V, wU , wV) (for unknown U, V, wU , wV), wmin > 0 (such that min{wU , wV } ≥ wmin)

and confidence parameter δ > 0,

68

(1) Test-comparability runs in sample and time complexity

1/wmin
2 · poly(n) log(1/δ).

(2) With probability 1−δ, the algorithm outputs True if U and V are comparable and

False otherwise.

The main idea of the algorithm is the following. First, we take a few samples from

the mixture to get span(U ∪ V). By dimension reduction, it suffices to deal with the case

span(U ∪ V) = Fn
2 . The crucial property we use is the following: If span(U ∪ V) = Fn

2 ,

U, V are incomparable if there exists non-zero p ∈ RM(n, 2) such that p vanishes on the

entire set U ∪V . The proof of Theorem 3.3 is deferred to the end of the section – to start,

we prove some auxiliary lemmas.

Claim 3.14. Assume s ≥ 8n/wmin. Let x1,x2, · · · ,xs be sampled from a mix-

ture of two subspaces U, V ⊆ Fn
2(potentially comparable) of dimension at most d with

mixing weights wU , wV ≥ wmin. Then, with probability at least 1 − exp(−swmin
2/32),

span(x1, · · · ,xs) = span(U ∪ V).

Proof. For fixed x1, · · · , xi such that span(x1, · · · , xi) ⊊ span(U ∪ V), we will show

Pxi+1
[xi+1 /∈ span(x1, · · · , xi)] ≥ wmin/2.(3.4)

Define W = span(x1, · · · , xi). By our assumption, either U ⊈ W or V ⊈ W . Let us

assume that it is the former (the other case is symmetric). Under this assumption, U ∩W

is a proper subset of U . Since both are linear subspaces and the size of any linear space

69

Algorithm 3: Test-Comparability

Input:
n – ambient dimension
O(U, V, wU , wV) – oracle for random samples from a mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: True (if comparable) or False (if incomparable)

1 Set t = 16n/(wmin
2);

2 Sample x1, · · · ,xt from O(U, V, wU , wV);
3 Set S = span(x1, · · · ,xt), v = dim(S);
4 Find y1, · · · , yv such that they form a basis of S = span(x1, · · · ,xt).;
5 Find a matrix D ∈ Fv×n

2 such that Dyi = ei for all i, where ei is the ith element
of the standard basis of Fv

2;
6 Set O′ = DO(U, V, wU , wV) = O(DU,DV,wU , wV). This is explained in

prelims:useful notation;
7 Set r = 8n2/wmin;
8 Sample z1, · · · , zr from O′ = O(DU,DV,wU , wV);
9 Use algorithm Size-System-Polynomial to compute

T = |{p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0}|;
// See Claim 3.8

10 . if T = 1 then
11 return True;
12 else
13 return False;

over F2 is always a power of 2, |U ∩W | ≤ 0.5|U |. Hence

P[xi+1 ∈ U\W] ≥ wU
|U\W |
|U |

≥ wmin · 0.5.

In other words, rank(x1, · · · ,xi+1) = rank(x1, · · · , xi) + 1 will hold with probability at

least wmin/2, thus proving (3.4). Define yi = rank(x1, · · · ,xi)− rank(x1, · · · ,xi−1), then

y1, · · · ,ys satisfy the condition of Lemma C.1 with γ = wmin/2, d = rank(U ∪ V), k = s.

Claim 3.14 now follows by applying Lemma C.1. □

70

The next (easy) claim says that suppose the distribution Z (over Fd
2) is not too con-

centrated on any single element. Then, a randomly chosen set of size roughly quadratic in

d is a hitting set for quadratic polynomials over Fd
2. In other words, any non-zero element

of RM(d, 2) is non-zero on at least one element of this set.

Claim 3.15. Let Z be a distribution over Fd
2 such that the probability weight of every

element is at least w∗/2d. Let x1,x2, . . . ,xt be independent sampled from Z. Then, we

have

P
[
∀q ∈ RM(d, 2) \ {0},∃j ∈ [t] s.t. q(xj) ̸= 0

]
≥ 1− exp

(
−tw∗/4 +

(
d

≤ 2

)
log 2

)
.

Proof. Fix q ∈ RM(d, 2) such that q ̸= 0. By Claim 3.7,

Px∼uFd
2
[q(x) = 1] ≥ 1/4.

As a consequence,

Px∼Z [q(x) = 0] ≤ 1− w∗

4
.

Hence

P[q(x1) = · · · = q(xt) = 0] ≤ (1− w∗/4)t ≤ exp(−tw∗/4).

Notice that |RM(d, 2)| = 2(
d
≤2). Using the union bound, we get the claim. □

We are now ready to finish the proof of Theorem 3.3.

71

Proof of Theorem 3.3. Without loss of generality, we assume δ = 0.1, since we

can always boost the probability at a multiplicative cost of log(1/δ). By Claim 3.14, we

know that S = span(U ∪ V) (defined in Step 3 of the algorithm) with probability 0.999.

Henceforth, we assume that S = span(U ∪ V) holds.

By definition, D (defined in Step 5 of the algorithm) is a linear bijection between S

and Fv
2. Hence DU,DV are incomparable if and only if U, V are incomparable. Now

observe that, O′ = O(DU,DV,wU , wV) will give samples from mixture of two subspaces

DU,DV with mixing weights wU , wV ≥ wmin. Notice that span(DU ∪ DV) = Fv
2. We

divide the rest of the analysis into two cases.

Case 1: DU,DV are comparable.

We have DU = Fv
2 or DV = Fv

2. By Claim 3.15, with probability 0.999, there will only

be one polynomial (the zero polynomial) in the set {p ∈ RM(v, 2) : p(z1) = p(z2) = · · · =

p(zr) = 0}. In this case, T = 1. Thus, overall, with probability 0.998, the algorithm

returns the correct answer in this case.

Case 2: DU,DV are incomparable.

In this case, dim(DU) ≤ v − 1 (and dim(DV) ≤ v − 1). Thus, there exists non-zero

vector bU (resp. bV) such that ⟨bU , DU⟩ = {0} (resp. ⟨bV , DV ⟩ = {0}). Now, consider the

non-zero polynomial p(x) = ⟨bU , x⟩⟨bV , x⟩. By definition it satisfies p(DU ∪DV) = {0}.

Thus, in this case, the set {p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0} has at least

two elements. Thus, overall, with probability 0.999, the algorithm returns the correct

answer in this case. □

72

3.4. Learning Mixtures of Incomparable Subspaces

In this section, we give a polynomial time algorithm (Algorithm 4: Incomparable-

Subspace-Recovery) for recovering the subspaces A0, A1 when given access to samples

from a mixture of two subspaces that are incomparable. We prove the following theorem.

Theorem 3.16 (restatement of Theorem 3.1). Suppose A0, A1 are incomparable.

There is an algorithm

Incomparable-Subspace-Recovery with the following guarantee: given oracle ac-

cess to O(A0, A1, w0, w1) (for unknown A0, A1, w0, w1), wmin > 0 (such that wmin ≤

min{w0, w1}) and confidence parameter δ > 0,

(1) Incomparable-Subspace-Recovery runs in sample and time complexity

poly(n/wmin) · log(1/δ).

(2) With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates

the weights w0, w1 up to any desired inverse polynomial accuracy.

The main idea is a new procedure for dimension reduction that reduces the subspace

clustering problem to O(1) dimensions. We will construct a linear map M ∈ F10×n
2 such

that after projecting using M , the subspaces obtained MA0 = {Mx : x ∈ A0} and

MA1 = {Mx : x ∈ A1} are incomparable. The construction of M involves multiple

rounds. In each round, we use Algorithm Test-Comparability (and Theorem 3.3)

as a black box, and find a projection that brings down the dimension by one with high

probability, while maintaining incomparability of the subspaces. Once we recover the

subspaces MA0,MA1 in O(1) dimensions (using a brute force algorithm: enumerate all

possible pairs of subspace, then use Theorem 3.12), we can then recover the original

73

subspaces A0, A1 by considering samples in A0∪A1 which are not mapped to MA0∩MA1

by M . We defer the proof of Theorem 3.1 to the end of section.

Algorithm 4: Incomparable-Subspace-Recovery

Input:
n – ambient dimension.
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: two subspaces.

1 M=Find-A-Good-Projector(n,O(A0, A1, w0, w1), wmin);
2 Use brute force to solve

Incomparable-Subspace-Recovery(10,MO(A0, A1, w0, w1), wmin), let U, V
be the output ;

3 Set t = 100n/wmin;
4 Sample x1, · · · ,xt from O(A0, A1, w0, w1);
5 return span({xi : Mxi /∈ V }), span({xi : Mxi /∈ U});

The following lemma is crucial in establishing Theorem 3.1. The lemma proves that

with high probability, Algorithm Find-A-Good-Projector (Algorithm 5) reduces the

dimension to r = 10 while preserving the incomparability of the subspaces. If M is

randomly chosen from F10×n
2 , then MA1 ⊆ MA0 since MA0 collapses to F10

2 with high

probability. Algorithm Find-A-Good-Projector instead proceeds in multiple rounds,

and reduces the dimension one per round. If the projector M′ is chosen uniformly at

random from F(n−1)×n
2 , with constant probability M′A0,M

′A1 ∈ Fn−1
2 remain incompa-

rable. We can now use Algorithm Test-Comparability (and Theorem 3.3) to boost

the success probability in each round by repeatedly sampling M ′ and rejecting it if the

resulting subspaces are comparable.

Lemma 3.17. Given samples from a mixture of two incomparable subspaces A0, A1 ⊆

Fn
2 with mixing weights w0, w1 ≥ wmin. There exists M ∈ F10×n

2 such that MA0,MA1 are

74

incomparable subspaces. Moreover, there is an algorithm Find-A-Good-Projector

that runs in time 1/wmin · poly(n) and find such a M with probability at least 0.999.

Algorithm 5: Find-A-Good-Projector

Input:
n – ambient dimension
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: a matrix M ∈ F10×n

2 .
1 Set M = In, where In ∈ Fn×n

2 is the identity matrix;
2 for i = n; i > 10; i = i− 1 do

3 Sample T ∈ F(i−1)×i
2 uniformly at random;

4 while Test-Comparability(i,TMO(A0, A1, w0, w1), wmin, 1/n
2) // the

last parameter is the failure probability we want.

5 do

6 Sample T ∈ F(i−1)×i
2 uniformly at random;

7 M = TM ;

8 return M ;

Proof. We now show that Algorithm Find-A-Good-Projector runs in polyno-

mial time and finds a required projector M with high probability. Observe that from

Theorem 3.3, every call of Test-Comparability (in step 4 of Algorithm 5) fails with

probability at most δ = O(1/n2). We will prove that at any iteration i ∈ {n, n−1, . . . , 11},

a randomly chosen matrix T ∈ F(i−1)×i
2 (in step 3) succeeds with constant probability in

preserving the incomparability of the subspaces. This ensures that it will suffice to sample

O(log n) many random T per round before we succeed in that round (and hence O(n log n)

overall).

Fix an iteration i ∈ {n, n−1, . . . , 11}, and let M ∈ Fi×n
2 be the current projector. Let

U := MA0, V := MA1, and assume U, V are incomparable. We show the following claim.

75

Claim: For a random T ∈ F(i−1)×i
2 chosen in step 3,

PT[TU,TV are incomparable] ≥ 9/128.(3.5)

We now prove the claim by considering two cases depending on the rank of U ∪ V i.e.,

the dimension of the span of U ∪ V .

Case 1: rank(U ∪ V) ≤ i− 1.

Let v = rank(U∪V) and b1, · · · , bv be a basis of span(U∪V). By Claim 3.11, Tb1, · · · ,Tbv

can be viewed as being sampled independently from Fi−1
2 . A uniformly random matrix

from F(i−1)×(i−1)
2 is full-rank with probability at least

∏
j≥1(1− 2−j) ≥ 1/4. Hence,

P[Tb1, · · · ,Tbv are linearly independent] ≥ 1/4.

WhenTb1, · · · ,Tbv are linearly independent, TU,TV are incomparable as required. This

establishes (3.5) in Case 1.

Case 2: rank(U ∪ V) = i.

Let b1, . . . , bdim(U∩V) be a basis of U ∩ V . We extend the basis such that

b1, . . . , bdim(U∩V), c1, . . . , cdim(U)−dim(U∩V) is a basis of U , and similarly, we extend the basis

so that b1, . . . , bdim(U∩V), d1, . . . , ddim(V)−dim(U∩V) is a basis of V . Observe that

b1, . . . , bdim(U∩V), c1, . . . , cdim(U)−dim(U∩V), d1, . . . , ddim(V)−dim(U∩V) is a basis of span(U∪V).

Reorder this basis to get a1, . . . , ai such that ai−1 = c1, ai = d1. Let tj denote Taj. By

76

Claim 3.11, t1, · · · , ti are independent and identically distributed. Let E be the event

E =

tj /∈ span(t1, · · · , tj−1) ∀1 ≤ j ≤ i− 3

ti−2 ∈ span(t1, · · · , ti−3)

ti−1 /∈ span(t1, · · · , ti−2)

ti /∈ span(t1, · · · , ti−1)

Then,

PT[E] = (
i−3∏
j=1

(1− 2j−1/2i−1)) · 1/4 · 3/4 · 1/2 ≥ 3/4 · 3/32 = 9/128.

Condition on E . We now show that TU,TV are incomparable as required. We will show

TU ⊈ TV , the other direction is similar. By definition ti−1 = Tai−1 = Tc1 ∈ TU , and

ti−1 /∈ span(t1, t2, · · · , ti−2, ti). However TV ⊆ span(t1, t2, · · · , ti−2, ti), hence ti−1 /∈ TV ,

TU ⊈ TV . This establishes (3.5). Hence the lemma follows. □

The following lemma shows that a few samples drawn uniformly from S \ T suffice to

recover S with high probability. This will allow us to recover A0 and A1 after clustering

the points in MA0 ∪MA1.

Lemma 3.18. Let S be a subspace of Fn
2 and of dimension d. Let T be a proper

subspace of S. Let t ≥ 8n be a integer. x1, · · · ,xt are independently uniformly sampled

from S\T . Then,

P[span(x1, · · · ,xt) = S] ≥ 1− e−t/128.

77

Proof. Let V ⊊ S be a fixed subspace. Then by Claim 3.10, |S\(T ∪ V)| ≥ 2d−2,

which is at least 1/4 of |S|. We have

Px∼uS\T [x /∈ V] ≥ 1/4.

In other words, if span(x1, · · · ,xk) ̸= S, then rank(x1, · · · ,xk+1) = rank(x1, · · ·xk) + 1

will hold with probability at least 1/4. Define the random variables yi = rank(x1, · · · ,xi)−

rank(x1, · · · ,xi−1) for i ∈ {1, 2, . . . , t}. Note that y1, · · · ,yt are not quite independent

(since the probability the rank increases at step i depends on the random choices of

x1, . . . ,xi−1 in previous iterations). But they satisfy the condition of Lemma C.1 with

γ = 1/4, d = dim(S), k = t. The proof is completed after applying Lemma C.1. □

We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, we assume δ = 0.1, since we

can always boost the probability at a multiplicative cost of log(1/δ). By Lemma 3.17, M

satisfies the property that MA0,MA1 are incomparable with high probability (probability

at least 0.999, say). Moreover assuming MA0,MA1 are incomparable, the brute force

algorithm will return them with high probability.

Let U = MA0, V = MA1. We will show that span({xi : Mxi /∈ V }) = A0 with proba-

bility 0.998. Observe that W = {x ∈ A0 : Mx ∈ MA1} is a proper subspace of A0. Hence

if x is drawn uniformly from A0, x will not be in W with probability at least 1/2. By

Chernoff bound, we expect to see at least 20n samples in {xi : Mxi /∈ V } with probability

at least 0.999 and all these samples can be viewed as uniformly drawn from A0\W . By

Lemma 3.18, span({xi : Mxi /∈ MA1}) = A0 with probability 0.998. A similar argument

shows that the algorithm also recovers A1 with high probability. Finally, after recovering

78

A0, A1 it is also easy to estimate the weights w0, w1 to inverse polynomial accuracy (see

Remark 3.5). □

3.5. Mixtures of Two Subspaces with Significant Dimension Difference

In this section, we prove Theorem 3.2 (restated below for convenience of the reader)

which shows that there is a computationally efficient algorithm for learning a mixture of

two subspaces with significantly different dimensions. Note that the following theorem

does not assume that the two subspaces are incomparable.

Theorem 3.19 (restatement of Theorem 3.2). Let wmin ≥ 1/100. Let d0 ≥ d1 and

suppose α := d1/d0 < 1 − log d0√
d0

. There is an algorithm Subspace-Recover-Large-

Diff with the following guarantee: given oracle access to O(A0, A1, w0, w1)(for unknown

A0, A1, w0, w1), wmin > 0 (such that wmin ≤ min{w0, w1}) and confidence parameter

δ > 0,

(1) Subspace-Recover-Large-Diff runs in sample and time complexity

log(1/δ)poly(n) · dO(1)/(1−α)
0 .

(2) With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates

the mixing weights up to any desired inverse polynomial accuracy.

The algorithm Subspace-Recover-Large-Diff is described in Figure 6. Before

proving Theorem 3.2, we will make some simplifying assumptions (with their justifications

given below) followed by some useful notation.

79

Remark 3.20. Without loss of generality, we can assume

(1) n = d0. This is because we can first use Theorem 3.3 to test whether the underly-

ing subspaces are incomparable. If they are incomparable, we can use Theorem 3.1

to recover the subspaces. If not, we can take O(n/wmin) samples from the mix-

ture to get span(A0 ∪ A1) with high probability (see Claim 3.14). We can then

construct a linear bijection, say D, between span(A0 ∪A1) and Fd0
2 . Applying the

map D to every sample from the mixture, we can now assume that n = d0.

(2) The algorithm knows d0, d1. This is because we can enumerate all the possible

values of d0, d1 and run the algorithm Subspace-Recover-Large-Diff to get

a list of candidate hypotheses. We can then use the hypothesis testing algorithm

in Theorem 3.12 to identify the correct one with high probability.

(3) We set δ = 0.1. This is because we can always boost the success probability of our

algorithm at a multiplicative cost of log(1/δ).

(4) d0 is at least a sufficiently large constant (which only depends on wmin). Other-

wise, we can always apply a brute force algorithm to recover the subspaces.

Notation.

(1) We will use ϕℓ(x) ∈ F(
n
≤ℓ)

2 to represent the vector consisting of all the monomials

of degree at most ℓ on x, including the constant term. As an example, when

ℓ = 2 and n = 2, we have ϕℓ(x) = (1, x1, x2, x1x2) – note that because the

underlying field is F2, all the monomials are multilinear. We will use ϕℓ(A) to

denote {ϕℓ(x) : x ∈ A}. ϕℓ(A) is a set of vectors in F(
n
≤ℓ)

2 .

(2) We define t := d0−d1 = (1−α)d0 to denote the difference between the dimensions

of the underlying subspaces A0 and A1.

80

(3) For a sequence of vector x1, x2, · · · , xk, we define x−i := {xj : j ̸= i}.

(4) Let us denote by yi := ϕℓ(xi).

Finally, we note that for any subspace V of dimension d over F2, rank(ϕℓ(V)) =
(

d
≤ℓ

)
.

Algorithm 6: Subspace-Recover-Large-Diff

Input:
d0 – dimension of the larger subspace
α ≤ 1 – ratio of the dimensions of two subspaces
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – minimum of two mixture weights.
Output: two subspaces U, V .

1 Set ℓ = 2 log(100/wmin)
1−α

;

2 Use O(A0, A1, w0, w1) to sample m =
(
d0
≤ℓ

)
vectors x1,x2, · · · ,xm;

3 Let S be the set of all i ∈ [m] such that yi := ϕℓ(xi) can be expressed as linear
combination of {ϕℓ(xj) : j ̸= i};

4 return U = span({xi : i ∈ S}), V = span({xi : xi /∈ U});

We start with the following crucial lemma from Ben-Eliezer et al. [2012] (stated below).

An equivalent version was also proven in [Keevash and Sudakov, 2005, Theorem 1.5].

Lemma 3.21 (Lemma 4, Ben-Eliezer et al. [2012]). Let x1, x2, · · · , xR be R = 2r

distinct points in Fn
2 . Consider the linear space of degree d polynomials restricted to these

points; that is, the space

{(p(x1), · · · , p(xR)) : p ∈ RM(n, d)}.

The linear dimension of this space is at least
(

r
≤d

)
.

As an easy corollary, we have the following claim.

81

Lemma 3.22. Let x1, x2, · · · , xR be distinct points in Fn
2 . If R ≥ 2r, then

rank({ϕℓ(x1), · · · , ϕℓ(xR)}) ≥
(

r

≤ ℓ

)
.

Proof. Without loss of generality, we can assume R = 2r, since having more points

can only increase the rank. Let t = |RM(n, ℓ)|. Say RM(n, ℓ) = {p1, · · · , pt}. Let A ∈ Ft×R
2

be defined as Ai,j = pi(xj). Applying Lemma 3.21 with d = ℓ, we know the row-rank

of A is at least
(

r
≤ℓ

)
. Let B ∈ F(

n
≤ℓ)×R

2 be the matrix whose ith column is ϕℓ(xi). Since

every polynomial is a linear combination of monomials, there exists C ∈ F
t×(n

≤ℓ)
2 such that

A = CB, hence rank(B) ≥ rank(A) ≥
(

r
≤ℓ

)
. □

Proof of Theorem 3.2. Let I0 (resp. I1) be the set of all i such that xi was sampled

from A0 (resp. A1). We now define the events E1, E2, E3 and E4 as follows:

(1) E1: ∀i ∈ I0,yi /∈ span({y−i} ∪ ϕℓ(A1))

(2) E2: |I1| ≥ 10
(
αd0
≤ℓ

)
(3) E3: ∀T ⊆ I1 such that |T | ≥ 0.9|I1|, we have span({xj}j∈T) = A1

(4) E4: span({xj}j∈I0) = A0

Assume E1, E2, E3, E4 holds. Note that whenever E1 holds, it follows that S (defined in line

3 of Subspace-Recover-Large-Diff) is a subset of I1. We now show that A1 can be

recovered from the span of the samples corresponding to S. Now, consider the set {ϕℓ(xi) :

i ∈ I1\S}. By definition, the elements of this set are linearly independent (otherwise, they

will belong in S). As dim(span(ϕℓ(A1))) ≤
(
αd0
≤ℓ

)
, it follows that |{ϕℓ(xi) : i ∈ I1 \ S}| ≤(

αd0
≤ℓ

)
. As i 7→ ϕℓ(xi) is a injection on I1 \ S , it follows that |{i ∈ I1 \ S}| ≤

(
αd0
≤ℓ

)
. Since

E2 holds, |I1 \ S| ≤ 0.1|I1|, hence |S| ≥ 0.9|I1|. Since E3 holds, span ({xj}j∈S) = A1.

82

We now argue that the algorithm also recovers A0. We claim {j ∈ [m] : xj /∈ A1} = I0.

Fix j ∈ I0. Since E1 holds, ϕℓ(xj) = yj /∈ ϕℓ(A1), then xj /∈ A1. Hence I0 ⊆ {j : xj /∈ A1}.

It is not hard to see {j : xj /∈ A1} ⊆ I0. Finally when E4 holds, we have span({xj : xj /∈

A1}) = span({xj : j ∈ I0}) = A0.

Thus, it remains to show that E1, E2, E3 and E4 hold simultaneously with probability

0.99.

Proof of P[E1] ≥ 0.999: First, observe that by definition, ℓ = 2 log(100/wmin)
1−α

. Using the

assumption on d0 and wmin, it follows that

(3.6) ℓ =
2 log(100/wmin)

1− α
= O

(√
d0

log d0

)
; d0 ≥

2ℓ

(1− α)
.

From this, applying the constraints on d0 and ℓ from (3.6), we get

(3.7)
(wmin

100

)1/ℓ
≥ 1 +

1

ℓ
· log

(wmin

100

)
≥ (1 + α)

2
≥ α +

ℓ

d0
.

Now, it is not difficult to see that
(
αd0
≤ℓ

)
≤
(
αd0+ℓ

ℓ

)
– it easily follows from the combinatorial

interpretation of binomial coefficients. Now, using this and (3.7), we get

(3.8)

(
αd0
≤ℓ

)(
d0
≤ℓ

) ≤
(
αd0+ℓ

ℓ

)(
d0
ℓ

) ≤
(
α +

ℓ

d0

)ℓ

≤ wmin

100
.

83

We now have,

P
[
dim(span({y−i} ∪ ϕℓ(A1))) ≤ (1− 0.4wmin)

(
d0
≤ ℓ

)](3.9)

≥P
[
dim(span({y−i} ∪ ϕℓ(A1))) ≤ (1− 0.5wmin)

(
d0
≤ ℓ

)
+

(
αd0
≤ ℓ

)]
using (3.8),

≥P
[
dim(span({y−i})) ≤ (1− 0.5wmin)

(
d0
≤ ℓ

)]
using dim(span(ϕℓ(A1))) =

(
αd0
≤ ℓ

)
,

≥P[|I0| ≤ (1− 0.5wmin)

(
d0
≤ ℓ

)
]

using |I0| ≥ |{y−i}| ≥ dim(span({y−i})),

≥1− e−
wmin

2

24 (d0≤ℓ)

(3.10)

from a standard Chernoff bound.

Let us now define the event Bi as the event that i ∈ I0 and dim(span({y−i} ∪ ϕℓ(A1))) ≤

(1− 0.4wmin)
(
d0
≤ℓ

)
. Let r := ⌈(1− 0.4wmin/ℓ)d0 + ℓ⌉. Using reasoning similar to (3.8), we

have (
r
≤ℓ

)(
d0
≤ℓ

) ≥
(
r
ℓ

)(
d0+ℓ
ℓ

) ≥
(
r − ℓ

d0

)ℓ

≥
(
1− 0.4wmin

ℓ

)ℓ

≥ 1− 0.4wmin.

Thus, it follows that if the event Bi holds, dim(span({y−i} ∪ ϕℓ(A1))) ≤
(

r
≤ℓ

)
. Now, let

us define the set Hi = {x ∈ Fd0
2 : ϕℓ(x) ∈ span({y−i} ∪ ϕℓ(A1))}. By Lemma 3.22, we get

84

that |Hi| ≤ 2r+1. Thus, we now have

P[yi ∈ span({y−i} ∪ ϕℓ(A1))|Bi] =
|Hi|
2d0

≤ 2r+1

2d0
≤ 2−

0.35wmind0
ℓ .(3.11)

Applying the above inequality along with (3.10), we get

P[yi /∈ span({y−i} ∪ ϕℓ(A1))|i ∈ I0] ≥ 1− 2
−0.35wmind0

ℓ − e−
wmin

2

24 (d0≤ℓ) ≥ 1− 2
−0.3wmind0

ℓ .

(3.12)

By taking a union bound, it follows that

P[∀i ∈ I0,yi /∈ span({y−i} ∪ ϕℓ(A1))] ≥ 1−
(

d0
≤ ℓ

)
2

−0.3wmind0
ℓ ≥ 1− 2

−0.2wmind0
ℓ .(3.13)

As we have chosen d0 to be sufficiently large, the right-hand side is at least 0.999 showing

that P[E1] ≥ 0.999.

Proof of P[E2] ≥ 0.999: This follows from a straightforward Chernoff bound on the

sampling process defining I1.

Proof of P[E3] ≥ 0.999: This is a direct application of Claim 3.9.

Proof of P[E4] ≥ 0.999: This also follows from Claim 3.9. □

85

3.6. Reduction from Learning Parity with Noise

In this section, we show how the problem of learning a mixture of two (comparable)

subspaces captures the notorious hard problem of learning parity with noise (LPN).

Given n ∈ N, the (n, ε)-LPN problem is instantiated by an (unknown) parity function

f : Fn
2 → F2 and a noise parameter ε ∈ (0, 1/2). The samples are generated i.i.d. by a

sampling oracle O = O(f, ε) as follows. First, x ∼u Fn
2 is sampled uniformly at random

from Fn
2 . Then b ∈ {0, 1} is sampled such that P[b = 0] = 1 − ε and P[b = 1] = ε. If

b = 0, O outputs (x, f(x)) and if b = 1, outputs (x, 1− f(x)). Given samples generated

i.i.d. by the sampling oracle O(f, ε), the goal is to learn the unknown parity function f .

The following simple proposition reduces LPN to learning mixtures of (comparable)

subspaces in Fn+1
2 , where the subspaces have dimensions n+ 1 and n respectively.

Proposition 3.23. Suppose there exists an algorithm ALG that given samples from

a mixture of two subspaces A0 = Fn+1
2 , A1 ⊆ Fn+1

2 of dimensions n + 1, n respectively,

with mixing weights 2ε, 1 − 2ε, runs in time T = T (n, δ) and solves this problem with

probability 1− δ. Then there is an algorithm that solves (n, ε)-LPN with probability 1− δ

and running time O(T) + poly(n).

Proof. Consider a sample (x,y) ∈ Fn+1
2 (with x ∈ Fn

2) drawn from a sampling oracle

O(f, ε) for the (n, ε)-LPN problem. We can view (x,y) as a sample from a mixture of

two subspace Fn+1
2 , A1 ⊆ Fn+1

2 of dimension n + 1, n (respectively) with mixing weights

2ε, (1 − 2ε) as follows. Let A1 be the subspace of dimension n defined by the linear

equation f(x) + y = 0 over F2. On the one hand, if b = 1, then (x,y) ∈ Fn+1
2 does not

belong to A1; it is drawn from A0 \ A1. On the other hand when b = 0, (x,y) ∈ Fn+1
2

86

lies in the subspace A1. But this could correspond to a sample drawn from A1 or to the

portion of A0 that overlaps with A1 (recall that A1 ⊂ A0 and |A0 ∩ A1| = |A0|/2 in our

case). Hence by setting the mixing weights of the subspaces A0 = Fn+1
2 , A1 to be 2ε, 1−2ε

respectively, we can view a sample (x,y) drawn from the LPN problem as being drawn

from the mixture of subspaces A0, A1.

Our goal is then to recover A0, A1 from i.i.d. samples of the form (x,y) drawn from

the LPN problem. If the algorithm ALG succeeds in finding A1, then this provides a

parity function f (corresponding to the constraint defining A1) that satisfies the LPN

problem. □

The next proposition shows that learning mixtures of two subspaces A0, A1 in Fn+1
2

where A0 = Fn+1
2 and dim(A1) = n is in fact equivalent to the LPN problem.

Proposition 3.24. Suppose there is an algorithm ALG that solves (n, ε)-LPN with

probability 1 − δ and running time T = T (n, δ). Then, there is an algorithm that gives

samples from a mixture of two subspaces Fn+1
2 , A1 ⊆ Fn+1

2 of dimension n + 1, n respec-

tively with mixing weights 2ε, 1− 2ε, runs in time O(nT) + poly(n) and recovers A1 with

probability 1− δ − exp(−n).

Proof. We start with a simple observation. Suppose (*) xi1 + xi2 + · · · + xik = 0 be

the constraint defining subspace A1, and suppose j ∈ {i1, i2, · · · , ik}. Consider the parity

f : F{1,2,...,n+1}\{j}
2 → F2, where f(x) =

∑
ℓ∈{i1,i2,...,ik}\{j}

xℓ.

On one hand, if (x1, . . . ,xn+1) is drawn from A1 (this is with probability 1−2ε), then the

pair (x−j,xj) satisfies the parity f by definition of A1. On the other hand, if (x1, . . . ,xn+1)

87

is drawn from A0 (this is with probability 2ε), it satisfies parity f with probability 1/2.

In total, the parity f is satisfied with probability 1 − 2ε + 1
2
(2ε) = 1 − ε. Hence, a

sample (x1, . . . ,xn+1) from the mixture of subspaces with weights 2ε, 1− ε, (x−j,xj) can

be viewed as a sample of (n, ε)-LPN with unknown parity f .

We do not know {i1, i2, . . . , ik}. However, we can guess and try out j = 1, · · · , j = n+1

and get at most n+1 candidate hypotheses. We can then use the well-known hypothesis

testing result from Proposition B.2 to filter and find the correct subspace A1 with high

probability. □

88

CHAPTER 4

Robust Subspace Recovery in a Smoothed Analysis Setting

4.1. Introduction

Robust subspace recovery is a basic problem in unsupervised learning where we are

given m points x1, . . . , xm ∈ Rn, an α ∈ (0, 1) fraction of which lie on (or close to) a d-

dimensional subspace T . When can we find the subspace T , and hence the “inliers”, that

belong to this subspace? This problem is closely related to designing a robust estimator

for subspace recovery: a β-robust estimator for subspace recovery approximately recovers

the subspace even when a β fraction of the points are corrupted arbitrarily (think of

β = 1 − α). The largest value of β that an estimator tolerates is called the breakdown

point of the estimator. This problem has attracted significant attention in the robust

statistics community Rousseeuw [1984], Rousseeuw and Leroy [2005], Donoho and Huber

[1983], yet many of these estimators are not computationally efficient in high dimensions.

On the other hand, the singular value decomposition is not robust to outliers. Hardt and

Moitra Hardt and Moitra [2013] gave the first algorithm for this problem that is both

computationally efficient and robust. Their algorithm successfully estimates the subspace

T when α > d/n, assuming a certain non-degeneracy condition about both the inliers and

outliers.1 This algorithm is also robust to some small amount of noise in each point i.e.,

the inliers need not lie exactly on the subspace T . They complemented their result with a

1This general position condition holds in a smoothed analysis setting

89

computational hardness in the worst-case (based on the Small Set Expansion hypothesis)

for finding the subspace when α < d/n.

We give a simple algorithm that for any constants ℓ ≥ 1, δ > 0 runs in poly(mnℓ) time

and in a smoothed analysis setting, provably recovers the subspace T with high probability,

when α ≥ (1 + δ)(d/n)ℓ. Note that this is significantly smaller than the bound of (d/n)

from Hardt and Moitra [2013] when ℓ > 1. For instance in the setting when d = (1− η)n

for some constant η > 0 (say η = 1/2), our algorithms recover the subspace when the

fraction of inliers is any constant α > 0 by choosing ℓ = O(log(α)/ log(1− η)), while the

previous result requires that at least α > 1 − η of the points are inliers. On the other

hand, when d/n = n−Ω(1) the algorithm can tolerate any inverse polynomially small α, in

polynomial time. In our smoothed analysis setting, each point is given a small random

perturbation – each outlier is perturbed with a n-variate Gaussian N(0, ρ2)n (think of

ρ = 1/poly(n)), and each inlier is perturbed with a projection of a n-variate Gaussian

N(0, ρ2)n onto the subspace T . Finally, there can be some adversarial noise added to each

point (this adversarial noise can in fact depend on the random perturbations).

Informal Theorem 4.1. For any δ ∈ (0, 1), ℓ ∈ Z+ and ρ > 0. Suppose there are

m = Ω(nℓ + d/(δα)) points x1, . . . , xm ∈ Rn which are randomly ρ-perturbed according to

the smoothed analysis model described above, with an α ≥ (1 + δ)
(
d+ℓ−1

ℓ

)
/
(
n+ℓ−1

ℓ

)
fraction

of the points being inliers, and total adversarial noise ε0 ≤ polyℓ(ρ/m). Then there is

an efficient algorithm that returns a subspace T ′ with ∥sinΘ(T, T ′)∥F ≤ polyℓ(ε0, ρ, 1/m)

with probability at least 1− exp
(
− Ωℓ(δn) + 2 logm

)
− exp(−Ω(d logm)).

90

See Section 4.3 for a formal statement, algorithm, and proof. While the above result

gives smoothed analysis guarantees when α is at least (d/n)ℓ < d/n, the hardness result

of Hardt and Moitra [2013] shows that finding a d-dimensional subspace that contains an

α < d/n fraction of the points is computationally hard assuming the Small Set Expansion

conjecture. Hence our result presents a striking contrast between the intractability result

in the worst-case and a computationally efficient algorithm in a smoothed analysis setting

when α > (d/n)ℓ for some constant ℓ ≥ 1. Further, we remark that the error tolerance of

the algorithm (amount of adversarial error ε0) does not depend on the failure probability.

Techniques and comparisons. The algorithm for robust subspace recovery at a

high level follows the same approach as Hardt and Moitra [Hardt and Moitra, 2013].

Their main insight was that if we sample a set of size slightly less than n from the input,

and if the fraction of inliers is > (1 + δ)d/n, then there is a good probability of obtaining

> d inliers, and thus there exist points that are in the linear span of the others. Further,

since we sampled fewer than n points and the outliers are also in general position, one

can conclude that the only points that are in the linear span of the other points are the

inliers.

Our algorithm for handling smaller α is simple and is also tolerant to an inverse

polynomial amount of adversarial noise in the points. Our first observation is that we can

use a similar idea of looking for linear dependencies, but with tensored vectors! Let us

illustrate in the case ℓ = 2. Suppose that the fraction of inliers is > (1 + δ)
(
d+1
2

)
/
(
n+1
2

)
.

Suppose we take a sample of size slightly less than
(
n+1
2

)
points from the input, and

consider the flattened vectors x⊗ x of these points. As long as we have more than
(
d+1
2

)
inliers, we expect to find linear dependencies among the tensored inlier vectors. However,

91

we need to account for the adversarial error in the points (this error could depend on

the random perturbations as well). For each point, we will look for “bounded” linear

combinations that are close to the given point. Using Theorem 4.6, we can show that

such dependencies cannot involve the outliers. This in turn allows us to recover the

subspace even when α > (d/n)ℓ for any constant ℓ in a smoothed analysis sense.

We remark that the earlier least singular value bounds of Bhaskara et al. [2014a] can be

used to show a weaker guarantee about robust linear independence of the matrix formed

by columns x̃⊗ℓ
i with a cℓ factor loss in the number of columns (for a constant c ≈ e).

This translates to an improvement over Hardt and Moitra [2013] only in the regime when

d < n/c. The tight characterization in Theorem 4.6 is crucial for our algorithm to beat

the d/n threshold of Hardt and Moitra [2013] for any dimension d < n.

4.2. Preliminaries

In this section, we introduce notation and preliminary results that will be used through-

out the rest of the chapter.

Given a vector a ∈ Rn and a ρ (typically a small inverse polynomial in n), a ρ-

perturbation of a is obtained by adding independent Gaussian random variables xi ∼

N(0, ρ2/n) to each coordinate of a. The result of this perturbation is denoted by ã.

We will denote the singular values of a matrix M by σ1(M), σ2(M), . . ., in decreasing

order. We will usually use k or R to represent the number of columns of the matrix. The

maximum and minimum (nonzero) singular values are also sometimes written σmax(M)

and σmin(M).

92

While estimating the minimum singular value of a matrix can be difficult to do directly,

it is closely related to the leave-one-out distance of a matrix, which is often much easier

to calculate.

Definition 4.2. Given a matrix M ∈ Rn×k with columns M1, . . . ,Mk, the leave-one-

out distance of M is

(4.1) ℓ(M) = min
i

dist(Mi, Span{Mj : j ̸= i}).

The leave-one-out distance is closely related to the minimum singular value, up to a

factor polynomial in the number of columns of M Rudelson and Vershynin [2008].

Lemma 4.3. For any matrix M ∈ Rn×k, we have

(4.2)
ℓ(M)√

k
≤ σmin(M) ≤ ℓ(M).

Tensors and multivariate polynomials. An order-ℓ tensor T ∈ Rn×n×···×n has ℓ

modes each of dimension n. Given vectors u, v ∈ Rn we will denote by u⊗ v ∈ Rn×n the

outer product between the vectors u, v, and by u⊗ℓ the outer product of u with itself ℓ

times i.e., u⊗ u⊗ · · · ⊗ u.

We will often identify an ℓth order tensor T (with dimension n in each mode) with the

vector in Rnℓ
obtained by flattening the tensor into a vector. For the sake of convenience,

we will sometimes abuse notation (when the context is clear) and use T to represent both

the tensor and flattened vector interchangeably. Given two ℓth order tensors T1, T2 the

inner product ⟨T1, T2⟩ denotes the inner product of the corresponding flattened vectors in

Rnℓ
.

93

A symmetric tensor T of order ℓ satisfies T (i1, i2, . . . , iℓ) = T (iπ(1), . . . , iπ(ℓ)) for any

i1, . . . , iℓ ∈ [n] and any permutation π of the elements in [ℓ]. It is easy to see that the set

of symmetric tensors is a linear subspace of Rn⊗ℓ
, and has a dimension equal to

(
n+ℓ−1

ℓ

)
.

Given any n-variate degree ℓ homogenous polynomial g ∈ Rn → R, we can associate with

g the unique symmetric tensor T of order ℓ such that g(x) = ⟨T, x⊗ℓ⟩.

4.3. Robust Subspace Recovery

We introduce the following smoothed analysis framework for studying robust subspace

recovery. The following model also tolerates some small amount of error in each point

i.e., inliers need not lie exactly on the subspace, but just close to it.

4.3.1. Input model

In what follows, α, ε0, ρ ∈ (0, 1) are parameters.

(1) An adversary chooses a hidden subspace T of dimension d in Rn, and then chooses

αm points from T and (1− α)m points from Rn. We denote these points inliers

and outliers respectively. Then the adversary mixes them in arbitrary order.

Denote these points a1, a2, . . . , am. Let A = (a1, a2, . . . , am), and Iin, Iout be the

set of indices of inliers and outliers respectively. For convenience, we assume that

all the points have lengths in the range [1/2, 1].2

(2) Each inlier is ρ-perturbed with respect to T . (Formally, this means considering

an orthonormal basis BT for T and adding BTv, where v ∼ N (0, ρ2/d)d.) Each

2If the perturbations in step (2) are done proportional to the norm, this assumption can be made without
loss of generality. (Since the algorithm can scale the lengths of each of the points.)

94

outlier is ρ-perturbed with respect to Rn. Let G denote the perturbations, and

let us write Ã = A+G.

(3) With the constraint ∥E∥F ≤ ε0, the adversary adds noise E ∈ Rn×m to A,

yielding Ã′ = Ã+ E = (ã′1, ã
′
2, · · ·). Note that this adversarial noise can depend

on the random perturbations in step 2.

(4) We are given Ã′.

The goal of the subspace recovery problem is to return a subspace T ′ close to T .

Notation. As introduced above, Ã = A + G denotes the perturbed vectors. ãi de-

notes the i’th column of Ã. We also use the notation AI to denote the sub-matrix of A

corresponding to columns in a set I.

4.3.2. Our result

We show the following theorem about the recoverability of T .

Theorem 4.4. Let δ ∈ (0, 1), ℓ ∈ Z+ and ρ > 0. Suppose we are given m ≥

nℓ + 8d/(δα) points x1, x2, · · · , xm ∈ Rn generated as described above, where the fraction

of inliers α satisfies α ≥ (1 + δ)
(
d+ℓ−1

ℓ

)
/
(
n+ℓ−1

ℓ

)
. Then there exists ε0 = polyℓ(ρ/m) such

that whenever ∥E∥F ≤ ε0, there is an efficient deterministic algorithm that returns a

subspace T ′ that satisfies

(4.3)

∥sinΘ(T, T ′)∥F ≤ ∥E∥F ·polyℓ(m, 1/ρ), w.p. ≥ 1−2m2[exp(−Ωℓ(δn))+exp(−Ω(d logm))].

95

When d/n < 1, the above theorem gives recovery guarantees even when the fraction

of inliers is approximately (d/n)ℓ. This can be significantly smaller than d/n (shown

in Hardt and Moitra [2013]) for any constant ℓ > 1.

Algorithm overview. We start by recalling the approach of Hardt and Moitra [2013].

The main insight here is that if we sample a set of size slightly less than n from the input,

and if the fraction of inliers is > (1 + δ)d/n, then there is a good probability of obtaining

> d inliers, and thus there exist points that are in the linear span of the others. Further,

since we sampled fewer than n points and the outliers are also in general position, one

can conclude that the only points that are in the linear span of the other points are the

inliers! In our algorithm, the key idea is to use the same overall structure, but with

tensored vectors. Let us illustrate in the case ℓ = 2. Suppose that the fraction of inliers

is > (1 + δ)
(
d+1
2

)
/
(
n+1
2

)
. Suppose we take a sample of size slightly less than

(
n+1
2

)
points

from the input, and consider the flattened vectors x ⊗ x of these points. As long as we

have more than
(
d+1
2

)
inliers, we expect to find linear dependencies among the tensored

inlier vectors. Further, using Theorem 4.6 (with some modifications, as we will discuss),

we can show that such dependencies cannot involve the outliers. This allows us to find

sufficiently many inliers, which in turn allows us to recover the subspace T up to a small

error.

Given m points, the algorithm (Algorithm 7) considers several batches of points each

of size b = (1 − δ
3
)
(
n+ℓ−1

ℓ

)
. Suppose for now that m is a multiple of b, and that the m/b

batches form an arbitrary partition of the m points. (See the note in Section 4.3.3 for

handling the general case.) In every batch, the algorithm does the following: for each point

u in the batch, it attempts to represent u⊗ℓ as a “small-coefficient” linear combination

96

(defined formally below) of the tensor products of the other points in the batch. If the

error in this representation is small enough, the point is identified as an inlier.

Definition 4.5 (c-bounded linear combination). Let v1, v2, . . . , vm be a set of vectors.

A vector u is said to be expressible as a c-bounded linear combination of the {vi} if there

exist {αi}mi=1 such that |αi| ≤ c for all i, and u =
∑

i αivi. Further, u is said to be

expressible as a c-bounded combination of the {vi} with error δ if there exist {αi}mi=1 as

above with |αi| ≤ c for all i, and ∥u−
∑

i αivi∥1 ≤ δ.

Notice that in the above definition, the error is measured by ℓ1 norm. In the algorithm,

we will need a subprocedure to check whether a vector is expressible as a 1-bounded

combination of some other vectors with some fixed error. By the choice of ℓ1 norm, this

subprocedure can be formulated as a Linear Programming problem, hence we can solve

it efficiently.

Algorithm 7: Robust subspace recovery

1 Set threshold τ = Ωℓ(ρ
ℓ/nℓ)(which is the threshold from Theorem 4.6). Set

batchsize b = (1− (δ/3))
(
n+ℓ−1

ℓ

)
;

2 Let V1, V2, · · · , Vr be the r ≤ m batches each of size b as defined above;
3 Initialize C = ∅;
4 for i = 1, 2, · · · , r do
5 Let S be the set of all u ∈ Vi such that ã′⊗ℓ

u can be expressed as 1-bounded

combinations of {ã′⊗ℓ
v : v ∈ Vi \ {u}}, with error ≤ τ/2;

6 C = C ∪ S;

7 Return the subspace T ′ corresponding to the top d singular values of Ã′
C
, for any

2d-sized subset C of C;

Proof outline. The analysis involves two key steps. The first is to prove that none

of the outliers are included in S in step 5 of the algorithm. This is where we use 1-

bounded linear combinations. If the coefficients were to be unrestricted, then because the

97

error matrix E is arbitrary, it is possible to have a tensored outlier being expressible as

a linear combination of the other tensored vectors in the batch. The second step is to

prove that we find enough inliers overall. On average, we expect to find at least δ
3

(
d+ℓ−1

ℓ

)
inlier columns in each batch. We “collect” these inliers until we get a total of 2d inliers.

Finally, we prove that these can be used to obtain T up to a small error.

We will use the following result in Bhaskara et al. [2019], which helps analyze the

linear independencies among the tensored vectors.

Theorem 4.6 (Bhaskara et al. [2019], Theorem 4.1). Let δ ∈ (0, 1), and let Vℓ be

space of all symmetric order ℓ tensors in Rn×n×···×n (dimension is D =
(
n+ℓ−1

ℓ

)
), and let

W ⊂ Vℓ be an arbitrary subspace of dimension δD. Then we have for any x ∈ Rn and

x̃ = x+ z where z ∼ N(0, ρ2/n)n

Pz

[
∥ΠW x̃⊗ℓ∥2 ≥

c1(ℓ)ρ
ℓ

nℓ

]
≥ 1− exp

(
− c2(ℓ)δn

)
,

where c1(ℓ), c2(ℓ) are constants that depend only on ℓ.

For convenience, let us write g(n) := Ωℓ(δn) (which is the exponent in the failure prob-

ability from Theorem 4.6). Thus the failure probabilities can be written as exp(−g(n)).

Lemma 4.7. With probability at least 1− exp(−g(n) + 2 logm), none of the outliers

are chosen. I.e., C ∩ Iout = ∅.

Proof. The proof relies crucially on the choice of the batch size. Let us fix some batch

Vj. Note that by the way the points are generated, each point in Vj is ãi
′, for some ai

that is either an inlier or an outlier.

98

Let us first consider only the perturbations (i.e., without the noise addition step).

Recall that we denoted these vectors by ãi. Let us additionally denote by B(j) the matrix

whose columns are ã⊗ℓ
i for all i in the phase j. Consider any i corresponding to an outlier.

Now, because the batch size is only (1− δ
3
)
(
n+ℓ−1

ℓ

)
, we have (using Theorem 4.6) that the

projection of the column B
(j)
i orthogonal to the span of the remaining columns (which we

denote by B
(j)
−i) is large enough, with very high probability. Formally,

(4.4) P[dist(B(j)
i , span(B

(j)
−i)) ≥ τ] ≥ 1− exp(−g(n)).

Indeed, taking a union bound, we have that the inequality dist(B
(j)
i , span(B

(j)
−i)) ≥

τ holds for all outliers i (and their corresponding batch j) with probability ≥ 1 −

m2 exp(−g(n)).

We need to show that moving from the vectors ãi to ã′i maintains the distance. For

this, the following simple observation will be useful.

Observation 4.8. If ai is an outlier, then

P[∥ãi∥ ≥ 1 + 2ρ] ≤ exp(−n/2).

On the other hand if ai is an inlier,

P[∥ãi∥ ≥ 1 + 4ρ
√
logm] ≤ exp(−4d logm).

Both the inequalities are simple consequences of the fact that the vectors ai were unit

length to start with, and are perturbed by N (0, ρ2/n) and N (0, ρ2/d) respectively.

99

Now let us consider the vectors with noise added, ã′i. Note that ∥ãi − ã′i∥ ≤ ε0. Since

∥ai∥ ≤ 1 and since i is an outlier, we have (using Observation 4.8), ∥ã′i∥ ≤ 1 + 2ρ + ε0,

with probability ≥ 1 − exp(−n/2). Thus for the flattened vectors ã⊗ℓ
i , with the same

probability,

∥ã⊗ℓ
i − (ã′i)

⊗ℓ∥ = ∥
(
ã⊗ℓ
i − ã

⊗(ℓ−1)
i ⊗ ã′i

)
+
(
ã
⊗(ℓ−1)
i ⊗ ã′i − ã

⊗(ℓ−2)
i ⊗ ã′⊗2

i

)
+ . . .∥

≤ ℓ(max{∥ãi∥, ∥ã′i∥})ℓ−1ε0

≤ ℓ(1 + 2ρ+ ε0)
ℓε0.(4.5)

Thus, for any 1-bounded linear combination of the b vectors in the batch (which may

contain both inliers and outliers), ã′⊗ℓ
i is at a Euclidean distance ≤ bℓ(1+ε0+4ρ

√
logm)ℓε0

to the corresponding linear combination of the ℓth powers of the vectors in the batch prior

to the addition of noise (i.e., the columns of B
(j)
−i). Thus if bℓ(1+ε0+4ρ

√
logm)ℓε0 < τ/2,

then ã′⊗ℓ
i cannot be expressed as a 1-bounded combination of the other lifted vectors in

the batch with Euclidean error < τ/2, let alone ℓ1 error.

This means that none of the outliers are added to the set S, with probability at least

1−m[exp(−g(n))− exp(−4d logm)]. □

Next, we turn to proving that sufficiently many inliers are added to S. The following

simple lemma will help us show that restricting to 1-bounded combinations does not hurt

us.

Lemma 4.9. Let u1, u2, . . . , ud+c be vectors that all lie in a d-dimensional subspace

of Rn. Then at least c of the ui can be expressed as 1-bounded linear combinations of

{uj}j ̸=i.

100

Proof. As the vectors lie in a d-dimensional subspace, there exists a non-zero linear

combination of the vectors that adds up to zero. Suppose
∑

i αiui = 0. Choose the i

with the largest value of |αi|. This ui can clearly be expressed as a 1-bounded linear

combination of {uj}j ̸=i.

Now, remove the ui from the set of vectors. We are left with d + c − 1 vectors, and

we can use the same argument inductively to show that we can find c − 1 other vectors

with the desired property. This completes the proof. □

The next lemma now proves that the set C at the end of the algorithm is large enough.

Lemma 4.10. For the values of the parameters chosen above, we have that at the end

of the algorithm,

|C| ≥ δ/3

1 + δ/3
αm, with probability at least 1− exp(−4d logm).

Proof. We start with the following corollary to Lemma 4.9. Let us consider the jth

batch.

Observation. Let nj be the number of inliers in the jth batch. If nj ≥
(
d+ℓ−1

ℓ

)
+ k, then

the size of S found in Step 5 of the algorithm is at least k.

Proof of Observation. Define B(j) as in the proof of Lemma 4.7. Now, since

the inliers are all perturbed within the target subspace, we have that the vectors ã⊗ℓ
i

corresponding to the inliers all live in a space of dimension
(
d+ℓ−1

ℓ

)
. Thus by Lemma 4.9,

at least k of the vectors B
(j)
i can be written as 1-bounded linear combinations of the

vectors B
(j)
−i .

101

For inliers i, using the fact that ai are perturbed by N (0, ρ2/d), we have

P[∥ãi∥ ≥ (1 + 4ρ
√

logm)] ≤ exp(−4d logm).

Using (4.5) again, we have that ã′⊗ℓ
i can be expressed as a 1-bounded linear combination

of the other vectors in the batch, with Euclidean error bounded by bℓ · (1+5ρ
√
logm)ℓε0.

We know ℓ1 norm is a
√
nℓ-approximation of ℓ2 norm. By assumption, the ℓ1 norm of the

error is < τ/2, thereby completing the proof of the observation. □

Now, note that we have
∑

j nj ≥ αm, by assumption. This implies that

m/b∑
j=1

max

{
0, nj −

(
d+ ℓ− 1

ℓ

)}
≥ αm− m

b

(
d+ ℓ− 1

ℓ

)
≥ δ/3

1 + δ/3
αm.

The last inequality follows from our choice of α and the batch size b. Thus the size of S

in the end satisfies the desired lower bound. □

Finally, we prove that using any set of 2d inliers, we can obtain a good enough ap-

proximation of the space T , with high probability (over the choice of the perturbations).

The probability will be high enough that we can take a union bound over all 2d-sized

subsets of [m].

Lemma 4.11. Let I ⊆ Iin be any (fixed) set of size 2d. Then if ∥E∥F ≤ poly(ρ/m),

the subspace U corresponding to the top d singular value of Ã′
I will satisfy

∥sinΘ(U, T)∥F ≤ poly(m, 1/ρ) · ∥E∥F

with probability at least 1− e−4d logm.

102

Proof. We start by considering the matrix ÃI (the matrix without addition of error).

This matrix has rank ≤ d (as all the columns lie in the subspace T). The first step is to

argue that σd(ÃI) is large enough. This implies that the space of the top d SVD directions

is precisely T . Then by using Wedin’s theorem Wedin [1972], the top d SVD space U of

Ã′
I satisfies

∥sinΘ(U, T)∥F ≤ 2
√
d∥E∥F

σd(ÃI)− ∥E∥F
.(4.6)

Hence it suffices to show σd(Ã) is at least inverse-polynomial with high probability.

Recall that ÃI = AI+GI , where GI is a random matrix. Without loss of generality, we

can assume that T is spanned by the first d co-ordinate basis; in this case, every non-zero

entry of GI is independently sampled from N (0, ρ
2

d
). We can thus regard AI , GI as being

d × 2d matrices. Recall that leave-one-out distance is a good approximation of the least

singular value, it suffices to show ℓ((AI + GI)
T) is at least inverse-polynomial with high

probability. Let Aj, Gj denote the jth row of AI , GI correspondingly. Consider j ∈ [d],

and fix all other rows except jth. Let W be the subspace of R2d that is orthogonal to

span({Ak +Gk : k ∈ [d], k ̸= j}), and let w1, w2, . . . , wd+1 be an orthonormal basis for W .

Then for any t > 0, if the projection of (Aj+Gj) to W is < t (equivalent to the leave-one-

out distance < t), then for all 1 ≤ i ≤ d+ 1, we must have |⟨wi, Aj +Gj⟩| ≤ t. Using the

anti-concentration of a Gaussian and the orthogonality of the wi, this probability can be

bounded by (t/ρ)d+1. Choosing t = ρ/m4, this can be made < (1/m4)d+1, and thus after

taking a union bound over the m choices of j, we have that the leave-one-out distance is

> ρ/m4 (and thus σd > ρ/m5) with probability ≥ 1− exp(−4d logm) □

We can now complete the proof of the theorem.

103

Proof of Theorem 4.4. Suppose that ∥E∥F ≤ ε0 is small enough. Now by Lemma 4.7,

we have that C ⊆ Iin with probability at least 1 − exp(−g(n) + logm. By Lemma 4.10

and our assumption that m is at least Ω(d/(δα)), we know |C| ≥ 2d with probability

1 − e−4d logm. Finally, by Lemma 4.11 and a union bound over all 2d sized subsets of

[m], we have that with probability at least 1 − exp(−Ω(d logm)), for any subset of in-

liers with size 2d, the subspace T ′ corresponding to the top-d singular value will satisfy

∥sinΘ(T, T ′)∥F ≤ ∥E∥F/poly(m). □

4.3.3. Batches when m is not a multiple of b

the case of m not being a multiple of b needs some care because we cannot simply ignore

say the last few points (most of the inliers may be in that portion). But we can handle

it as follows: let m′ be the largest multiple of b that is < m. Clearly m′ > m/2. Now for

1 ≤ j ≤ n, define Dj = {xj, xj+1, . . . , xj+m′−1} (with the understanding that xn+t = xt).

This is a set ofm′ points for every choice of j. Each Dj is a possible input to the algorithm,

and it has at least m′ > m/2 points, and additionally the property that b|m′.

At least one of the Dj has ≥ α fraction of its points being inliers (by averaging). Thus

the procedure above (and the guarantees) can be applied to recover the space. To ensure

that no outlier is chosen in step 5 of the algorithm (Lemma 4.7), we take an additional

union bound to ensure that Lemma 4.7 holds for all Dj.

104

References

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Improved guarantees for agnostic learning

of disjunctions. In Adam Tauman Kalai and Mehryar Mohri, editors, COLT, pages

359–367. Omnipress, 2010. ISBN 978-0-9822529-2-5. URL http://dblp.uni-trier.

de/db/conf/colt/colt2010.html#AwasthiBS10.

Pranjal Awasthi, Alex Tang, and Aravindan Vijayaraghavan. Efficient algorithms for

learning depth-2 neural networks with general relu activations. ArXiv 2107.10209,

2021.

Ainesh Bakshi and Pravesh Kothari. List-decodable subspace recovery via sum-of-squares.

ArXiv, abs/2002.05139, 2020.

Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on,

pages 103–112. IEEE, 2010.

Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are

hard to approximate. computational complexity, 21(1):63–81, 2012.

Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan.

Smoothed analysis of tensor decompositions. In Proceedings of the 46th Symposium

on Theory of Computing (STOC). ACM, 2014a.

Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of ten-

sor decompositions with applications to polynomial identifiability. Proceedings of the

http://dblp.uni-trier.de/db/conf/colt/colt2010.html#AwasthiBS10
http://dblp.uni-trier.de/db/conf/colt/colt2010.html#AwasthiBS10

105

Conference on Learning Theory (COLT)., 2014b.

Aditya Bhaskara, Aidao Chen, Aidan Perreault, and Aravindan Vijayaraghavan.

Smoothed analysis in unsupervised learning via decoupling. In Proceedings of the 60th

Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 2019.

Christopher M Bishop. Latent variable models. In Learning in graphical models, pages

371–403. Springer, 1998.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity

problem, and the statistical query model. J. ACM, 50(4):506–519, July 2003. ISSN

0004-5411. doi: 10.1145/792538.792543. URL http://doi.acm.org/10.1145/792538.

792543.

Clément L Canonne, Anindya De, and Rocco A Servedio. Learning from satisfying as-

signments under continuous distributions. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 82–101. SIAM, 2020.

Arun Tejasvi Chaganty and Percy Liang. Spectral experts for estimating mixtures of

linear regressions. In International Conference on Machine Learning, pages 1040–1048.

PMLR, 2013.

Aidao Chen, Anindya De, and Aravindan Vijayaraghavan. Learning a mixture of two

subspaces over finite fields. In Algorithmic Learning Theory, pages 481–504. PMLR,

2021.

Aidao Chen, Anindya De, and Aravindan Vijayaraghavan. Algorithms for learning a mix-

ture of linear classifiers. In International Conference on Algorithmic Learning Theory,

pages 205–226. PMLR, 2022.

http://doi.acm.org/10.1145/792538.792543
http://doi.acm.org/10.1145/792538.792543

106

Sitan Chen and Ankur Moitra. Beyond the low-degree algorithm: Mixtures of subcubes

and their applications. In Proceedings of the 51st Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2019, page 869–880, New York, NY, USA, 2019. Associ-

ation for Computing Machinery. ISBN 9781450367059. doi: 10.1145/3313276.3316375.

URL https://doi.org/10.1145/3313276.3316375.

Sitan Chen, Jerry Li, and Zhao Song. Learning mixtures of linear regressions in subex-

ponential time via fourier moments. In Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing, pages 587–600, 2020.

Anindya De, Ilias Diakonikolas, and Rocco A Servedio. Learning from satisfying assign-

ments. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete

algorithms, pages 478–497. SIAM, 2014.

François Denis, Rémi Gilleron, and Fabien Letouzey. Learning from positive and unlabeled

examples. Theoretical Computer Science, 348(1):70–83, 2005.

Ilias Diakonikolas and Daniel M Kane. Small covers for near-zero sets of polynomials and

learning latent variable models. In 2020 IEEE 61st Annual Symposium on Foundations

of Computer Science (FOCS), pages 184–195. IEEE, 2020.

David L Donoho and Peter J Huber. The notion of breakdown point. A festschrift for

Erich L. Lehmann, 157184, 1983.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and

applications. IEEE Trans. Pattern Anal. Mach. Intell., 35(11):2765–2781, 2013. doi:

10.1109/TPAMI.2013.57. URL http://dx.doi.org/10.1109/TPAMI.2013.57.

https://doi.org/10.1145/3313276.3316375
http://dx.doi.org/10.1109/TPAMI.2013.57

107

Matthias Ernst, Maciej Lískiewicz, and Rüdiger Reischuk. Algorithmic learning for

steganography: proper learning of k-term dnf formulas from positive samples. In Inter-

national Symposium on Algorithms and Computation, pages 151–162. Springer, 2015.

Jon Feldman, Rocco A. Servedio, and Ryan O’Donnell. PAC learning axis-aligned mix-

tures of Gaussians with no separation assumption. In Proceedings of the 19th an-

nual conference on Learning Theory, COLT’06, pages 20–34, Berlin, Heidelberg, 2006.

Springer-Verlag. ISBN 3-540-35294-5, 978-3-540-35294-5. doi: 10.1007/11776420 5.

URL http://dx.doi.org/10.1007/11776420_5.

Paulo JSG Ferreira, Bruno Jesus, Jose Vieira, and Armando J Pinho. The rank of random

binary matrices and distributed storage applications. IEEE communications letters, 17

(1):151–154, 2012.

Venkata Gandikota, Arya Mazumdar, and Soumyabrata Pal. Recovery of sparse linear

classifiers from mixture of responses. In Advances in Neural Information Processing

Systems, volume 33, pages 14688–14698, 2020.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with

landscape design. In International Conference on Learning Representations, 2018. URL

https://openreview.net/forum?id=BkwHObbRZ.

Navin Goyal, Santosh Vempala, and Ying Xiao. Fourier PCA and robust tensor decom-

position. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,

May 31 - June 03, 2014, pages 584–593, 2014. doi: 10.1145/2591796.2591875. URL

http://doi.acm.org/10.1145/2591796.2591875.

Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace recovery.

In Conference on Learning Theory, pages 354–375, 2013.

http://dx.doi.org/10.1007/11776420_5
https://openreview.net/forum?id=BkwHObbRZ
http://doi.acm.org/10.1145/2591796.2591875

108

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive

mixtures of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.

1991.3.1.79.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-

convexity: Guaranteed training of neural networks using tensor methods. arXiv preprint

arXiv:1506.08473, 2015.

Majid Janzamin, Rong Ge, Jean Kossaifi, and Animashree Anandkumar. Spectral learning

on matrices and tensors. Foundations and Trends in Machine Learning, 12, 11 2019.

doi: 10.1561/2200000057.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM

algorithm. Neural computation, 6(2):181–214, 1994.

Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures

of two Gaussians. In Proceedings of the 42nd ACM symposium on Theory of computing,

pages 553–562. ACM, 2010.

Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections and

the minimum rank ofinclusion matrices. SIAM Journal on Discrete Mathematics, 18

(4):713–727, 2005.

Jian Li, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. Learning arbitrary

statistical mixtures of discrete distributions. In Proceedings of the Forty-Seventh Annual

ACM Symposium on Theory of Computing, STOC ’15, page 743–752, New York, NY,

USA, 2015. Association for Computing Machinery. ISBN 9781450335362. doi: 10.1145/

2746539.2746584. URL https://doi.org/10.1145/2746539.2746584.

https://doi.org/10.1145/2746539.2746584

109

A. Liu and A. Moitra. Efficiently learning mixtures of mallows models. In 2018 IEEE

59th Annual Symposium on Foundations of Computer Science (FOCS), pages 627–638,

2018.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures

of Gaussians. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE

Symposium on, pages 93–102. IEEE, 2010.

Dohyung Park, Constantine Caramanis, and Sujay Sanghavi. Greedy subspace clustering.

In Neural Information Processing Systems, December 2014.

Keith Y Patarroyo. A digression on hermite polynomials. arXiv preprint

arXiv:1901.01648, 2019.

Krzysztof Pietrzak. Cryptography from learning parity with noise. In Proceedings of the

38th International Conference on Current Trends in Theory and Practice of Computer

Science, SOFSEM’12, pages 99–114, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN

978-3-642-27659-0. doi: 10.1007/978-3-642-27660-6 9. URL http://dx.doi.org/10.

1007/978-3-642-27660-6_9.

Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. Learning mixtures of arbi-

trary distributions over large discrete domains. In Proceedings of the 5th conference on

Innovations in theoretical computer science, pages 207–224, 2014.

Prasad Raghavendra and Morris Yau. List decodable subspace recovery. volume 125 of

Proceedings of Machine Learning Research, pages 3206–3226. PMLR, 09–12 Jul 2020.

URL http://proceedings.mlr.press/v125/raghavendra20a.html.

Peter J Rousseeuw. Least median of squares regression. Journal of the American statistical

association, 79(388):871–880, 1984.

http://dx.doi.org/10.1007/978-3-642-27660-6_9
http://dx.doi.org/10.1007/978-3-642-27660-6_9
http://proceedings.mlr.press/v125/raghavendra20a.html

110

Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection, volume

589. John wiley & sons, 2005.

Mark Rudelson and Roman Vershynin. The littlewood–offord problem and invertibility of

random matrices. Advances in Mathematics, 218(2):600 – 633, 2008. ISSN 0001-8708.

doi: https://doi.org/10.1016/j.aim.2008.01.010. URL http://www.sciencedirect.

com/science/article/pii/S0001870808000224.

Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel J. Candès. Robust subspace

clustering. Ann. Statist., 42(2):669–699, 04 2014. doi: 10.1214/13-AOS1199. URL

http://dx.doi.org/10.1214/13-AOS1199.

Yuekai Sun, Stratis Ioannidis, and Andrea Montanari. Learning mixtures of linear classi-

fiers. In International Conference on Machine Learning, pages 721–729. PMLR, 2014.

René Esteban Vidal. Generalized principal component analysis (gpca): an algebraic geo-

metric approach to subspace clustering and motion segmentation, 2003.

Kert Viele and Barbara Tong. Modeling with mixtures of linear regressions. Statistics

and Computing, 12(4):315–330, 2002.

Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition.

BIT Numerical Mathematics, 12(1):99–111, 1972.

http://www.sciencedirect.com/science/article/pii/S0001870808000224
http://www.sciencedirect.com/science/article/pii/S0001870808000224
http://dx.doi.org/10.1214/13-AOS1199

111

APPENDIX A

Boost the Success Probability

The following claim is well-known. We include it here for the sake of completeness.

Claim A.1. Let X be a metric space with metric d. There is a fixed hidden element

x∗ ∈ X. ε > 0. Suppose there is a randomized algorithm ALG whose output x satisfies

P[d(x, x∗) ≤ ε] ≥ 0.9.

Then, there is an algorithm Success-Prob-Booster with the following guarantee:

given access to d, independent outputs from the algorithm ALG and a confidence pa-

rameter δ,

(1) With probability 1− δ, the algorithm returns a estimate x̂ such that

d(x̂, x∗) ≤ 3ε.

(2) The algorithm acquire O(log(1/δ)) independent outputs from the algorithm ALG.

(3) The algorithm makes O(log2(1/δ)) calls to d.

(4) The algorithm runs in time complexity O(log2(1/δ)).

Proof of Claim A.1. The algorithm is described in Algorithm 8.

112

Algorithm 8: Success-Prob-Booster

Input:
δ – failure probability
Output:
x̂ – estimate of x∗

1 Set t = 1000 log(1/δ);
2 Acquire t independent outputs x1, . . . ,xt from the algorithm ALG;
3 Use BFPRT algorithm to select the (0.3t2)th smallest element τ among

{d(xi,xj) : 1 ≤ i < j ≤ t};
4 Construct undirected graph G = (V,E) where V = [t] and

(i, j) ∈ E ⇐⇒ d(xi,xj) ≤ τ ;
5 Find k ∈ [t] such that the degree of vertex k is the highest in G;
6 return x̂ = xk;

Let E be the event |{i ∈ [t] : d(xi, x
∗) ≤ ε}| ≥ 0.8t. Use standard Chernoff bound and

the fact t = 1000 log(1/δ), we have

P[E] ≥ 1− δ.

Condition on E . We now show that xk (in the last line of the algorithm) satisfies

d(xk, x
∗) ≤ 3ε.

First we claim τ ≤ 2ε. Since E holds, at least
(
0.8t
2

)
pairs of vertices are 2ε-close to

each other. Since
(
0.8t
2

)
≥ 0.3t2, we know that τ ≤ 2ε.

By the definition of τ , we know that |E| ≥ 0.3t2. Then the degree of the vertex k is

at least 0.6t. Since |{i ∈ [t] : d(xi, x
∗) ≤ ε}| ≥ 0.8t holds, there exist j ∈ [t] such that

(1) (k, j) ∈ E.

(2) d(xj, x
∗) ≤ ε.

Then d(xk, x
∗) ≤ d(xk,xj) + d(xj, x

∗) ≤ τ + ε ≤ 3ε. □

113

114

APPENDIX B

Hypothesis Test

We will prove the following theorem.

Theorem B.1 (restatement of Theorem 3.12). Let D be a distribution of a mixture of

two incomparable subspaces A,B ⊆ Fn
2 with mixing weights wA, wB ≥ w0. Let {Aj, Bj}Nj=1

be a collection of N sets of hypothesis with the property that there exists i such that

{Ai, Bi} = {A,B}. There is an algorithm Choose-The-Right-Hypothesis which is

given a confidence parameter δ, w0, {Aj, Bj}Nj=1 and a sampler for D. Every subspace of

{Aj, Bj}Nj=1 will be represented by a basis of that subspace, and the algorithm will have

access to the basis. This algorithm has the following behavior,

(1) It runs in poly(N, 1/w0) log(1/δ) time.

(2) With the probability 1− δ outputs the index i such that {Ai, Bi} = {A,B}.

We defer the proof to the end of this section.

In order to prove Theorem 3.12, we need a fundamental tool from statistics, namely

“hypothesis testing for distributions”. There are many equivalent forms of this algorithm

— we use the following (convenient) version from De et al. [2014].

Proposition B.2 (Simplified [De et al., 2014, Proposition 6]). Let D be a distribution

over W and Dε = {Dj}Nj=1 be a collection of N distribution over W with the property that

there exists i ∈ [N] such that dTV (D,Di) ≤ ε. There is an algorithm TD which is given an

115

accuracy parameter ε, a confidence parameter δ, and is provided with access to (i) samplers

for D and Dk, for all k ∈ [N] (ii) an evaluation oracle EV ALDk
, for all k ∈ [N], which,

on input w ∈ W , output the value Dk(w). This algorithm has the following behavior: It

makes m = O((1/ε2)(logN + log(1/δ))) draws from D and each Dk, k ∈ [N], and O(m)

calls to each oracle EV ALDk
, k ∈ [N], performs O(mN2) arithmetic operations, and with

probability 1− δ outputs an index i∗ ∈ [N] that satisfies dTV (D,Di∗) ≤ 6ε.

Theorem B.3. D(A,B,wA, 1−wA) is defined as the distribution induced by a mixture

of two incomparable subspaces A,B ⊆ Fn
2 of dimension at most d with mixing weights

wA, 1− wA.

Lemma B.4. Let A,B,C,D be 4 subspaces of Fn
2 . Suppose {A,B} ≠ {C,D}. Let

D1 = D(A,B,wA, 1−wA),D2 = D(C,D,wC , 1−wC), w
∗ = min(wA, 1−wA, wC , 1−wC).

Then dTV (D1,D2) ≥ w∗/8.

Proof. Without loss of generality, assume A has the largest dimension among all 4

subspaces. We divide the rest of the analysis into a few cases.

Case 1 : A ̸= C and A ̸= D.

A = C or A = D. Assume A=C.1

Case 2 : A = B or A = D.

A ̸= B and A ̸= D.

Case 3 : A,B are incomparable.

Case 4 : A,D are incomparable.

Case 5 : B ⊊ A and D ⊊ A.

116

Case 1:

In this case, A∩C and A∩D are two proper subspaces of A. By Claim 3.10, |A\(C∪D)| ≥

|A|/4, dTV (D1,D2) ≥ w∗/4.

Case 2:

Without loss of generality, assume A = B. We have dim(A) ≥ dim(D) andD ̸= A. Hence

A ∩D is a proper subspace of A. |(D1 −D2)(A\D)| = (1− wC)|A\D|/|A| ≥ w∗ · 1/2.

Case 3:

If B ⊆ D, we have B ⊊ D. Since A,B are incomparable, A,D are incomparable.

|(D1 − D2)(D\(A ∪ B)| ≥ w∗/4. If B ⊈ D, B ∩ D is a proper subspace of B, |(D1 −

D2)(B\(A ∪D)| ≥ w∗/4.

Case 4: similar to Case 3.

Case 5:

If |wA − wC | ≥ w∗/2, then |(D1 − D2)(A\(B ∪ D))| = |wA − wC | · |A\(B ∪ D))|/|A| ≥

w∗/2 · 1/4. If |wA − wC | ≤ w∗/2, without loss of generality, assume dim(B) ≥ dim(D).

Since B ̸= D, B ∩ D is a proper subspace of B. |(D1 − D2)(B\D)| = |(wA − wC) ·

|B\D|/|A| + (1 − wA)|B\D|/|B|| ≥ (1 − wA)|B\D|/|B| − |(wA − wC) · |B\D|/|A|| ≥

w∗/2− w∗/2 · 1/2 = w∗/4. □

Proof of Theorem 3.12. Set ε = w0/100,M = ⌈1/ε⌉, γ = (1− w0)/M . Let Dε =

{D(Aj, Bj, w0 + k ∗ γ, 1− w0 − k ∗ γ}j∈[N],k∈[M]∪{0}. It is not hard to see that there exist

D∗ ∈ Dε such that dTV (D
∗,D) ≤ ε. By Proposition B.2, we can find D′ ∈ Dε such

that dTV (D
′,D) ≤ 6ε with probability 1 − δ. Say D′ = D(A′, B′, w′, 1 − w′). We claim

1This is without loss of generality.

117

{A′, B′} = {A,B}. For a contradiction, suppose it is not true. Then by Lemma B.4,

dTV (D
′,D) ≥ w0/8 > 6ε, we derive a contradiction. □

118

APPENDIX C

Generalized Chernoff Bound

We will prove a variant of Chernoff bound here.

Lemma C.1. Let γ ∈ (0, 1), d, k ∈ N. Let x1,x2, · · · ,xk be a sequence of random

variables such that for all i ∈ [k]

P[(xi = 1) ∨ (x1 + x2 + · · ·+ xi−1 ≥ d)|x1, · · · ,xi−1] ≥ γ.

Assume k ≥ 2d/γ. Then

P[x1 + · · ·+ xk ≥ d] ≥ 1− exp
(
−kγ2/8

)
.

Proof. We will use the coupling technique. Define

yi =

1 if x1 + · · ·+ xi−1 ≥ d.

xi otherwise.

Then

(1) x1 + · · ·+ xk ≥ d ⇐⇒ y1 + · · ·+ yk ≥ d.

(2) For all i ∈ [k],P[yi = 1|y1, · · · ,yi−1] ≥ γ.

119

Define a submartingale Z0, · · · ,Zk by Z0 = 0 and Zj =
∑

1≤l≤j yl − jγ. Then,

P[x1 + · · ·+ xk ≥ d]

= P[y1 + · · ·+ yk ≥ d]

= 1− P[y1 + · · ·+ yk ≤ d− 1]

≥ 1− P[Zk − Z0 ≤ d− 1− kγ]

≥ 1− exp

(
−(kγ − (d− 1))2

2k

)
by Azuma–Hoeffding inequality

≥ 1− exp
(
−kγ2/8

)
. by kγ ≥ 2d

□

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	Chapter 1. Introduction
	1.1. Mixture of Linear Classifiers
	1.2. Mixture of Two Subspaces over F2
	1.3. Robust Subspace Recovery
	1.4. Organization of the Thesis
	1.5. Bibliographic Notes

	Chapter 2. Learning a Mixture of Linear Classifiers
	2.1. Introduction
	2.2. Preliminaries and Notation
	2.3. Extracting the Low-rank Tensor
	2.4. Estimation Algorithm for the Parameters of the Mixture of Linear Classifiers

	Chapter 3. Learning a Mixture of Two Subspaces over F2
	3.1. Introduction
	3.2. Preliminaries
	3.3. Testing Comparability of the Subspaces
	3.4. Learning Mixtures of Incomparable Subspaces
	3.5. Mixtures of Two Subspaces with Significant Dimension Difference
	3.6. Reduction from Learning Parity with Noise

	Chapter 4. Robust Subspace Recovery in a Smoothed Analysis Setting
	4.1. Introduction
	4.2. Preliminaries
	4.3. Robust Subspace Recovery

	References
	Appendix A. Boost the Success Probability
	Appendix B. Hypothesis Test
	Appendix C. Generalized Chernoff Bound

