Chlorinated solvent contamination of aquifers is a recalcitrant problem that has challenged environmental engineering professionals, regulators, and site managers for decades. When solvents are introduced to the subsurface, whether through accidental spills or leaking containment facilities, they create a persistent contaminant source to flowing groundwater, posing a long term health risk to downstream receptors. This presentation provides an overview of interdisciplinary research designed to improve our ability to predict the migration and fate of DNAPLs in natural subsurface formations and to develop improved methodologies for site characterization and management. Numerical simulations and experimental observations are used to illustrate advances in our understanding of the hydrologic and abiotic and biotic transformation processes influencing DNAPL transport and persistence.

Linda M. Abriola is Dean of the School of Engineering at Tufts University. She recently served as an elected member of the NAE Governing Council and as a member of the NSF Engineering Directorate Advisory Committee. She currently serves on the National Academies Committee on Science, Engineering, and Public Policy and the NRC Committee for the Division on Engineering and Physical Sciences. Dr. Abriola received her Ph.D. and Master’s degrees from Princeton University and a Bachelor’s degree from Drexel University, all in Civil Engineering.

Thursday, May 8, 2014
3:00 – 4:00 p.m.
Ford Building, ITW Lecture Room