Course:	CIV_ENV 201, Earth: A Habitable Planet			
Credits:	1 Unit credit; contact hours: 160 min lecture, 50 min discussion/activity			
Instructor:	Thea Wilson			
Text:	The Earth System, 2009, 3 rd Edition by L.R. Kump, J.F. Kasting, R.G. Crane			
Other Mat'l:	l: Consider a Spherical Cow: A Course in Environmental Problem Solving,			
	1988 by John Harte			
	Readings from the scientific literature			
Description:	This course presents a broad description of Earth system science (i.e. the			
_	interaction between the atmosphere, hydrosphere, biosphere, and geosphere)			
	focused on the physical, chemical, and biological processes that have made Earth			
	habitable. The coevolution of Earth and life will be explored, examining how			
	Earth system components respond to perturbations and how these relate to times			
	of global change.			
Prerequisite:	CHEM 103 or CHEM 172			
Required?:	Required			
1	1			
Goals:	1) Describe the bio-geo-physico-chemical processes that maintain the Earth in a			
	homeostatic and dynamic state			
	2) Apply a scientific approach to the investigation of events in daily life			
	3) Analyze a specific environmental situation within a larger context			
	4) Assess how current and future human activities may affect the Earth system			

- 5) Discover and examine the scientific peer-reviewed literature
- a) An ability to apply knowledge of mathematics, science, and engineering **Outcomes:**
 - g) An ability to communicate effectively

h) The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

- i) A recognition of the need for, and an ability to engage in life-long learning
- j) A knowledge of contemporary issues

Relation of "course specific goals" to programmatic student learning outcome through Course Assessment Table (CAT), which feeds into Program Assessment Table (PAT)

Course				Proposed
Goals	Outcomes	Performance Indicator	Assessment	Action
2	а	HW1-2, P1	73/100	
3	а	HW4, P4	77/100	
5	g	HW3, P1	96/80	
1	g	Q5, writing mechanics	63/80	
1	h	Q5, scientific content	63/80	
4	j	HW3, P2	92/77	

CHU DAU AAI 11 11 **D**1 TT 1 .

Wk Date Topic Reading Quiz/Due 29-March Introduction, Global Change Ch. 1 1 30-March Science Librarian: How to search the literature HW1 31-March Daisyworld: Systems Approach to Earth Science Ch. 2 Global Energy Balance (Earth Climate) 2 5-April Ch. 3 Q1 6-April Daisyworld Simulations 7-April Atmospheric Composition and Structure Ch. 3 3 Atmospheric Circulation Q2 12-April Ch. 4 13-April HW1 Drifter Experiment Preparation 14-April Ocean Circulation: Winds and Surface Currents Ch. 5, HW2 4 19-April Ocean Circulation: Deep Ocean Ch. 5 Q3 20-April Lake Michigan Drifter Experiment 21-April The Cryosphere Ch. 6 5 26-April Solid Earth Circulation (Plate Tectonics) Ch. 7 Q4 27-April Stable Isotope Geochemistry Laboratory Tour HW2 28-April Plate Tectonics Continued HW3 Ch. 8 6 3-May The Carbon Cycle Q5 4-May Components of a scientific paper The Carbon Cycle Continued, Nitrogen and FP Topic (5/6) 5-May Ch. 8 Phosphorus Cycles The Biosphere, Outside Excursion (Soil and 7 10-May Ch. 9 Q6 Biota Observations) Photosynthesis Experiment HW3 11-May 12-May Photosynthesis Experiment Data Analysis, Ch. 10, HW4 Carbon Cycle Workshop, Geologic Time Scale The Origin of Earth and Life Ch. 10 Q7, Draft FP (5/16) 8 17-May 18-May **Respiration Experiment** 19-May UFORE Data Collection 9 UFORE Data Collection 24-May Effect of Life on the Atmosphere 25-May Ch. 11 26-May Rise of Oxygen and Oxygen Regulation Q8, HW4 Final Project Presentations (Recent and Future Final Project (5/30) 10 31-May Ch. 15/16 Climate, Global Warming) Final Project Presentations Continued 1-June 2-June Final Project Presentations Continued

Topics Covered:

Grade Distributi	on:	Contact Information:		
Homework	40%	Thea Wilson		
Quizzes	40%	tmwilson@northwestern.edu		
Final Project	15%	Tech A221, x7-3664		
Participation	5%			