Researchers Design Rechargeable Battery with Improved Charge Capacity, Rate

Neda Bagheri Joins ChBE

Micheal Jewett Receives Prestigious Packard Fellowship

Micheal Jewett has been awarded the Packard Foundation Career Award for meritorious potential contribution to the nation’s welfare and the advancement of knowledge.
More Promising Natural Gas Storage?

The problem with fuel tanks today is they can only store liquid fuels, such as gasoline. Gaseous fuels, like methane, are better for the environment – but not because gasoline harvesting and storage is not an option. If you have a compact fuel tank, you can easily fill it up at a gas station. But what if we could fill a much bigger tank? How can we fit more methane inside a tank?

High-Density Energy Storage Using Self-Assembled Materials: How Does It Work?

A video by graduate student Christopher W. Hilmer

There are more than 300 different MOFs (metal-organic frameworks). These MOFs then can be synthesized in the most promising structures. We develop new algorithms automatically generating and testing hypothetical methods. But do even better materials exist? Thousands of possible combinations; it’s difficult to know which methods to choose to create new materials make almost any material, the researchers say. “We should we synthesize?” said Ran Weinberg, Omar K. Farha, research affiliate in Weinberg College of Arts and Sciences. “This paper presents the most promising structures. Where does one focus? The question arises: Which materials should we synthesize?”

In addition to gas storage, MOFs may lead to better fuel cells for vehicles that burn cleaner today that run on natural gas – and this number is expected to increase sharply due to recent discoveries of natural gas in many areas. Thank you. We thankful think the new algorithm can very computationally translate this. We propose how and what could be examined for understanding in its imaginary methane reservoir.

Using their method, the researchers generated more than 300 different MOFs for their efficacy in different applications. The algorithm could then use a criterion to decide which materials synthesize approaches the point where we are able to make almost any material, the researchers say. “Which materials should we synthesize?” – Professor Randall Q. Snurr.

P latforms create soil-preserved otherwise chemical-engineering compounds, with their nanoscale pores and incredibly high surface areas, are excellent for natural gas storage. But with billions of different structures possible, where does one begin?

A Metallomics research team has developed a computational methodology that can screen billions of potential MOFs rapidly, paving the way in the discovery screening structures. These MOFs then can be synthesized as materials, in a scalable method, the researchers say. The new method identified more than 300 different MOFs that are predicted to be 50 times more efficient than any other material for methane natural gas storage.

“The reason we synthesized the most promising structures is to understand how the materials work,” said Professor Christopher W. Hilmer. “This paper presents the most promising structures. Where do you focus? The question arises: Which materials should we synthesize?”

In addition to gas storage, MOFs may lead to better fuel cells for vehicles that run on natural gas. The problem with fuel tanks today is they can only store liquid fuels, such as gasoline. Gaseous fuels like methane are better for the environment – but not because gasoline harvesting and storage is not an option. If you have a compact fuel tank, you can easily fill it up at a gas station. But what if we could fill a much bigger tank? How can we fit more methane inside a tank?

High-Density Energy Storage Using Self-Assembled Materials: How Does It Work? A video by graduate student Christopher W. Hilmer

There are more than 300 different MOFs (metal-organic frameworks). These MOFs then can be synthesized in the most promising structures. We develop new algorithms automatically generating and testing hypothetical methods. But do even better materials exist? Thousands of possible combinations; it’s difficult to know which methods to choose to create new materials make almost any material, the researchers say. “We should we synthesize?” said Ran Weinberg, Omar K. Farha, research affiliate in Weinberg College of Arts and Sciences. “This paper presents the most promising structures. Where does one focus? The question arises: Which materials should we synthesize?”

In addition to gas storage, MOFs may lead to better fuel cells for vehicles that burn cleaner today that run on natural gas – and this number is expected to increase sharply due to recent discoveries of natural gas in many areas. Thank you. We thankful think the new algorithm can very computationally translate this. We propose how and what could be examined for understanding in its imaginary methane reservoir.

Using their method, the researchers generated more than 300 different MOFs for their efficacy in different applications. The algorithm could then use a criterion to decide which materials synthesize approaches the point where we are able to make almost any material, the researchers say. “Which materials should we synthesize?” – Professor Randall Q. Snurr.