Analytical light reflectance models for overlapping illumination and collection area geometries

Andrew J. Gomes and Vadim Backman*
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60218, USA
*Corresponding author: v-backman@northwestern.edu

Received 4 May 2012; revised 24 September 2012; accepted 26 October 2012; posted 1 November 2012 (Doc. ID 167992); published 20 November 2012

Several biomedical applications, such as detection of dysplasia, require selective interrogation of superficial tissue structures less than a few hundred micrometers thick. Techniques and methods have been developed to limit the penetration depth of light in tissue, including the design of systems such as fiber-optic probes that have overlapping illumination and collection areas on the tissue surface. For such geometries, the diffusion approximation to the light-transport equation typically does not apply, and as a result there is no general model to extract tissue optical properties from reflectance measurements. In the current study, we employ Monte Carlo (MC) simulations to develop simple and compact analytical models for the light reflectance from these overlapping geometries. These models incorporate the size of the illumination and collection areas, the collection angle, the polarization of the incident light, and the optical properties of the sample. Moreover, these MC simulations use the Whittle–Matérn model to describe scattering from spatially continuous refractive index media such as tissue, which is more general than models based on the conventionally used Henyey–Greenstein model. We validated these models on tissue-simulating phantoms. The models developed herein will facilitate the extraction of optical properties and aid in the design of optical systems employing overlapping illumination and collection areas, including fiber-optic probes for in vivo tissue diagnosis. © 2012 Optical Society of America

1. Introduction

Tissue is functionally and structurally a multi-layered structure with several diseases originating in precise locations. For example, many precancerous dysplastic lesions arise from the epithelium and mucosae of several organs (breast, lung, colon, etc.). The thickness of the mucosal layer is typically on the order of several hundred micrometers. Light typically diffuses several millimeters below the tissue surface, and as a consequence there has been an interest in the development of depth-selective light interrogation techniques and geometries, particularly those that can be implemented in a fiber-optic probe [1–13]. One of these geometries seeks to maximize the overlap between illumination and collection areas on the tissue surface [14,15]. The overlap between these areas ensures a shorter penetration depth by limiting the radial extent photons can travel before being collected. Clinical studies employing these geometries have proved successful in targeting the epithelium and detecting early precancerous lesions [16,17].

For these overlapping geometries, there is still a need to relate the light reflectance to the illumination/collection geometry and to the optical properties of the sample. These optical properties include the scattering coefficient μ_s, the anisotropy factor g, the reduced scattering coefficient ($\mu'_s = \mu_s(1 - g)$), the absorption coefficient μ_a, and the functional type (shape) of the refractive index correlation.
function [18]. For many biophotonic applications, the diffusion approximation to the light-transport equation has proven invaluable in modeling the dependence of light reflectance on these optical properties. Use of this approximation hinges on several assumptions, one of them being that the distance between source and detector is greater than $1/\mu_s'$. For techniques whose geometries violate this assumption, alternative models must be employed. Analytical models have been developed for lensless probes where the distance between the illumination and collection fibers is less than $1/\mu_s$, such as the case in differential-path-length [19], elastic-scattering [8], and single-fiber-reflectance [20] spectroscopies. However, these models cannot be directly applied to probes that use lenses or other methods to maximize the overlap of illumination and collection areas or to systems that employ polarization gating. Quantifying the relation between optical properties and reflectance in the case of overlapping illumination—collection areas will enable the accurate recovery of optical properties as well as aid in system design.

In this paper, we use Monte Carlo (MC) simulations to develop a compact analytical model of light reflectance from geometries with illumination—collection overlap in spatially continuous refractive index media. We further extend this model to take into account the polarization of the incident and detected light in order to extend our results to techniques that employ polarization gating for enhanced depth selectivity. Our models explicitly take into account the size of the illumination—collection areas and detection angle and can therefore be applicable across a wide range of system designs. We then validate our results on tissue-simulating phantoms. Our results can be used to extract the optical properties from a sample using a probe or other optical setup having overlapping illumination—collection areas. This should aid in the development of diagnostic probes or systems that aim to quantify the structural and functional properties of superficial tissue layers.

2. Materials and Methods

A. Polarization-sensitive MC Simulations

The basis of our MC simulations was publicly available polarized-light MC algorithms developed by Ramella-Roman et al. [21,22]. We have previously modified the code to track photons as functions of polarization, exit radius, collection angle (θ_c), and maximum depth and path length travelled [14]. Reflection, refraction, and alteration of the Stokes vector at the sample/environment interface was computed using Snell’s law and the Stokes formalism of the Fresnel equations [18]. The initial entry point of a photon into the sample was chosen randomly within a circular area of radius R while the initial angle of propagation was normal to the sample surface. The initial Stokes vector was $[1 0 0 0]$ in the case of the unpolarized simulations or $[1 1 0 0]$ in the case of the linearly polarized simulations. Propagation of light in the medium was controlled by μ_a, μ_s, and the phase function. We employed a phase function based on the Whittle–Matérn model [18,23] that describes the refractive index correlation properties of continuous random media. The phase function for incident light with initial Stokes vector $[I_o, Q_o, U_o, I_o]$ can be written as

$$F(\theta, \phi) = \frac{\pi}{4} k^4 \Phi_n \left(2k \sin \frac{\theta}{2}\right) \left(1 - \cos^2 \theta\right) I_o + (\cos^2 \theta - 1) (Q_o \cos 2\phi + U_o \sin 2\phi),$$

where θ is the angle of scattering, ϕ is the angle of rotation into the scattering plane, and k is the wavenumber. The spectral density Φ at spatial frequency κ is given by

$$\Phi_n(\kappa) = N l_s^2 \pi^{-3/2} \Gamma(m) (1 + k^2 l_c^2)^{-m},$$

where the parameters l_s, dn^2, m denote the index correlation distance, variance of the refractive index fluctuations, and the shape of refractive index correlation function, respectively. The variable N is a normalization parameter. When m is between 1.5 and 2, the shape of the refractive index correlation function follows a stretched exponential function. A value of $m = 2$ results in an exponential shape while $m \rightarrow \infty$, the shape converges to a Gaussian distribution.

B. Light Reflectance Model

The reflected light intensity from a homogeneous turbid sample with absorption coefficient μ_a can be written according to the modified Beer–Lambert expression [8,24,25]:

$$I = I^0 \exp(-\mu_a L).$$

8014 APPLIED OPTICS / Vol. 51, No. 33 / 20 November 2012
where I^s is the intensity that would be collected from the sample with the same scattering properties but $\mu_a = 0$, and where $\langle L \rangle$ is the mean average path length of photons, defined as \cite{24}

$$
\langle L \rangle = \frac{1}{\mu_a} \int_0^{\mu_a} \langle L \rangle_{\mu_a} d\mu_a
$$

with $\langle L \rangle_{\mu_a}$ being the mean path length of photons traversing a medium with absorption coefficient μ_a. In a previous publication, we have related I^s to μ_a and m for the co-polarized reflected signal (I_\parallel) and the cross-polarized reflectance signal (I_\perp) \cite{26}. In brief, the derived expressions for these signals were found to be

$$
I_\perp = c_2 \mu_a^{0.245m+1.067}, \quad I_\parallel = c_1 \mu_a^{0.45m-0.033},
$$

where c_1 and c_2 are proportionality constants. In the current study, we use the same MC methods to broaden the applicability of Eq. (5) to include the effect of illumination—collection radius R and collection angle. We found the form of these equations to be

$$
I_\perp = c f_1^\perp(m, \theta_c)(R\mu_\perp)^{f_2^\perp(m, \theta_c)} ,
$$

$$
I_\parallel = c f_1^\parallel(m, \theta_c)(R\mu_\parallel)^{f_2^\parallel(m, \theta_c)} ,
$$

where c is a calibration factor that must be determined experimentally and f^1 and f^2 are functions of m and θ_c. The next step to determine a complete model of light reflectance is to elucidate the functional relationship between $\langle L \rangle$ and the optical properties of the sample (μ_s, u_a, g, m) as well as the average path length of a nonzero u_a can be computed from Eq. (7). We looked at four different polarization-gated reflectance signals: the co-polarized signal where the collected light has the same polarization as the incident light ($\langle L \rangle_\parallel, I_\parallel$); the cross-polarized signal where the reflected light has an orthogonal polarization to the incident light ($\langle L \rangle_\perp, I_\perp$); the total signal, which is the sum of the co- and cross-polarized signals ($\langle L \rangle_\Sigma, I_\Sigma = I_\parallel + I_\perp$), and the delta-polarized signal, which is the difference between the co- and cross-polarized signals ($\langle L \rangle_\Delta, I_\Delta = I_\parallel - I_\perp$). After tracking $\langle L \rangle$ for each of these signals, we fit $\langle L \rangle/R$ as a function of $R\mu_\perp$ and $R\mu_\parallel$. To aid in this endeavor, we used a surface-fitting program known as TableCurve 3D (Systat). To limit the complexity of the resulting equation and discourage overfitting, we capped the number of fitting coefficients in the model to three. In order to ensure accuracy, we selected fitting equations whose goodness of fit R^2 was greater than 0.95. For the case of the total signal, we found the following expression accurately modeled the average path length:

$$
\ln\left(\frac{\langle L \rangle_\Sigma}{R}\right) = a_1 + a_2 \sqrt{R \mu_\perp} + a_3 \ln(R \mu_\parallel),
$$

where $[a_1, a_2, a_3]$ are fitting parameters. We further extended Eq. (8) to take into the account the shape of the refractive index correlation function and the collection angle by recording the behavior of $[a_1, a_2, a_3]$ as functions of m and θ_c. The effective path length can be calculated from Eq. (4):

$$
\ln\left(\frac{\langle L \rangle_\Sigma}{R}\right) = \frac{2\left(2\sqrt{R \mu_\perp} - 1\right)(R \mu_\parallel)^{\alpha_3} \exp\left(a_1 + a_2 \sqrt{R \mu_\perp}\right) - \left[-2(R \mu_\parallel)^{\alpha_3} \exp(a_1)\right]}{a_3 \mu_\parallel}.
$$

The forms of Eqs. (8) and (9) also characterize the behavior of the average path length under linearly polarized illumination and co-polarized detection such that

$$
\ln\left(\frac{\langle L \rangle_\parallel}{R}\right) = b_1 + b_2 \sqrt{R \mu_\parallel} + b_3 \ln(R \mu_\parallel)
$$

Here $[b_1, b_2, b_3]$ are another set of fitting parameters, which can also be a function of m and θ_c. The value $\langle L \rangle_\parallel$ will have the same form as Eq. (9) but with $[b_1, b_2, b_3]$ substituted for $[a_1, a_2, a_3]$. For linearly polarized illumination with cross-polarized detection, the following equation with fitting coefficients $[c_1, c_2, c_3]$ was used to fit the average path length:

$$
\frac{\langle L \rangle_\perp}{R} = \frac{\left(2\sqrt{R \mu_\parallel} - 1\right)(R \mu_\parallel)^{\alpha_3} \exp\left(a_1 + a_2 \sqrt{R \mu_\parallel}\right) - \left[-2(R \mu_\parallel)^{\alpha_3} \exp(a_1)\right]}{a_3 \mu_\parallel}.
$$

The new step to determine a complete model of light reflectance is to elucidate the functional relationship between $\langle L \rangle$ and the optical properties of the sample (μ_s, u_a, g, m) as well as the average path length of a nonzero u_a can be computed from Eq. (7). We looked at four different polarization-gated reflectance signals: the co-polarized signal where the collected light has the same polarization as the incident light ($\langle L \rangle_\parallel, I_\parallel$); the cross-polarized signal where the reflected light has an orthogonal polarization to the incident light ($\langle L \rangle_\perp, I_\perp$); the total signal, which is the sum of the co- and cross-polarized signals ($\langle L \rangle_\Sigma, I_\Sigma = I_\parallel + I_\perp$), and the delta-polarized signal, which is the difference between the co- and cross-polarized signals ($\langle L \rangle_\Delta, I_\Delta = I_\parallel - I_\perp$). After tracking $\langle L \rangle$ for each of these signals, we fit $\langle L \rangle/R$ as a function of $R\mu_\perp$ and $R\mu_\parallel$. To aid in this endeavor, we used a surface-fitting program known as TableCurve 3D (Systat). To limit the complexity of the resulting equation and discourage overfitting, we capped the number of fitting coefficients in the model to three. In order to ensure accuracy, we selected fitting equations whose goodness of fit R^2 was greater than 0.95. For the case of the total signal, we found the following expression accurately modeled the average path length:

$$
\ln\left(\frac{\langle L \rangle_\Sigma}{R}\right) = a_1 + a_2 \sqrt{R \mu_\perp} + a_3 \ln(R \mu_\parallel),
$$

where $[a_1, a_2, a_3]$ are fitting parameters. We further extended Eq. (8) to take into the account the shape of the refractive index correlation function and the collection angle by recording the behavior of $[a_1, a_2, a_3]$ as functions of m and θ_c. The effective path length can be calculated from Eq. (4):

$$
\ln\left(\frac{\langle L \rangle_\Sigma}{R}\right) = \frac{2\left(2\sqrt{R \mu_\perp} - 1\right)(R \mu_\parallel)^{\alpha_3} \exp\left(a_1 + a_2 \sqrt{R \mu_\parallel}\right) - \left[-2(R \mu_\parallel)^{\alpha_3} \exp(a_1)\right]}{a_3 \mu_\parallel}.
$$

The forms of Eqs. (8) and (9) also characterize the behavior of the average path length under linearly polarized illumination and co-polarized detection such that

$$
\ln\left(\frac{\langle L \rangle_\parallel}{R}\right) = b_1 + b_2 \sqrt{R \mu_\parallel} + b_3 \ln(R \mu_\parallel)
$$

Here $[b_1, b_2, b_3]$ are another set of fitting parameters, which can also be a function of m and θ_c. The value $\langle L \rangle_\parallel$ will have the same form as Eq. (9) but with $[b_1, b_2, b_3]$ substituted for $[a_1, a_2, a_3]$. For linearly polarized illumination with cross-polarized detection, the following equation with fitting coefficients $[c_1, c_2, c_3]$ was used to fit the average path length:
Again applying Eq. (4) yields

$$\langle L \rangle_\perp = \frac{R}{c_1 + c_2 \sqrt{R_{\mu_a}} + c_3 \exp(-R_{\mu'_a})}. \quad (11)$$

Finally, the average and effective path length for the \(\Delta I \) signal were modeled as

$$\frac{\langle L \rangle_\Delta}{R} = (d_1 + d_2 R_{\mu_a} + d_3 R_{\mu'_a})^{-1}. \quad (13)$$

and

$$\langle L \rangle_\Delta = \frac{\ln(d_1 + d_2 R_{\mu_a} + d_3 R_{\mu'_a}) - \ln(d_1 + d_3 R_{\mu'_a})}{d_2 R_{\mu_a}}. \quad (14)$$

Eqs. (6) through (14) along with Tables 1 and 2 demonstrate that the polarization-gated signals are functions of the probe geometry \((R, \theta_1), \) the absorption and scattering coefficients of the sample, and the phase function parameterized by both \(g\) and \(m.\) (The accuracy and validity of these expressions were then confirmed both by comparison to the original MC data as well as on tissue phantoms as described below).

Table 1. Fitting Coefficients for Path Length Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Functional form</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(x_1 + x_2 m + x_3 \theta^0)</td>
<td>1.061</td>
<td>0.177</td>
<td>4.71E-7</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(x_1 + x_2 m + x_3 \theta)</td>
<td>-1.511</td>
<td>-0.071</td>
<td>-0.00365</td>
</tr>
<tr>
<td>(a_3)</td>
<td>(x_1 + x_2 m^2 \ln(m) + x_3 \theta \theta^0)</td>
<td>-0.232</td>
<td>-0.017</td>
<td>0.01408</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(x_1 + x_2 m + x_3 \theta^0)</td>
<td>0.801</td>
<td>0.206</td>
<td>-4.94E-7</td>
</tr>
<tr>
<td>(b_2)</td>
<td>((x_1 + x_2 m + x_3 \theta^{1.5})^{-1})</td>
<td>-0.754</td>
<td>0.059</td>
<td>0.000159</td>
</tr>
<tr>
<td>(b_3)</td>
<td>((x_1 + x_2 m + x_3 \theta^{1.5})^{-1})</td>
<td>-2.921</td>
<td>-0.546</td>
<td>-0.00849</td>
</tr>
<tr>
<td>(c_1)</td>
<td>((x_1 + x_2 m^{-1} + x_3 \theta^{0.5})^{-1})</td>
<td>2.833</td>
<td>1.474</td>
<td>-0.102</td>
</tr>
<tr>
<td>(c_2)</td>
<td>((x_1 + x_2 m^{3} + x_3 \theta^{2})^{-1})</td>
<td>1.961</td>
<td>0.047</td>
<td>-4.69E-6</td>
</tr>
<tr>
<td>(c_3)</td>
<td>((x_1 + x_2 m^{-1} + x_3 \theta^{0.5})^{-1})</td>
<td>-2.656</td>
<td>-1.919</td>
<td>-0.114</td>
</tr>
<tr>
<td>(d_1)</td>
<td>((x_1 + x_2 m^{0.5} + x_3 \theta^{1.5})^{-1})</td>
<td>7.884</td>
<td>0.924</td>
<td>-0.085</td>
</tr>
<tr>
<td>(d_2)</td>
<td>((x_1 + x_2 m^{1.5} + x_3 \theta^{1.5})^{-1})</td>
<td>0.872</td>
<td>-0.037</td>
<td>0.000709</td>
</tr>
<tr>
<td>(d_3)</td>
<td>((x_1 + x_2 m^{2} + x_3 \theta^{1.5})^{-1})</td>
<td>0.824</td>
<td>-0.088</td>
<td>-0.0265</td>
</tr>
</tbody>
</table>

Table 2. Functional Forms for Scattered Reflectance

<table>
<thead>
<tr>
<th>Function</th>
<th>Form</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>((x_1 + x_2 m + x_3 \theta^{-1}))</td>
<td>9.06E5</td>
<td>-1.43E5</td>
<td>-5.13E6</td>
</tr>
<tr>
<td>(f_2)</td>
<td>(\exp(x_1 + x_2 m + x_3 \theta^{-1}))</td>
<td>15.00</td>
<td>-0.564</td>
<td>-81.3</td>
</tr>
<tr>
<td>(f_3)</td>
<td>((x_1 + x_2 m + x_3 \theta^{0.5}))</td>
<td>1.105</td>
<td>0.225</td>
<td>0.0129</td>
</tr>
<tr>
<td>(f_4)</td>
<td>((x_1 + x_2 m + x_3 \theta^{1.5}))</td>
<td>0.218</td>
<td>0.357</td>
<td>4.28E-4</td>
</tr>
</tbody>
</table>

C. Tissue Phantoms

We prepared tissue-simulating phantoms consisting of deionized water, 20% Intralipid (Sigma–Aldrich), and Evans Blue dye (Sigma–Aldrich), which has peak absorption at 611 nm. Known amounts of the Intralipid and dye were added to water to achieve the desired values of \(\mu_s'\) and \(\mu_a.\) These values as a function of wavelength from 450 to 650 nm were confirmed with spectral reflectance and transmittance measurements using an integrating sphere in conjunction with the inverse adding—doubling algorithm [27].

D. Instrumentation

Measurements from phantoms were taken with a polarization-gated spectroscopy probe that has been characterized and described in detail in previous publications [14,16,17]. In brief, the probe consists of three 200 \(\mu\)m diameter fibers arranged in an equilateral triangle as shown in Fig. 1(a). One fiber serves as an illumination channel, and the remaining two fibers serve to collect backscattered light from the sample. A polarizing sheet is placed over the illumination fiber and one of the collection fibers while another polarizing sheet, oriented orthogonally to the first polarizing sheet, is placed on the remaining collection fiber. A gradient refractive index (GRIN) lens is used to collimate the incident light, focus light backscattered from the sample onto the collections fibers, and ensure that the illumination and collection areas overlap on the sample surface as shown in the ray tracing in Fig. 1(b). The illumination fiber is connected to a white light-emitting diode (WT&T) while the collection fibers deliver the received light to two fiber-optic spectrometers (Ocean Optics). The radius \((R)\) of the illumination—collection areas on the sample surface is 400 \(\mu\)m, and the angle \((\theta_1)\) between illumination and collection beams is \(\sim 14^\circ.\)

E. Data Acquisition and Analysis

We constructed a scattering-only phantom consisting of only Intralipid and water without any dye \((\mu_s' = 0)\). Then, 15 mL of the phantom was placed inside a cylindrical beaker, and the probe tip was submerged into the solution. A series of 20 individual spectral measurements were taken from the solution in the wavelength range of 450 to 650 nm. A background measurement \((I_{BG})\) taken in water was also taken and subtracted from the raw phantom signal \((I_{raw})\). Next the background-subtracted signal was normalized to the reflectance \((I_{WS})\) from a white 99%
reflectance standard (Labsphere). The normalized collected intensities $I_{\text{norm}}(\lambda) = (I_{\text{Raw}}(\lambda) - I_{\text{BG}}^\text{Water}(\lambda)) / (I_{\text{WS}}(\lambda) - I_{\text{BG}}^\text{Air}(\lambda))$ for the co-, cross-, total, and delta-polarization signals were recorded for each of the 20 measurements and then averaged together. This average value defines the scattering intensity I_s in Eq. (3) for the various signals. The value of μ_s as a function of wavelength for this scattering-only phantoms was determined with an integrating sphere as described in Section 2.C. Next, a known amount of Evans Blue dye was added to the scattering phantom to increase the absorption coefficient. The volume of dye added was insignificant compared to the total volume, and thus the scattering properties were unchanged. An additional 20 measurements were taken with the polarization-gated probe from this scattering and absorption phantom and normalized as described above. The average of these 20 measurements defines the I_t term in Eq. (3). The values of μ_s and μ_a over the wavelength range 450 to 650 nm were determined from integrating sphere measurements. The mean effective path length was then experimentally determined by inverting Eq. (3):

$$\frac{(L)}{(L)}(\mu_a, \mu_s) = \frac{-\ln \left(\frac{I_{\theta_c}(\phi_c)}{I_{\theta_c}(\phi_c)} \right)}{\mu_a}. \quad (15)$$

Finally, the relationship between μ_s, m, and the scattering intensity was determined by fitting Eq. (6) to the spectral values of μ_s from the scattering-only phantom.

3. Results

A. MC Model of the Average Path Length

The functional relationships between the path-length equation coefficients $[a_1 - d_3]$ from Eqs. (8) through (14) and θ_c and m are shown in Table 1. Using the values in Table 1, we compared the outputs of the path-length models (Mod) $((L)_{\text{Mod}}^\text{MC} / R)$ in Eqs. (8), (10), and (11) with the simulated MC data $((L)_{\text{MC}} / R)$ for a range of optical properties and probe geometries: $g = [0.75, 0.8, 0.85, 0.9, 0.93], \ R\mu_a = [1.3, 5, 8, 12, 16, 20], \ R\mu_s = [0 - 1], \ m = [1.1, 1.3, 1.5, 1.75, 1.99], \ \text{and} \ \theta_c = [0 - 18^\circ, 18 - 27^\circ, 27 - 45^\circ]$. The results of this comparison are shown in Figs. 2(a) through 2(d) for the co-polarized, cross-polarized, total, and delta signals, respectively. The simulation and the model are strongly correlated with a Pearson correlation coefficient greater than 0.9 for all cases. In addition, the data points are closely packed around the line of unity, indicating agreement between the MC simulation and model. We quantified this agreement by calculating the median percentage difference between the simulation and model and found it to be 5%, 11%, 7%, and 4% for the co-polarized, cross-polarized, total, and delta signals, respectively.
B. Experimental Verification of the Mean Average Path Length Models

We created the Intralipid and Evans Blue dye phantom as described in Section 2.C. The values of μ_s' and μ_a were determined as a function of wavelength using integrating sphere measurements and are shown Figs. 3(a) and 3(b), respectively. Knowledge of these optical properties allowed us to determine the mean average path length of light traversing the phantom experimentally by using Eq. (15). Because μ_s' and μ_a varied by wavelength, we were able to calculate $\langle L \rangle$ for many μ_s' and μ_a value combinations from a single spectral measurement from 450 to 650 nm ($\mu_s' = 1.36–1.96 \text{ mm}^{-1}$, $\mu_a = 0.12–1.34 \text{ mm}^{-1}$, $\mu_s'/\mu_a = 0.06–0.91$). We took the m value of the Intralipid to be the value that best fit the Whittle–Matérn derived equation $\mu_s' \propto 2^{2m-4}$ to the integrating sphere data in Fig. 3(a). The extracted m value was found to be 1.55, and hence our phase-function model of the Intralipid was very similar to the Henyey–Greenstein form. This is an approximation due to the dissimilarity between the Whittle–Matérn model and the Intralipid properties. Next, we compared our experimental calculations of $\langle L \rangle$ with those we found from our MC model in Eqs. (10), (12), and (14). The results of this comparison are shown in Figs. 4(a) through 4(d). The correlation between our theoretical and experimental measurements of $\langle L \rangle$ is greater than 0.99 for the co-polarized, cross-polarized, and total signal in Figs. 4(a) through 4(c). The correlation coefficient for the delta signal in Fig. 4(d) was small primarily because $\langle L \rangle_{\Delta}$ did not change significantly across the range of μ_s' and μ_a values tested. The median (max) percentage error between theory and experimental determinations of $\langle L \rangle$ was 3.5% (8.3%), 10% (17.3%), 3.1% (8.9%), and 14.7% (23%) for the co-polarized, cross-polarized, total, and delta signals, respectively. We attribute the increase in error and dispersion in the data points for the delta signal to the fact that the ratio of I_{\perp}/I_{\parallel} can be close to unity due to the smaller path length the delta-polarized signal traverses through the phantom.

This makes the calculation of $\langle L \rangle$ from Eq. (15) more sensitive to noise and experimental error. The overall combination of high correlation and low percentage error between theory and experiment leads us to conclude that the MC model for the mean average path length can accurately predict $\langle L \rangle$ for different polarization signals.

C. Experimental Verification of the Model for the Scattering Intensity I^s

In addition to the mean average path length, the next variable that must be characterized in order to analyze light reflectance using the modified Beer–Lambert law of Eq. (3) is the scattering intensity I^s. Our MC model for I^s is given in Eq. (6) with the functional forms and fitting coefficients shown in Table 2. We sought to validate these expressions on the scattering Intralipid phantom that was used for the path length analysis. This experimental validation can only be performed for the cross-polarized signal because the co-polarized intensity is sensitive to the shape of the phase function whereas the cross-polarized intensity is mainly determined by μ_s' [28]. The shape of the phase function for the tissuesimulating Whittle–Matérn model and the Intralipid will be different, and thus co-polarized agreement between MC and experimental Intralipid measurements is a priori not expected. Next, we used the extracted m value of 1.55 in Eq. (6) to predict the cross-polarized reflectance intensity that would be measured from the Intralipid phantom. The result of this comparison is shown in Fig. 5. The mean percentage error between the power fit of Eq. (6) and the experimental data is 1.4%, indicating that Eq. 6 accurately summarizes the behavior of I^s_{\perp}. The value of c was found to be 0.136. It should be noted that the
value of c is dependent on the type of intensity normalization used and should be calculated independently.

D. Applicability to Systems that use Unpolarized Illumination and Detection

Up until now, we have considered results derived from the analysis of signals that compose polarization-gated systems. However, for the purposes of analyzing the modified Beer–Lambert law in Eq. (3), our results can be extended to systems that use unpolarized illumination and detection schemes. This can be seen by examining Fig. (6) where the average path length and total reflectance intensity of the total signal from polarization gating is plotted versus the average path length and total reflectance intensity obtained using unpolarized illumination and detection and using the same set of optical properties and illumination–collection geometries. The correlation between the average path length of these two signals is greater than 0.99, and the mean percentage error is 0.2%, while the mean percentage error between the corresponding reflectance intensities is less than 0.1%. These results suggest that the model developed for the total signal from polarization gating can also be applied to systems that employ unpolarized illumination and detection.

4. Discussion

We have presented an analytical model based on the modified Beer–Lambert law for light reflectance that can be applied to fiber-optic probes or other optical systems that employ overlapping illumination and collection areas on the sample surface. Our model is flexible and can be used both for different illumination–collection geometries and different linear polarization states of the incident and reflected light. The model incorporates the two most common sample optical properties of interest: the reduced scattering and absorption coefficients. In addition, our model takes into account the shape of the refractive index correlation function, an attribute that is directly relevant to spatially continuous refractive index media such as biological tissue.

Validation of our analytical model was completed in two main ways. The first method was to compare the analytical model results directly with the MC simulations from which the models were derived. As demonstrated in Fig. 2, the agreement between MC and our model led us to conclude that our model was an overall robust and accurate condensation of the MC simulations. This still left open the question of whether the MC simulations and therefore the model could be applied in an experimental setting. Our second method of validation was to then compare our models of the mean average path length and intensity with those values obtained experimentally from an Intralipid and Evans Blue dye phantom. However, this method has inherent limitations. The Whittle–Matérn model is meant to simulate biological tissue where the refractive index distribution is spatially continuous and the scattering is weak enough for the Born approximation to be applied. Currently, there is no phantom that conforms to both of these assumptions, and hence the phase matrix will be different between the model and current phantoms. In the case of polarized light, it is known that the depolarization properties of lipid and microsphere phantoms differ from those of tissue, possibly because of the difference in the shape of their respective phase functions [29,30]. Even with these caveats, the MC model can still be compared with the Intralipid phantom if the parameter of interest is largely independent of the phase function shape. This is true for the path length, which is mainly dependent on μ_s and μ_a and only weakly dependent on α as shown in Eqs. (8) through (14). The same is true for the cross-polarized reflectance. However, as the co-polarized reflectance (and therefore also the total and delta reflectance) is dependent on phase function shape, a comparison of this parameter between model and experiment is not possible.
at this time. Development of more tissue-like phan-
toms may allow us to overcome this hurdle in the
future.

For the experimental comparisons we were able to
make and that are shown in Figs. 4 and 5, there was
overall good agreement between our MC model and
the polarization-gated Intralipid measurements. We
do however observe a difference in slope between the
line of unity and our data measurements shown in
Fig. 4. This would suggest that the errors would in-
crease for lower and larger path lengths. The mini-
umum and maximum path lengths measured from
the phantom are largely driven by the range of the
phantom μa, which varies from 0.1 to 1.4 mm⁻¹ ac-
cording to Fig. 3(b). The μa of various tissues (colon,
esophagus, oral mucosa, bladder) has been found to
be between 0.2 and 1.0 mm⁻¹ over the visible range
[31]. Therefore we believe the experimental errors we
observed from our phantom would be representa-
tive of the errors that would be observed from a wide
range of biological tissue. Exceptions may include
highly absorbing tissue such as liver or tumors.
The reasons for the difference in slope between our
experimental data and the line of unity are twofold.
The first is that for long path lengths (low absorp-
tion), our model underestimates the path length,
especially for the co-polarized and total signals. This
can be seen from Figs. 2(a) and 2(c), where for large
path length most of the data points fall under the line
of unity. The second reason is that at high absorption
(low path lengths), the Beer–Lambert law of Eq. (3)
becomes less accurate because the absorbers cease to
become independent. This causes the experimentally
observed path length to be lower than otherwise pre-
pdicted, in a fashion analogous to the shadowing or
shielding effect observed when hemoglobin is con-
ﬁned to cells or vessels [32,33]. This is what is ob-
served in Fig. 4, where for low path lengths (high absorp-
tion), the experimentally measured path length is consistently less than the MC-derived path
length. Despite these artifacts, there is still good
agreement between the model and experiment. We
were not able to test the model either across the full
range of optical properties nor across the full range
of possible probe geometries. However, we believe that
the good agreement we obtained in this study is sug-
gestive that the model would be successful for other
geometries as well. We plan on conducting future stu-
dies with alternative probe geometries to confirm
this. The models that we have derived have several
applications. The most obvious one is analyzing and
extracting optical properties from experimental me-
surements. A model also based on the modified Beer–
Lambert law has been used for this purpose in elastic
scattering spectroscopy [8]. We have previously iso-
lated the shape of the refractive index correlation
function from scattered intensity measurements in
an animal model of colon carcinogenesis and have
shown that it is a diagnostic parameter [26]. In ad-
inution, our equations for the path length can be used
to design probes with an appropriate sampling

References

1. A. Amelink and H. J. Sterenborg, “Measurement of the local
optical properties of turbid media by differential path-length

2. D. Arifder, R. A. Schwarz, S. K. Chang, and R. Richards-
Kortum, “Reflectance spectroscopy for diagnosis of epithelial
precancer: model-based analysis of fiber-optic probe designs to
resolve spectral information from epithelium and stroma,”

3. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R.
Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scatter-
ing spectroscopy for quantitative measurement of epithel-
ial cellular structures in situ,” IEEE J. Sel. Topics Quantum

(2000).

Kromin, C. Kun, and V. Backman, “Simultaneous measure-
ment of angular and spectral properties of light scattering for
characterization of tissue microarchitecture and its altera-
tion in early precancer,” IEEE J. Sel. Topics Quantum Elec-
tron. 9, 243–256 (2003).

surement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36,

sectioning using a fiber probe with an angled illumination-
collection geometry: evaluation in engineered tissue phan-

8. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of
light reflectance for extraction of the optical properties in
small volumes of turbid media,” Appl. Opt. 46, 7317–7328
(2007).

Hussain, V. Mack, B. Knight, R. Richards-Kortum, and
A. M. Gillenwater, “Ball lens coupled fiber-optic probe for