Olfactory based navigation in mice

Presented By:
Professor Agnese Seminara
Harvard University
and
University of Nice (France)

The ability to shift between multiple decision-making strategies during natural behavior allows animals to strike a balance between flexibility and efficiency. We investigated odor-guided navigation by mice to understand how decision making strategies are balanced during a complex natural behavior. Mice navigated to odor sources in an open arena using naturally fluctuating airborne odor cues as their positions were recorded precisely in real time. I will discuss the computational challenges involved in tracking the turbulent plumes to their source. I will show that the signal bears information regarding the location of the source, and that this information is easy to extract if the animal is close to the source. We find that when mice had limited prior experience of source locations, their search behavior was consistent with a gradient descent algorithm that utilized directional cues in the plume to navigate to the odor source. With increased experience, mice shifted their strategy from this flexible, sensory-driven search behavior to a more efficient and stereotyped foraging approach that varied little in response to odor plumes. This study demonstrates that mice use prior knowledge to adaptively balance flexibility and efficiency during complex behavior guided by dynamic natural stimuli.

Monday, October 19, 4:00 PM
Technological Institute M416
For Further information see http://easm.northwestern.edu
Engineering Sciences and Applied Mathematics
2145 Sheridan Road, M426, Evanston IL 60208 (847) 491-3345