How magnets and mathematics can help solve the current water crisis
Presented By: Dr. Ian Griffiths
University of Oxford

Although water was once considered an almost unlimited resource, population growth, drought and contamination are straining our water supplies. Up to 70% of deaths in Bangladesh are currently attributed to arsenic contamination, highlighting the essential need to develop new and effective ways of purifying water.

Since arsenic binds to iron oxide, magnets offer one such way of removing arsenic by simply pulling it from the water. For larger contaminants, filters with a spatially varying porosity can remove particles through selective sieving mechanisms.

Here we develop mathematical models that describe each of these scenarios, show how the resulting models give insight into the design requirements for new purification methods, and present methods for implementing these ideas with industry.

Monday, May 16, 2016 @ 4:00 PM
Technological Institute M416

For further information see http://esam.northwestern.edu

Engineering Sciences and Applied Mathematics
2145 Sheridan Road, M416, Evanston IL 60208 (847) 491-3345